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The image potential is calculated near a model interface in which the dielectric constant changes
continuously in a thin transition layer between tao dielectrics. If the transition is suNciently smooth, the

image potential is bounded and conti~uous, as opposed to the divergent and discontinuous l/s dependence for
an abrupt interface at z = 0. Results of model calculations of the image potential for the Si-SiOz and liquid-

helium-vacuum interfaces are presented. Application of the model to the calculation of energy levels of
electrons on liquid helium gives good agreement with the experimental results of Grimes et aL when an

effective thickness of 0.57 nm is used for the helium-vacuum transition layer.

I. INTRODUCTION

The conventional image potentlRl fox' R chax'ge

Q 118ar a11 111'tel'face between 'two dleiec'tl'ics ls

y, (z) = g5/1611z~(s),

& = (&g —81)/(&g+ &I),

(&)

(2)

where &~ is the permittivity (and Icz = &z/&0 is
the dielectric constant) of the dielectric occupying
the half space z &0, and &I and cz Rre the same
quantities for the material occupying the half-space
s &0. The image potential energy is &, = QP, ,
which is independent of the sign of Q. The ilnage
potential is attractive for charges on.the lom-,
dielectrlc-constant side of the intex'face and re-
pulsive fox' chRl ges on the high-dielectl lc-con-
stRnt side of the intex'face.

This paper investigates the effect of a, gradual
tx'ansition between the two dielectx'ics, a subject
lphlch ls of interest fox' sevex'Rl, reasons. Fllst y

because the divergence and discontinuity of the
image potential (1) are unphysical, a problem
vrhich has been addressed in the case of a jellium-
vRcuum interfRce. Second, the ixnage potential
binds electrons near the surface of liquid heliums'

and affects the energy levels of electrons in space-
charge layers near the Si-Si02 intex'face. '"' If
some penetration of the electronic wave function
acx'oss the interface occurs, the divergent image
potential of E(I. (I) leads to problems. There is
evidence, both fox the Si-SiO, interface'. ' Rnd for
liquid helium' that one or more at'miCe layers of
lntex'InedlRte bonding '01 density Rl'8 px'esent neRX'

the interface.
A model interface is examined in vrhich the di, -

electric constant changes within a. txansition layer
a few atomic diameters thick. We use R local
dielectric function @which depends only on the single
space coordinate z, Rnd is independent of the x
and y coordinates. Such R model clearly ignores

the atomic Qatuxe of the materials, Rnd i,s thexe-
fore only RQ appx'oximation to the behavior of real
physical systems. In addition, our model ignores
the mobil8 cRX'x'ler8 which will modify th8 image
potential at the interface between an insulator and
R semiconductox'.

We justify the present model in spite of these
approximations by noting that it is consistent with
the effective-Inass-approximation approach that
has been used to treat electrons neax' the Si-siO,
interface. '"' The gradual-transition-layex' model
has the advantage that its consequences, and their
dependence on the values of physical pax'ameters,
cRQ be easily tested.

The electrostatic potential P(r) due to the pres-
ence of a point charge Q located at r 0 in a medium
with a spatiaHy varying permittivity & is the soiu-
tlon of Poisson 8 equation

8 V(t( = -Q&(r - r, ) . (3)

When & l8 R function only of the ~ cooxdlnate, we-
put the ox'igin of the x Rnd y axes Rt the position of
the charge, introduce the two-dimensional xadial
coordinate 8, and expand the potential in a Four-
iex -Bessel form:

where Zo is the Bessel function of order zero.
The coefficients &,(z) satisfy

A~(z) —q'A. , (z)+ [e'(z)/a(z)]A,'(z)

= -Q&(s —z,)/21le(s, ), (5)

'%here the priIQes lndlcRte dex'lvRtives %'ith respect
to z. The boundary conditions are that &,(s) 0
as )s (

- &. If the permittivity were independent of
z, the solution of (5) would be
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Oo

g, (z,) = — B,(z,) dq,
0

(7)

(6)B,(z,) = q[A, (z,) —A.,'(z,)],
where the famous" factor ~ arises because the
image potential is a self-energy. The energy re-
quired to place a charge Q at the point r, is the
integral over Q from zero to its final value, which
equals half of the value obtained by multiplying
the charge by the potential obtained from the
solution of Poisson's equation.

In Secs. III and 1V we calculate the image po-
tential for two different models of the interface.

A', (z) = [Q/4(r»(z, )q] exp(-q ~z -z, ~),

and the potential would be the ordinary Coulomb
potential@/4(r»(z, ) ~r -r, ~, which diverges at the
position of the point charge.

The image potential gives the effect of the spat-
ially varying permittivity on the potential at the
position of the point charge. It is given by

l2
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FIG. 1. Spatial variation of the dielectric constant
v(z) = &(z)/&o in the transition layer between two di-
electrics for the two models used in this paper. The
dashed line shows the linearly graded model of Sec. III
and the solid line shows the smooth transition model of
Sec. IV, witha&=0. 1 nm. In both models z, =0.5 nm
and the limiting values of the dielectric constant are
taken to be vi=2.1 and le~=11.7.

0, z&-g

S(z) =( (z+z, )/z, , -z, & z & 0

O&z.

(10)

The resulting dielectric constant, with parameters
((s = 11.7 and ((r-2. 1 (the optical-dielectric constant)

III. LINEARLY GRADED TRANSITION

The simplest model for a transition layer is that
the permittivity varies linearly:

»(z) = ».+(»s —»r}~(z),

where the grading function S(z) for a layer of thick-
ness z, is given by

chosen for the Si-SiO, interface, is represented
by the dashed line in Fig. 1. For this model, the
solution for the amplitude coefficient A, (z) in the
transition layer is

A, (z) = (ri.(r)) + PIf,(r)),

'q= q[z+»sz(/(»s -»r}] ~

where I, and K, are the Bessel functions of imagin-
ary argument, and n and P are coefficients chosen
to match boundary conditions. For large values of
~z

~
in the homogeneous dielectrics, we have A,(z)

exp(-q
~

z ~). We omit the straightforward but
tedious details involved in matching boundary con-
ditions in the solution of (5} and give only the results
for the image potential amplitude B,(z,) which en-
ters in (7):

B ( )
Q I(+ s ( Is~ - 2—(( (g, +-gr) (

q o —
4"~r Ix- K~ —Ki+ I3+

4(r»(z,), (I, IC, X„I„)(I,X, X„I„) s, &z, &O

Q I)-
gas I -K K„I„

Ir, =Io((rr) + I,(or), ECr, —X'o((rr) a X(((rr), j=1,2, 3

F,=Io((r,)K(, -Eo((r,}l(, F,= Xo((rs}l„Io((rs)Ks. , -
(r(= qzr»r /(»s —»r } ~

(rs=qz(»s/(»s —»r } i

O'2 = 0'~+ gZ o. (12)



IMAGE POTE' TIAL %EAR A GRADUAL INTERFACE BET%EEN ~ - ~ 5011

().()

Z

0.5 =
04—

().s

Z 02-

OI

0
0.01 O. I IO IOO

-0.5 0.()

I. (nBl )

FIG. 2. Image potential for a model Si-SiQ2 interface
with a linearly graded dielectric constant given by the
dashed line in Fig. 1. The wave-vector dependence
given in Eq. (13) has been used, with q~=10 cm

When z, is at either edge of the transition layer,
&,(z,)-1/q for large values of q. This leads to a
logarithmic divergence of the image potential at
these two values of z,. This divergence is in-
tegrable, in contrast to the 1/z divergence of
the conventional image potential given in (1). But
it is an unphysical singularity. One way to remove
it is to round the corners of the grading function
given in (10), as discussed in See. IV. Alterna-
tively, we can introduce a, q-dependent permittivity
for which ~- ~0 for large values of q. The particu-
lar form we choose, suggested by the Penn
models is

a~(q) = c,(q'+ zq q,') /(q'+ q,' ) .

where j I or 8 and where q, is a convergence
parameter.

Results for the image potential when q, is taken
to be 10 cm ' are show'n in Fig. 2 for the linearly
graded Si-SiO, interface. Figure 2 shows that the
image potential is indeed bounded and continuous,
but the cusplike appearance near the edges of the
transition layer shows that even the wave-vector
convergence procedure introduced in (12) has not
completely removed the effects of the sharp corner
in the dielectric properties associated with the lin-
ear dependence assumed in this section. In Sec.
IV we therefore consider a different model of the
transition layer, in which the dielectric constant
varies more smoothly and has a continuous first
derivative.

The analytic solution obtained for the linearly
graded model does allow an asymptotic expression
to be obtained for the correction to the image po-

FIG. 3. Correction factor P of Eqs. (14)-(17), which
enters in the asymptotic dependence of the image po-
tential for a linearly graded transition layer, is plotted
againsty = ~r~~ s.

tential associated with a transition layer of finite
thickness. The expansion of B,(z,) for small q
gives, when zo& 0,

B,(z,) =(Q6/4nez)[1 2P(f)qz, ]e "'0,
p(f) = [2+ f'(1-f') ' lnf]/(1-f),

(14)

(15)

where f= &z/zz. The function P(f) is shown in

Fig. 3. For large positive values of zo we find

y,.(z.)-(Q«16n~, )/[ .+P(f),].
Similarly, for large negative values of z

pi (zo) (Q6/16nzi)/[zo+zt —p(l/f)z~] . (17)

Equations (16) and (17) give the lowest-order cor-
rection to the image potential which results from
thk presence of the bnearly graded transition layer
of thickness z, . They become unreliable when z,
approaches the transition layer. For values of
f close to unity, P = 2. The correction. term then
equals half the transition layer thickness, con-
firming the intuitive guess that at large distances
the image potential is referred to the middle of
the transition layer.

IV. SMOOTH TRANSITION

To avoid the singularities attributed to the dis-
continuous first derivative of the linearly graded
permiitivity used in Sec. III, we here consider a
model in which this discontinuity is removed by
introducing a sinusoidal rounding of the corners in
the grading function 8(z) given in (10). We intro-

' duce an additional parh, meter a, to characterize
the amount of rounding, and write
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(z + z, + a, —(2a~ /v) cos[v(z+ z, )/2a, ]]/2z, , -z, —a~ & z & —zt + a~

S(z) =
g+g] 8(, -zt +g] & z &-a] (18)

[z + 2z, -a, + (2a, /v) cos(vz/2a, ) ]/2-, , -a, & z &a,

a~ &z.

This model is illustrated by the solid curve in Fig.
1, where we use z, = 0.5 nm and a, = 0.1 nm. Note
that a, must lie in the range 0 to 2z, . The

. smoothed model of this section reduces to the mod-
el given in (10) when a, = 0.

Poisson's equation, Eq. (5), has been solved
numerically with the permittivity given by (9) and
(18). As before, we require that A, (z)- exp(-q ~z ~)

for la.rge
~

z ~. These asymptotic dependences were
factored out, and the differential equation which
was solved numerically was the equation for the
coefficient of the exponential. The equations were
integrated inward from large values of ~z

~
and

matched at z = zo, where we require that A,(z~)
=A, (z„) and

0 Q 2~g ~ $9
Z p+ p

The differential equation need only be solved within
the transition layer, because outside the layer the
relations

Figure 4 shows the calculated image potential
found as described in this section, using the
parameters from the full curve in Fig. 1 for a
model Si-SiO, interface. Also shown is the image
potential for a smaller value of the rounding
parameter a, .

Figure 5 shows the image potential for a smooth
transition layer between liquid helium and its
vapor. ' The dielectric constants used are &, -

=. 1.057 23 for liquidheliumat1 K, " and rc~ =1. The
transition layer has z, =0.68 nm and a, =0.2 nm;
this choice of parameters is discussed in Sec. V.
Note that the image potential in this case is much
weaker than in the case of the Si-SiO, interface and
that it is quite symmetric about the middle of the
transition layer at z = -0.34 nm. Both results
follow because of the small value of the param-
eter 5 of Eq. (2), which is a measure of the dif-

O, S

q h~p7— (20)
0.0

obtain. B,(z,) is calculated from the values of
A, (z,) using Eq. (8), and the image potential is cal-
culated using Eq. (7). The integration over q in
(7) must be carried to rather large values, espec-
ially near the edges of the transition layer. On
the other hand, the numerical integration of the
differential equation for A, has been limited to
values such that qh, ~ 0.3, where h, , is the ~-grid
interval in the transition layer, because we used
only centered first and second differences in solv-
ing Eq. (5}. The contribution of large values of q
to the integral in (7}was estimated by a,ssuming
that &, - q

' for large q, a dependence which is
suggested by our numerical, results. The largest
numerical errors occur in the region where the
image potential is rapidly varying. They are esti-
mated to be less than 8Vo of the maximum value

0 S

z
t~

-1.00
Q

-2.0
-1.S -1.0 -0.5

z (nm)

0.0 0.5 1.0

FIG. 4. Image potential for a model Si-Si02 interface
with a smooth dielectric-constant transition. The solid
curve is based on the dielectric constant given by the
solid line in Fig. 1, with a rounding parameter a &= 0.1
nm. The dotted curve is based on a transition layer
with a,= 0.05 nm.
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FIG. 5. Image potential for a model interface between
liquid helium and its vapor, with a smoothly varying
dielectric constant as in Sec. IV. The parameters used
are f(' I= 1.057 23 s= 1, z &= 0.68 nm, and a &= 0.2 nm.

ference of the dielectric constants of the two
media.

V. ENERGY LEVELS OF ELECTRONS. ON LIQUID HELIUM

To test the model image potential described in
Sec. IV, we use it to calculate the energy levels
of electrons on the surface of liquid helium, for
which precise experimental results are avail-
able. ' The electronic states g„, with energies &„,
are the solutions of

8' d 1 dg„
2 dz /pl dz

+ [ U, (z) ey, (z) ey(z) E„]y„(z)=0, (21)

where Q, (z) is the image potential described in
Sec. IV, U, (z) is the barrier which tends to keep
electrons out of the liquid helium, Q(z} is the elec-
trostatic potential associated with an external
electric field, if present, and m* is the electron
effective mass, which may be different from the
free-electron mass when the electron is in liquid
helium. The spatial dependence of t/', and m*
is assumed to follow the same grading function
S(z) that was used in Sec. IV for the dielectric
constant. The barrier height varies from 1 eV in
the liquid helium' to 0 in vacuum, and the effective
mass varies from 1.1 m (Ref. 14) to m. The elec-
trostatic potential is essentially given by -eFz,
where I" is the electric field in vacuum. The change
of electric field on crossing into liquid helium has
been taken into account, but gas no significant
effect on the results.

We look for bound-state solutions of (21), i.e. ,
solutions for which g(z) 0 as ~z

~

~. For a

sharp interface, an infinite barrier height, and
vanishing external electric field, the solutions
form a hydrogenic spectrum:

E = me452/512v2@2q 2s2 (22}

where 5=(&„,—1)/(z„,+1). For z„,= 1.057 23,
w'e get ~ = 0.02V 82 and

~„=E„/h = -15S.1/n' GHz.

The energy separations found from the hydro-
genic approximation are about 5%%uo smaller than
the values measuredby Grimes et al. ,

' and there
have been several attempts, using both phenomeno-
logical and microscopic models, to account for
the discrepancy. """'"

In the present calculation we use the model al-
ready developed for the image potential near a
gradual transition layer, treating the thickness
parameter z, as adjustable. The parameter a, ,
which describes the rounding of the corners in
the grading function S, has been fixed at 0.2 nm,
partly on the basis of the shape of the transition
layer found in previous work. ""

Equation (21) has been solved for the levels n= 1,
2, and 3, and the energy separations 1-2 and
1 3 have been compared with the results of Grimes
et al. ~ for no external field and in the limit of low-
electron density. The best fit was obtained with
z, = 0.68 nm, which leads to an effective transition
layer thickness [corresponding to the range S(z)
=0.1 to S(z) =0.9] of 0.57 nm. This value is close
to some of the previous estimates, '""'"but there
are both larger" and smaller"'" estimates.

Figure 6 gives the electric field dependence of
the transition frequencies from n = 1 to n = 2 and
3. Our calculated results are compared with the
experimental results of Grimes et al.4 and with
the variational results of their model calculation.

Some additional results for the solutions of Eq.
(21) are given in Table I. For comparison with
these results, note that the energies given in (23)
for I" = 0 are -159.1, -39.8, and -1V.V GHE for
n=1, 2, and 3, respectively, and that the expecta-
tion values of z for these three subbands are 11.4,
45.V, and 102.V nm, respectively, in the hydro-
genic approximation.

The good agreement between calculated and mea-
sured values of energy levels of electrons on liquid
helium lends support to the validity of the smooth-
transition model used here to describe the helium-
vacuum interface, but by no means excludes other
models. There are strong theoretical indica-
tions'""'" that the density variation in the trans-
ition layer is neither symmetric nor monotonic.
Tests of more detailed microscopic models of the
interface should be carried out.
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TABLE I. Calculated properties of electrons outside liquid helium in the presence of an
electric field I' in vacuum. ( is the normalized wave function.

5' (V/cm) 0
2

100
2

E„/h (GHz) -166.2 -40.7 -17.9 .—141.7 42.3 124.8

z$„dz (nm) 10.6 44.4 100.9 9.7 29.4 46.5

0„/(A'g«) l,~ (nm) 0.42 0.42 0.42 0.42 0.42 0.42

eo

iI)~2 dz (%) 0.0245 0.0029 0.0009 0.0279 0.0074 0.0049

VI. DISCUSSION

The main result of this paper is to shiv that a
suitably smooth variation of the dielectric cons-
tant in a transition layer between tmo dielectrics
leads to a smooth and bounded image potential
through the interface. This result removes the
bothersome singularity and discontinuity in the
classical image potential given in Eq. (1). It then
becomes easier to treat the behavior of electrons
near such an interface —for example, electrons
outside liquid helium, as described in Sec. V.
Some calculations for electrons in a space- '

charge layer near a Si-SiO, interface have already
been carried out' and indicate that there are signif-
icant changes in energy levels of subbands arising
from different conduction-band valleys when a
nonzero interface width and a finite barrier height
are used. Additional calculations with more realis-
tic assumptions for effective-mass variations and
for the barrier heights seen by electrons in dif-
ferent valleys have been carried out, and mill
be prepared for publication later.

The values z, ~ 0.5 nm and a, = 0.1 nm which we
have used for the Si-SiO, interface are estimates
which have no definitive experimental or theo-
retical basis. Observation of the interface using
x-ray photoelectron spectroscopy or Auger spec-
troscopy suggests a transition layer thickness
~ 1 nm. ' ' A model constructed by Pantelides
and Long, "on the other hand, gives an atomically
smooth interface. But even in that case there is
at least one l.ayer of atoms which will have Si atoms
with bonding intermediate between that in Si and in

SiO,. Thus even a structurally smooth interface
will yield a transition layer in the bonding and
the effective potential which is at least two atomic
layers thick, or about 0.3 nm in the Si-SiO, case.
The transition layer for the dielectric constant is
likely to be thicker than for the bonding. Analysis

)30

2()()
r~

I I(0
1

0'

I 60

I ()0

FI.I'.('TRIC' FIFLD (V cm)

I&0 200

FIG. 6. Frequencies of transitions from the lowest
subband (n =1) to the first two excited subbands of elec-
trons on liquid helium as functions of the externally
applied electric field in vacuum. The points (+++) are
the experimental results of Grimes et al. , Ref. 4, and
the curves with open circles give the variational results
of their model calculation. The solid curves are the re-
sults of the present calculation. The bars at zero field
are the hydrogenic values from Eq, (23).

of internal photoemission results by DiStefano"
indicates that there is little ( & 0.05 eV) perturba-
tion of the Si conduction-band edge for distances
more than 0.4 nm from the nominal interface.
That is not in disagreement with the parameters
used in the present calculation, because the nom-.
inal interface is approximately in the middle of the
transition layer.

Screening effects by mobile carriers will modify
the image potential. In the Si-SiO, case, mobile
carriers on the Si side of the interface mill reduce
the repulsive potential on that side and will in-
crease the attractive potential on the insulator side
of the interface. The image potential is a many-
body effect which me have treated in a very crude
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way here. The effects of mobile charges, of the
atomic structure of the interface, and of the role of
lattice polarization in forming the image should be
studied in a more detailed investigation.

One general feature of the results in Figs. 2, 4,
and 5 is the potential minimum on the low-dielec-
tric-constant side of the transition layer. While the
depth and shape of the minimum are model de-
pendent, its existence should be common to all
reasonable sets of parameters. Note that the
image potential well is attractive for both positive
and negative charges. This well, which binds
electrons outside liquid helium, as discussed above,
will not bind electrons in the Si-SiO, interface be-
cause it coincides with a large potential barrier
that tends to keep electrons out of the oxide. '
But the well could attract positive or negative ions,
and may play a role in the tendency of charges to

accumulate near the Si-SiO, interface. " A similar
role for the image potential has been discussed in
connection with metal-insulator interfaces. "
But other effects, such as local bonding effects
and interface strains, must also be considered.

Note added in proof. Recent experimental re-
sults" tend to confirm that the thickness of the
Si-SiO, interface transition layer is close to the
value assumed in the present calculation.
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