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Estimates show that both the on-site and the near-neighbor electrostatic interactions in

tetracyanoquinodimethane chains may be much greater than the bandwidth. A method of determining the
exact ground state when the interactions are dominant is described; the electrons are found to have a
periodic arrangement which may be regarded as a generalization of the classical Wigner lattice. It is shown

how the optical spectra may be interpreted in terms of such a configuration; also that such arrangements

may give rise to lattice distortions manifested as satellites in the x-ray diffraction pattern.

I. INTRODUCTION

In recent years there has been much interest in
quasi-one-dimensional conductors. In many of
these compounds the conduction bands are quite
narrow [e.g. , 0.5-1.5 eV in tetracyanoquinodime-
thane TCNQ) salts '], which has led to specula-
tion that the Coulomb interactions may be playing
an important role. In particular, Torrance et
al."' and Soos' have argued that the on-site inter-
action in TCNQ salts may be large enough to make
a Hubbard model' appropriate. However, the phys-
ical reasoning' that supports the application of the
Hubbard model to, say, the d electrons of transi-
tion metals, may not be valid for the conduction
electrons of TCNQ chains. For the d electrons it
was argued that the bandwidth- was small compared
to the on-site interaction but large relative to the
interatomic d-electron interaction. In the case of
a TCNQ chain, simple electrostatic considerations
(discussed in Sec. II) suggest, on the contrary,
that not only the on-site interaction, but also sev-
eral near-neighbor interactions are large corn-
pared to the bandwidth, leading to an essentially
new physical situation. In fact, nearest-neighbor
and more-distant interactions have been considered
by various authors (e.g. , Ovchinnikov' and Kondo
and Yamaji'); it is the main purpose of this paper

.to investigate these matters further.
Gf course, the introduction of many interactions

leads to a rather difficult many-body problem. In
order to gain some insight into the nature of the
solutions, we have adopted the strategy which was
originally used' in connection with the Hubbard
model, namely, to investigate first the zero-band-
width limit and then attempt to graft on the effects
of band motion later. The solution of the Hubbard
model in the zero-bandwidth limit is rather triv-
ial, but this is not so in the present ease. In this
limit, apart from the interaction strengths, there
is one other parameter, the electron transfer p.

The problem (see Sec. II) reduces to: How is one
to distribute pA' electrons over their sites of a
TCNQ chain so as to minimize the interaction
energy? An exact solution has been found for this
problem for a rather wide class of interactions;
this solution is described in Sec. III, and some re-
lated proofs are given in the Appendix. The elec-
tron arrangement in the ground state is found to
be periodic, the period and the precise arrange-
ment of the electrons within a period depending on
the parameter p. These arrangements may be re-
garded as one-dimensional generalizations of the
classical Wigner lattice' which is the. configuration
adopted by a very-low-density electron gas in
three dimensions.

Because of the zero-bandwidth assumption, one
cannot regard this solution as a very realistic
model of a real TCNQ chain. Nevertheless, if the
interaction effects are of dominant importance,
some features of the model may well survive the
introduction of a finite bandwidth (see Sec. VI). It.

is, in fact, found that, going no farthe r than this
model, one can obtain an interpretation of the op-
tical spectra of many TCNQ salts; indeed, similar
models" have already been proposed in this con-
nection. In Sec. IV an example, that of tetrathio-
fulvalene (TTF)-TCNQ, is discussed.

In general, the arrangement of the electrons
within a period of the generalized. Wigner lattice
is nonuniform. This nonuniformity will give rise
to electric fields which can distort the ordinary
lattice. These distortions may manifest them-
selves as satellites in the x-ray diffraction pat-
tern. In Sec. V the strengths of these satellites
have been estimated. Whilst many satellites are
potentially possible, it is found that all but a few
are of negligible intensity. 'The positions of the
strong satellites have been located as a function
of p. For p&&, a strong satellite is generally
found at the 4k„position, and in some eases har-
monics of this satellite are also found.
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In Sec. VI the effects of the reintroduction of a
finite bandwidth are considered. . Some indication
is obtained of the parameter regime within which
the interactions may be considered to be domi-
nant. The way in which the results relating to the
optical spectra and the x-ray satellites may be
modified is discussed, and some new phenomena,
such as conduction by a "dimer gas, " are de-
scribed. In general, however, it is con~luded that
better solutions are required.

II. FORMULATION OF THE MODEL

Consider a TCNQ chain in, say, TTF-TCNQ.
One is interested in the band containing the trans-
ferred electrons which arises from a single or-
bital of the TCNQ molecule. Since the overlap of
these orbitals is very small, "a tight'-binding
model is appropriate. A suitable Hamiltonian for
such a band is

H- f~ (c&+z ac&~+ ci~ck+1, ~)

+ g ~V)„~n)n~+ p ~Un]~] „,,
fya

where c„is the destruction operator for an elec-
tron of spin a in the molecular orbital at site
i,n, ,=c~,c is the occupation number of this
state, n, =,n„ is the operator giving the total
number of electrons at site i, t is the transfer
integral between nearest-neighbor sites, U is the
interaction of two electrons on the same site, and
V„=V „is the interaction of electrons onnth-near-
est-neighbor sites. The sums over i,j in (1) are
over all the sites of the one-dimensional chain',
the first term of (1) would by itself give rise to a
tight-binding band with width 4t; the other terms
represent the interaction.

The importance of the interactions will be mea-
sured by the magnitudes of the parameters
U V] V2 . , re lative to the bandwidth 4t . We
therefore try to estimate these parameters. Since
this material is a conductor and contains highly
polarizable molecules, one may expect screening
effects to be of great importance. Nevertheless,
we first estimate these parameters neglecting
screening. The unscreened U is given by the dis-

proportionation energy for the reaction 2TCNQ-TCNQ+ TCNQ', for which Johansen's calcula-
tions" give the valve U= 4.5 eV. The unscreened
V„may be calculated as the electrostatic inter-
actionof the charge distributions onnth-neighbor
TCNQ ions of the TCNQ chain; using the charge
distribution given by Johansen, "one obtains the
values given in Table I, column 2. One may note
from these values that not only U but the V„ for
the several near neighbors are greater than the
bandwidth 4t = 0.5 eV, so very complete screening
in necessary to render them unimportant. This
situation contrasts with that encountered in some
other narrow energy-band materials, such as
transition and rare-earth metals, where it can be
plausibly argued that U is greater than the band-
width but that neighbor interactions are much
smaller. ' Here it appears that the neighbor inter-
action may also be important.

How are these conclusions modified when the
screening is taken into accounts It is first nec-
essary to be clear what is meant by screening in
the context of the Hamiltonian (1). The motion of
the conduction electrons on the chain under con-
sideration would screen any charge. However
these effects will emerge in the solution of the
problem posed by (1) and are not to be taken into
account separately in setting up this Hamiltonian.
Thus in determining the parameters in (1) one
must take into account only the screening due to
electrons other than the conduction electrons of
that particular chain, namely the screening by
conduction and polarization of neighboring chains
and by the polarization of the nonconduction
("core") electrons of the chain itself.

Some rough estimates have been made of these.
screening effects. Consider first the screening
by conduction on neighboring chains. This may
be approximately represented by recalculating the
Coulomb interactions for a chain enclosed in a
cylindrical hole in a perfectly conducting medium.
If the radius of the hole is R, straightforward
electrostatic calculations show that U will be re-
duced by approximately ve'/4R and V„by a factor
e ~~~, where d is the nearest-neighbor distance.
Taking R = 8.45A, an appropriate valve for TTF-
TCNQ, gives the results shown in Table I, column 3.

TABLE I. Estimates (in eV) of screened interactions on a TCNQ chain.

Interaction Unscreened
Screened by
conduction

Screened by
polarization

Totally
screened

U

Vg

V2

V3

4.5
2.54
1.56
1.09

3.2
1.62 .

0.63
0.22

1.15
0.71
0.5

2.4
0.9
0.35
0.12
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The effect of polarization screening on the V„
can be represented approximately by reducing
them by a factor 1/e, where (out to about the
fourth nearest neighbors) e should be the "back-
ground" dielectric constant =2.2; the effects ("ex-
altations" of polarizability, see, e.g. , Ref. 12)
which make the measured dielectric constant of,
say, solid TCNQ much greater than 2 are associ-
ated with extended molecular orbitals and are
found to be ineffective in screening near-neighbor
interactions because the electric fields involved
vary rapidly over the extent of the orbital. If one
takes &=2.2, the values shown in Table I, column
4, are obtained.

Finally, one should consider the two screening
mechanisms in combination. They are not addi-
tive; on the contrary, each reduces the effective-
ness of the other. Estimates have been made of
the combined effect and are shown in column 5 of
Table I. How these 'estimates were obtained will-
not be discussed here since it is hoped in the near
future to give an account of more precise calcula-
tions of this kind at present in progress.

The figures in column 5 of Table I show that the
on-site and the neighbor interactions out to the
third nearestneighbors are greater than 2t = 0.25 eV
(this is the appropriate comparison as is shown in
Sec. VI). The remainder of this paper is devoted
to exploring some of the consequences of such
strong inte ractions.

The solution of the Hamiltonian (1) with large
U and V presents a formidable problem. Since the
biggest energies involved are these interactions,
one approach would be to investigate the solutions
at t= 0, i.e., in the zero-bandwidth limit, and to
try and treat the band-motion effects by perturba-
tion theory', this is the method employed here. If
one puts f = 0 in (1), one is left with the Hamilton-
lan

8=.'+Un, .~, .+ .' Q-V, ,n,n, ,
- (2)

pN= ~c ~cia ',

p is, for example, the number of electrons trans-
ferred per molecule in TTF-TCNQ.

One may make certain simplifieations at once.
It is expected, in practice, that p ~ 1 (and even if

isa

the solution of which is not enirely trivial; it is the
problem which will first be studied.

The problem presented by (2) is classical, i.e. ,
not quantum mechanical. The determination of the
ground state amounts to enquiring how one is to
distribute pX electrons over the 2N orbitals of a
chain of length N so as to minimize the interaction
energy (2), where p is the electron density

H=-.' PV, ,n,n, ,
ig j

subject to the condition

(5)

pN= n-, (6)

where the n,. may now take the values 0 or 1 (each
site is empty or singly occupied). This is the
problem to be studied in Sec. III. It has been pre-
viously investigated by Kondo and Yamaji in con-
nection with the x-ray scattering discussed in
Sec. V; they employed a Monte Carlo method to
determine the probability of various configura-
tions {n,] at finite temperatures for several val-
ues of p.

It may be remarked in connection with some
later developments (see Sec. VI) that (5) and (6)
are equivalent to a certain one-dimensional Ising-
model problem if one re-interprets the ni= 0 and

n,. = 1 as down and up spins', the equivalent problem
is that of finding the lowest-energy state of an
Ising lattice with' a prescribed magnetization
[given by (6)] and many-neighbor interactions.

III, GENERALIZED SIGNER LATTICES

It is sufficient to obtain the ground state of (5)
and (6) for p ~ 2, for one may obtain the solution
for any density p from that at density I-p by
merely interchanging electrons. and holes.

The ground state has not been obtained for arbi-
trary V„, but for a particular class of potentials,
namely, those satisfying the two conditions

V„-0 as n-~,
V~, + V„„,~ 2V„ for all n & 1.

The first condition is rather easily accepted. The
second requires that the potential be convex down-

p ~ 1 one could transform the problem to a similar
one with p& 1 by interchanging electrons and
holes). If p ~ 1 it is possible for the electrons to
arrange themselves so that there is no double oc-
cupancy, i.e. , no site has both an up- and a down-
spin electron. If U is much larger than the V„,
one would expect that in the ground state of (2)
there would be no double occupancy; in fact, one
may show by a generalization of the arguments of
the Appendix that this will be so provided

U+ V, & 2V,

is satisfied. Condition (4) is satisfied by all the
parameter sets given in Table I, so it will be as-
sumed that there is no double occupancy. In this
case one may dispense with the spin labeling alto-
gether and reduce the problem to that of minimiz-
ing
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TABL E II. Generalized-signer-lattice configurations.

{a)

{c)

(d)

(e)

Density

1
3
2

5

3
7

3

8
10
23

3

5.
3
4

4
7

1

2

1
2.

Period

5

5

223

322

{223)2233

122

122

123

Configuration

100100100.. .
100101001010010.. .

10101001010100.. .
1001001010010010.. .
101010010$0100101010100...
1101011010.. .
111011101110.. .
11010101101010.. .
1010101010.. .
110011001100.. .

p =.(m+ 1)/(mn+ n+ 1)= [n+ 1/(m+ 1)] ', (9)

where n, m are integers, the 'arrangement con-
sists of periodically repeating configuration with
period nm+n+ 1, the m+ 1 electrons in each peri-
od arranging themselves with m intervals n and
one interval n+1 [see, e.g. , Table II, line (c)];
we introduce the notation n (n+ 1) for this ar-
rangement and p„ for the corresponding density
given by (9).

For densities of the form

p = (m+ 1)/(mn+ n 1)= [n —1-/(m+ 1)] ', (10)

where n, m are integers, the period is mn+ n —1
and the rn+ 1 electrons in each period are ar-

wards; it is satisfied, for example, by the ordi-
nary Coulomb potential, and by all the potentials
given in Table I.

The ground-state configurations for p ~-, may be
described as follows (the proofs of the various
statements are outlined in the Appendix). If p

2 3 ~, 1/n, ~ ~ ~ (n is an integer), it is easy
to see that for a Coulomb potential the lowest-en-
ergy configuration is that in which all the elec-
trons are equally spaced a distance n neighbors
apart; this is the one-dimensional analogue of the
classical Wigner lattice' which is the ground state
of a very-low-density electron gas in three dimen-
sions.

Suppose now that p does not take one of the spe-
cial values 1/n. The next simplest case is that in
which p has the form —,', —', , . . . , 2/2n+ 1, . . . (n is an
integer), in which case the electrons arrange
themselves alternately at intervals of n and n+ 1

[ see, e.g. , Table II, line (b)]. In fact, for any
density p between 1/n and 1/(n+ 1) the intervals
between electrons are always equal to either n
or n+ 1. For densities of the special form

ranged with m intervals of n and one interval of
n-1, i.e. , according to n"(n —1) [see, e.g. , Ta-
ble II, line (d)].

For p not given by (9) or (10) the arrangements
are more complicated. For example, if the den-
sity p is between p„and p„, the configuration
is entirely made up of sequences of the form
n (n+ 1) and n""(n+ 1) and, for example, for den-
sities p of the particular form

1/p = n+ (P + I)/[P(m+ 1)+ m+ 2],

where n, m, p are integers the periodically repeat-
ing unit consists of the sequence n (n+1) repeated
P times followed by the sequence n '(n+ 1), i.e. ,
is [n (n+ I)]»n""(n+ 1) [see, e.g. , Table II, line
(e)].

In fact, guided by the considerations of the Ap-
pendix, one may find the configurations correspon-
ding to any rational value of p. The configuration
corresponding to the value p=p/q (p, q are inte=
gers with no common factor) is periodic with per-
iod q and P electrons in each period. 'The arrange-
ment of the electrons in each period may be deter-
mined by the following algorithm:

(i) Define the integers k, n, n„n„.. . , n» by the
following equations:

1/p=n+r, ,

~
I/r, ~=n, +r, ,

i1/r, i=n, +r, ,

I
1/r. .I-n»-, + r»-

where for all s, =,' &r, ~ —,
' (the sequence must ter-

minate for rational p).
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(ii) Define the sequences X„X„.. . ,X» and Y„
Y2, . . . , Y~ by

Y„,=[X,]"&' & 'Y

where n, =~, /~~,
~

(iii) Then the required arrangement in each peri-
od is given by X&.

For example, if p=4~» the period is 47 with 11
electrons in each period, n=4, n}=4,n, =3 Qo 1,

rangement in each period is (4'5)'4'5= 44454445445,
where the 4s and 5s indicate the spacings between
successive electrons in each period.

Once the configurations have been obtained for
p && by the above algorithm, those for p && can be
obtained by interchanging electrons and holes;
some are shown in Table II. The periodic config-
urations obtained in this way will be referred to as
generalized Wigner lattices.

The possibility that the interactions might cause
a tendency for the electrons to arrange themselves
in such patterns has been previously suggested in
various contexts. In the theory of charge-density
waves the discommensuration idea of McMillan"
has some similarity, and a somewhat similar pic-
ture is mentioned by Lee, Rice, and Klemm. " As
discussed in Sec. IV, this kind of model has been
used in connection with the interpretation of opti-
cal spectra, ' and Silverman and Torrance have
considered the role of Wigner lattice formation in
connection with cohesive energy calculations. "

A comment is in order on the role of the con-
vexity condition (8). It is shown in the Appendix
that (8) is a sufficient condition to guarantee the
ground-state configurations described above. If it
is not satisfied, the ground state may be of a dif-
ferent kind. Consider, for example, the case p
=2 with 0= V»= V~= ~ . If V, &2V„ then (8) is
satisfied and the ground state is the Wigner lattice
of period 2 [Table II, line (i)]; but if V, &2V„and
(8) is not satisfied, one may easily convince one-
self that the ground state is the period 4 configura-
tion given in Table II, line (j). This comment may
not be entirely academic. Inspection of column 5
of Table I shows that whilst (8) is satisfied, fairly
modest variations could cause (8) to fail. Thus it
would seem quite possible that in some materials
with p=2 the arrangement of Table II, line (j)
might be preferred, and, indeed, some tetramer-
ized materials with p= & are known.

We finally remark that what was obtained above
is the ground-state configuration. ;At finite tem-

perature 7.' one cannot have such configurations "

with long-range order in one dimension. For fin-
ite and small enough T the typical configuration
will consist of regions of the appropriate general-
ized Wigner lattice separated by "faults" where
phase slippage occurs, destroying the long-range
order, but leaving generalized-Wigner-lattice con-
figurations locally.

IV. OPTICAL SPECTRA

It has been found that one may interpret the opti-
cal spectra of many of the charge-transfer salts of
TCNQ in terms of the configurations of Sec. III,
and, indeed, models closely resembling those of
Sec. III have already been proposed in this connec-
tion. " One may illustrate the possibilities by con-
sidering the spectrum of TTF-TCNQ. Suppose,
for simplicity, that in this case a value p= 0.6 is
appropriate, so the ground state will, according to
Sec. III, be that given in Table II, line (f), redrawn
in Fig. 1(a). It may be noted that this structure can
be considered as made up of neutral TCNQ mole-
cules, isolated TCNQ ions (i.e., TCNQ ions with
neutrals on each side) which will be called "mono-
mers, "and isolated pairs of TCNQ ions tobe called
"dimers. "

Two types of optical transition are of importance:
intramolecular transitions in which an electron is
excited to a higher level on the same molecule,
which may be neutral, monomer, or dimer [A,B,
C in Fig. 1(a)]; and charge-transfer transitions in
which an electron is exc-ited to a neighboring site,
the three types of which are indicated by D, E,
and F in Fig. 1(a). Information concerning the in-
tramolecular spectra can be obtained from solution
studies"'" on neutral TCNQ and TCNQ ions in
monomer and dimer configurations; such spectra
are shown in Figs. 2(a) and 2(b). (Actually the di-
mer spectrum also contains a peak at =1.3 eV
which should probably be assigned to a charge
transfer transition of type I" on the dimer pair. )
One has no such direct information concerning the
charge-transfer transitions (except that just men-
tioned) and must fall back on Hamiltonian (5) to
estimate the energies of these transitions. Con-
sider, for example, the transition D; this will lead

C
A l3

(aj -0-x-o-x-x-0-x-o-x —x-a-
't 2

(bj —o-x-0-x—x-x-o-o-x-x-o-

FIG. l. Optical transitions in the case p= 0.6. (The
crosses represent occupied sites, the circles empty
sites. )
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Charge Transfer
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0
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FIG. 2. Contributions to the optical spectrum of a
YCNQ chain (see Sec. VI).

to the new configuration shown in Fig. 1(b), and,
using Hamiltonian (5), one finds the difference in
energy of the configurations of Figs. 1(a) and l(b)
to be Vy V2 V3+ 2V, + ~ ~ ~, so the transition D
should have about this energy. In this way one
finds the transitions D, E, I' to have energies U,
—V, —V3+ V4+ and U —V„respectively;
using the values of Table I, column 5, these ener-
gies are about 0.4, 0, and 1.5 eV, respectively.
The corresponding spectrum has been sketched in
Fig. 2(c), adding a broadening of about 0.5 eV to
simulate the effects of band motion and vibrational
broa.dening.

If one now superposes the spectra of the neutrals,
monomers, dimers, and the charge-transfer spec-
trum in suitable proportions, .one obtains the spec-
trum shown in Fig. 2(d), which is not unlike the ob-
served spectrum of TTF-TCNQ. ' Furthermore,
the observed polarizations" are consistent with the
model (charge-transfer transitions will be pre-
dominantly polarized along the stack direction, the
intramolecular transitions perpendicular). Partic-
ularly noteworthy is the appearance of the charac-
teristically split peak X associated with the mono-
mer spectrum, according to the theory of Sec. III,
'this should be present in varying amounts for all
p ~ 3, but not, for example, at p = 1 as in the alkali
salts of TCNQ (in which case there should be a sin-
gle peak associated with the transition I at about

this energy; the peak X of the monomer spectrum
falls fortuitously at about the same energy as
transition F).

Of course, Fig. 2(d) would represent only the
contribution to the optical spectrum from the
TCNQ chain; one should add to it the correspond-
ing contribution of the TTF chain. Using solution
data" for neutral TTF and TTF (monomer and
dimer), one would expect the TTF chain spectrum
to look rather similar to Fig. 2(d) except that the
peaks X, Y lie about 0.5 eV higher in TTF, thus
tending to fill in the valley at around 2.5 eV in Fig.
2(d).

It has proved possible by similar discussion to
give an interpretation of the spectra of many
charge-transfer salts. However, the model is not
without its difficulties. For example, in some
salts (e. g. , hexamethylene tetraselenafulvalene
(HMTSF-TCNQ" and N-methylphenazinium (NMP)-
TCNQ') in which it is believed that p& —, the spectra
show the double peak at an energy of =1.3 eV mhich
was interpreted above as the monomer transition
X; however, for the p& 3 the generalized Wigner
lattice has no monomer component.

It is not expected that the above interpretation
will be much modified at ordinary temperatures by
the appearance of the "faults" mentioned at the end
of Sec. III. However, the introduction into the
model of large enough bandwidth could cause sig-
nificant changes; this point is discussed in Sec.
VI.

V. LATTICE DISTORTIONS

If the electrons a.t, say p = 5, did actually adopt
the configuration of Fig. 1(a) (at least locally),
then the lack of symmetry would lead to electric
fields tending to displace the ions; for example,
the repulsion of the charges on sites 1, 2 [Fig. 1(a)]
would tend to push these ions apart. Thus the gen-
eralized-Wigner-lattice arrangements of the elec-
trons would sometimes lead to lattice distortions
which might manifest themselves as satellites in
the x-ray diffraction pattern. Indeed, Kondo and
Yamaji' have already studied this effect at finite
temperatures for a few densities using a Monte
Carlo technique to obtain the configuration. We
propose here to use the generalized-Wigner-lattice
results to investigate this effect. In fact, it mill
be shown that the distortions may lead to x-ray
satellites at some of the positions (in particular
4k„at which they have been observed experimen-
ta]]y

One should distinguish (see Ref. 8) between the
distortions to be discussed here and those arising
from a Peierls instability; the latter is brought
about by a combination of the band motion and the
Fermi statistics of the electrons. However, the
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where
dV(x)

x'=At -B~

V(x) is the interaction potential, and 8; is the
position of the ith site; the (n, ) in (12) are the site
occupation numbers corresponding to the general-
ized-Wigner-lattice configuration. Equation (12)
shows that the force acting at the ith site is

F;=n;QV', „n, .
These forces will cause the lattice to distort by

an amount determined by the resistance to them
due to the ordinary intermolecular interactions;
the simplest approach is to regard the forces (13)
as giving rise to a (static) displacement bx), of the
phonon coordinate x„(for simplicity the phonons
are treated as one-dimensional; the generalization
to three dimensions is straightforward). One may
easily show that

M(u„'bx„=g E, e '""&, (14)

where» is the phonon frequency and M the mass
of a molecule. The corresponding displacement of
the ith site due to the distortion is then given by

(13)

I

The strength of the X-ray scattering with wave
vector Q is determined by lF (0)l', where

(15)

mechanism discussed here exists (indeed exists
more strongly) when there is no band motion and
the problem is essentially classical.

To investigate the distortion of the lattice, first
note that if the ith site of a generalized Wigner lat-
tice suffers a displacement u;, then the energy
changes, according to (5), by an amount

(12)

tice. Thus, if P is large, one could potentially ob-
tain a great many satellites; however, it is found
that most satellites are of very low intensity and
only a few are at all prominent (see below).

From (14)-(16) one finds that the intensity of a
satellite with displacement k is proportional to

-i &R~ g
(18)

where the sum m,. is over all sites of the unit cell~(c) .

of the generalized Wigner lattice. Only the factor
l f(k)l' which reflects the dependence of the inten-
sity upon the structure of the generalized Wigner
lattice will be discussed here. The f(k) [k given
by (17)] have been calculated for the generalized-
Wigner-lattice configurations corresponding to a
number of different densities p using the formula
(13), In the absence of any detailed information
concerning the V&, the ordinary Coulomb forrd.
(8; -A, )

' has been used for V,' &.
These calculations showed that most satellites

predicted by (17) are of negligible intensity, but a
few are relatively strong. For p&2 no strong sat-
ellites were found, but for p & & there were gener-
ally one or two strong satellites [the calculation of
f(k) is not symmetric against the interchange of
electrons and holes]. In Fig. 3 the k corresponding
to the strongest satellites have been plotted against
p (there a,re matching satellites at -k). It will be
seen that they form a pattern of straight lines. In
general, by far the most intense of the satellites
are those on the line ab in Fig. 3; these lie in such
a position that the satellite at b*- k is just at the
position usually referred to as 4k~. For p - 0.8-
0.9, two or three "harmonics" (cd, ef) of this main
peak are found (as in Kondo and Yamaji's calcula-
tion'), and are in some cases almost as intense as
the main peak (see Fig. 4). The other most-prom-
inent line is gh, which lies in a position corres-

=g(q)g e'~" (1+(Q +ax, e""'+ ~ ), (l())

where g(Q) is the molecular form factor, e'o"& has
been expanded, and u& substituted from (15). One
sees at once from (16) that the distortion will give
rise to satellites of the main spots displaced from
them through distances 0, where k is any wave
vector for which 5x„ is nonvanishing. If the gener-
alized Wigner lattice has period P, then the forces
I'; will be periodic with the same period, and, ac-
cording to (14), bx)) will be nonvanishing provided
k has the form

0,6

0.4

0.2—

0.0
0.5 0.6 0.7

I

0.8

—Strongest Satellites--- Weaker Satellites

I

0.9 1.0

k =(mjp)b*, m=1, 2, . . . , p —1, (17)

where b* is the basis vector of the reciprocal lat-

FIQ. 3. Positions of strong satellites (displacements
k from Bragg spots) due to lattice distortion plotted as
a function of p.
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f{k)

0.25 (Sokoloff, "Ovchinnikov') to a complete decoupling
of the spin and particle motion. The electron spins
behave like free spins, giving a Curie-law suscep-
tibility, and the particle motion can be described
as that of a gas of spinless fermions with the Ham-
iltonian

H = t ~ (c; c;„+c„,c;)+—~V, , n; nj,
f NJ

(19)

0.5 0.6 0.8 0.9 1.0

FIG. 4. f{k) {see Sec. V) for strongest satellites as a
function of p.

ponding to a reflection of the second-harmonic line
in k= &5*. A number of other, much weaker, lines
are also shown in Fig. 3. The intensity of a satel-
lite varies quite strongly with p along the lines
shown in Fig. 3. In Fig. 4 the intensities

~ f(k)~
are plotted as a function of p along the principal
lines of Fig. 3.

It is not clear how much of the satellite structure
discussed above survives when the band motion is
taken into account or how much the relative inten-
sities are modified. The ~„ factor in (18) tends to
emphasize satellites with small k; on the other
hand, as is discussed in Sec. VI, the band motion
has exactly the opposite effect of suppressing sat-
ellites with small k. Indeed, if the bandwidth is
large enough, it may suppress the satellite struc-
ture altogether.

VI. BAND-MOTION EFFECTS

The question now arises as to how the preceding
results are modified when the band motion is taken
into account, i.e., one takes tt0 and returns to the
study of Hamiltonian (1). Obviously, if t is, large
enough, the solutions will bear little resemblance
to the configurations of Sec. III; however, for a
bandwidth 4t= 2 eV one-may expect, for the rea-
sons explained below, that many of the features of
the t=O limit will be preserved; but even small t
can lead to new phenomena not present at t = 0.

The first point to note is that if one takes 4t =2
eV, U —V, = 1.5 eV (from Table I), then there will
still be very little double occupancy of sites. For
if the band-motion term in (1) causes an electron
to hop onto an already occupied site, the interac-
tion energy will be increased by an amount of the
order U —V„since the matrix element for such a
hop is t, the probability of a site being doubly oc-
cupied is 2pt'/(U, —V,)'=-1% using the above val-
ues (the factor 2p is a statistical factor). Thus for
many (but not all) purposes it would be a good ap-
proximation to negle'ct double occupancy altogeth-
er, or, equivalently, take U=~. This leads

where n; =c~c; and c~, c,. are now creation and de-
struction operators for spinless fermions at site i.
Of course such a model provides no information
concerning the magnetic behavior of the system;
to study this one would have to reintroduce a finite
but large U and treat its pffects by perturbation
theory.

It will be noted that (19) is simply Hamiltonian
(5) with a band-motion term introduced, leading
to a truly quantum-mechanical problem. In gen-
eral, one does not know how to determine the
spectrum of (19), but there is one rather special
case in which considerable progress has been
made. This is the case in which 0 = V, = V3= ~ ~ ~,
but V, is arbitrary. Then it can be shown (at least
in the ca.se of very long cha. ins) that (19) is related
to the Ising-Heisenberg problem, "i.e., the prob-
lem of a chain of S = 2 spins with anisotropic near-
est-neighbor coupling, the Hamiltonian being

II =P (s",. s",.„+s;s;.„+~s',. s;.„). . (20)

The relationship is as follows: a = V,/2t, and the
states with electron density p (electrons/site) cor-
respond to the solutions of (20) with magnetization
M=

~ p --,'
~

per site. A method of exact solution is
known for the problem (20)" "and has been
worked out in detail for the cases corresponding
to (i) b, = 1, p arbitrary"; (ii) p=-, , h arbi-
trary, "'"and could, in principle, be extended to
arbitrary p and A.

Particularly interesting is the case p=2,' in this
case it is found that when 6 & 1 there is an energy
gap between the ground state and the first excited
states, "'"implying that the Hamiltonian (19) has
an insulator-conductor (Mott) transition at 6 = 1.'
Thus one may reasonably take 6 = 1, i.e., V, = 2t
as measuring the point which divides the strong
and weak interaction. regimes for Hamiltonian (19).
Actually, since one had to make the assumption
0= V, = V, = ~ ~ . to obtain the equivalence with (20),
in making such a comparison it would be more
correct to replace V, by some sort of renormal-
ized value V„Vy Vy= Vy V2 is a reasonable
choice. From Table I, column 5, U, =0.5 eV, giv-
ing V,/2t = 2 with 4t = 0.5 eV, so one would be well
inside the strong interaction regime with these
values.
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(a) -x-o-x-0-x-o-x-o-x-

(c) —0—X—0—X—X—0—X—0—X—

(d) -0-X-0-X-0—X-X-0-X-

(e) —0—X—0—X—X—X—0—X—0—
i ll J

F&G. 5; ]3and-motion effects (see Sec. VI).

C

If t is small enough (and the results of the pre-
vious paragraph suggest tha, t 4t= 0.5 eV is sma. ll
enough), one may think of treating the band-motion
term in (19) as a perturbation. If one does this for
the case p = &, the leading perturbation would be
due to virtual states of the type resulting from the
transition indicated in Fig. 5(a). The difference in
interaction energy in the ground and virtual state
is 8 =V, —2V, +2V, — = 0.45 eV (using Ta.ble I,
column 5), and the probability of such a, transition
is (t/D)'= 7/o. Thus the probability of a "wrong"
site being occupied is -14/0 (transitions to it could
occur from either neighbor).

More interesting is the case in which p is a little
greater than z. According to the results of Sec.
III, the ground state would then be portions of the
p =2 signer lattice regularly interrupted by dimer
pairs. One may think of the dimer pairs as a kind
of domain boundary. For p=& there is a twofold
degeneracy of the ground state corresponding to
the two Wigner lattices shown in Figs. 5(a) and

5(b); inspection of Fig. 5(c) shows that the dimer
is a domain boundary between these two lattices.
Consider now the transition induced by the band
term in (19) and indicated in Fig. 5(c); this takes
the system to the configuration in Fig. 5(d) which
has just the same interaction as in Fig. 5(c) since
all that has happened is tha. t the domain boundary
has moved two steps. The transition indicated in
Fig. 5(c) is thus between two states which are de-
generate so far as their interaction energy is con-
cerned. It follows at once that the band term in
(19) will cause an isolated dimer to move like a
free particle. The dimers will, in fact, have a
band structure of the form

E, —2t(cos2q, +cos2q, ), q, + q, = q, (22)

according to (21). Thus there is a two-parameter
spectrum for the injection of electrons at p=2.

The equivalent result for the spin problem (20)
is already known; in fact, in this case it can be
shown" that when 6 & 1 the lowest-energy excita, —

tions out of the p =-, (M= 0) ground state have a.

two-parameter spectrum of the form

c,[(I —k' cos'q, ) '~'+ (1 —k' cos'q, )'~'],

q~+ q~= q )

(23)

where c„k are certain parameters; in the limit
t-0, i.e. , n-~, (23) passes over into (22).

If one now considers larger p, it is more diffi-
cult to picture the effects of the band motion. As
an example, consider the p=0.6 configuration of
Fig. 1(a). Since the charge-transfer transition E
has so low an energy, it is clear that the dimers
will tend to spread out about-their positions in the
configuration in Fig. 1(a). What is not clear is
whether at a bandwidth 4t=0. 5 eV the dimers will
be completely delocalized or whether they will
merely oscillate about their positions in Fig. 1(a).
If they delocalize and obey something like Fermi
statistics, the question arises as to whether a

this gas are rather odd, but the principal feature
is that one cannot have two dimers in the same
place, so they should obey something resembling
Fermi statistics. It will be shown below that they
behave as though they carried an electric charge
equal to & the electronic charge, so they can act
as current carriers (in fact this mechanism has
already been suggested by I ee, Rice, and
Klemm").

If one imagines an electron to be injected into the

p =2 signer lattice at, say, the position indicated
in Fig. 5(b), the result will be to create two dimers
as shown in Fig. 5(e). Thus each dimer must car-
ry a charge equal to one-half the electronic
charge. The cost in interaction energy of adding
the extra electron is E,= 2( V, +V, + ~ ). The two

dimers may now be expected to move apart by band
motion; indeed, one may view the whole-process
as the addition of two particles to the dimer gas.
If the electron is injected with momentum q and
the two dimers created have momenta q, and q„
then q = q, + q, a,nd the electron will go in with en-
ergy

e (q) = 2t cos2q;- (21)
"dimer Kohn anomaly" might a,rise. These ques-
tions can only be answered by a more precise sol-

2q rather than q occurs because at each transition
the dimer hops two lattice spacings.

Thus for densities p a, little greater than 2 one
could think of the system as containing a "dimer
gas" with band structure (21). The statistics of

ution for Hamiltonian (19).
. Finally, a comment is in order on the way in

which the results of Secs. IV and V may be mod-
ified by the band motion. As regards -the optics,
it may first be noted that the band motion of the
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dimers has no effect on the rely, tive proportions
of neutrals, monomers and dimers upon which the
interpretation of the TTF-TCNQ spectrum was
based, so this much still stands. Nevertheless,
the following question arises: Can one still sensi-
bly identify sites as neutral, monomer, etc.?
This is a question of time scales; i'f one thinks of
the band-motion term as a perturbation, then one
could picture the system switching between con-
figurations on some time scale determined by the
band motion; for example, a site which is a mono-
mer at some instant may as a result of these
changes find itself part of a dimer at some later
time. If the site switches too quickly between
monomer and dimer contexts, a line narrowing
phenomenon will occur, which may, for example,
collapse the two peaks X, Y [Figs. 2(a) and 2(b)]
into a single peak, reflecting the fact that the band
motion has destroyed the monomer-dimer distinc-
tion. If the band motion is stronger still, the in-
terpretation in terms of intramolecular transitions
collapses altogether and must be replaced by a
theory of interband transitions. Thus the recogni-
tion in the optical- spectrum of line structures
closely resembling those of the solution spectra
suggests that band motion effects are not compet-
ing very strongly with the interactions.

As regards the lattice distortions of Sec. V, one

may think of the situation as follows. As the band
motion causes the system to switch from one con-
figuration to another, the force I"; at a site will
fluctuate (with average zero). Whether these
forces produce perceptible distortion then depends
upon the rate of their fluctuation relative to the
lattice relaxation time (approximately a phonon per-
iod). If the fluctuations are fast, the lattice cannot
follow them and little distortion will occur. This
effect tends to suppress distortions with small k

(in the notation of Sec. V) most strongly because
they have small co&. The appearance of the satel-
lite structure discussed in Sec. V thus depends
upon the balance between this effect.and the +~
factor appearing in the denominator of (18), the
discussion of which really requires a more accur-
ate solution of (19). One may' expect, in any case,
that the electric field fluctuation will convert the
elastic scattering effects of Sec. V into quasielas-
tic scattering.

VII, CONCLUSIONS

In the limit in which these interactions are of
dominant importance, it has been shown that the
lowest energy states at a given charge transfer p
will be periodic arrangements of the electrons on
the chain, the period and detailed arrangement de-
pending upon p; these configurations may be re-
garded as generalizations of the classical Wigner
lattice.

It has proved possible, going no farther than this
rather idealized model, to give an interpretation
of 'the optical spectra, of many TCNQ salts. It has
further been shown that such generalized-Wigner-
lattice configurations might lead to lattice distor-
tions which would manifest themselves through the
appearance of (quasielastic) satellite spots in the
x-ray diffraction pattern. In particular, for p &&,
a strong satellite may be found in the 4k~ position,
and in some cases harmonics of this satellite.

Finally, some indication of the way in which
these results might be modified by a relatively
weak band motion has been given, but it has been
concluded that a more-precise treatment of Ham-
iltonian (19) is'called for in this connection.
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APPENDIX

Here an outline of the proofs of the. statements of
Sec. III is given. Suppose one has a chain of N
sites and m electrons, so p= m/¹ One wishes to
show that the c()nfigurations determined by the
algorithm of Sec. III minimize the interaction en-
ergy (5) subject to (6) when the V„satisfy (7) and
(8). Imagine the chain deformed into a loop, which
obviously does not modify the solution in- the limit

The energy of a configuration is unchanged
if one merely rotates it around-the loop. One may
specify the configuration on the loop (up to an ar-
bitrary rotation) in the following way: number the
electrons in order round the loop 1, 2, .', m and
denote the interval between electrons 1 and 2 by
n„between electrons 2 and 3 by n„etc.; then the
set of numbers (n&) = (n„,n„.. . , n~ j specifies the
configuration and satisfies the conditions; n; =N.
Since the interaction energy is independent of ro-
tations, it must be expressible in terms of the

It has been concluded on the basis of rather
rough estimates of the screening effects (Table I)
that in TCNQ charge-transfer salts not only the
on-site interactions, but also the interactions be-
tween electrons at near-neighbor sites may be of
importance in determining the electronic structure.

fn; j; in fact, one easily finds from (5) that

Z = Q V(n;) + Q V(n, + n; „)
i

+ P V(n;+n;„+n;„)+~ ~ ~, (Al)
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E = Urn, }+UILP,}+U(q,}+ ~ ~, (A2)

where

U(x, }=+V(x,) (As)

and the in, }, (P,.}, (q;},. . . satisfy the conditions

Q n(=N, Q p;=2K, P q;=3M (A4)

The following lemma is needed: If f x; }
= x„x~, . . . , x is a set of integers satisfying

(A5)

and X = mx +a, where 0 ~ a & m, and the V(n) satis-
fy (8), then

U fx, }~ (m —a) V(x) + a V(x+ 1) . (A6)

To prove this one needs a result easily deducible
from (8), namely,

if s&I;, then V, +, +V, ,- V, +V& ~ (A7)

To demonstrate (A6), first suppose that $x; }is a
set such that

~ x; —x, ~

& 1 for all pairs i,j; such a
set will be called minimal. For minimal sets, the
condition (A5) requires that m —a of the x; take the

where for notational convenience V(n) is now writ-
ten for V„, and where, when necessary, one must
interpret n„+, as.n„n~+, as n„etc.

One may now associate with any set (n;} specify-
ing a configuration the auxiliary sets of numbers

(p;}, (q,. },.. . defined by P; = n;+n;„, q;=n;
+n;„+n;„, etc. Then (A1) may be written

value x and the remaining a the value x+1, so it
follows at once for minimal sets from (A3) that the
equality in (A6) is satisfied. Now let C be a non-
minimal set (x;}, so for some s, t one has x, & x,
+1. Construct the set C' which has all x; the
same as in C except that x„x, are replaced by x,
—1 and x, +1, respectively. C' still satisfies con-
dition (A5); further, using (A7) one finds U/C'}
~ U(C}. If C' is nonminimal, repeat the procedure
to obtain a C" with U(C"}~ U(C'}, and so on until
one arrives at a minimal set C,. Then using the
inequalities on U one has U(C}~ U(C, }; but since
C, is minimal, U(C, }is just given by the righ't-

hand side of (A6), and (A6) is demonstrated for ar-
bitrary sets (x;}.

One now need only remark that the algorithm of
Sec. III is, in fact, nothing more than a construc-
tion of a set fn;} such that all the sets (n;}, fP;},
(q;},. . . are minimal subject to conditions (A4).
For example, all generalized-Wigner-lattice con-
figurations involve only the intervals n and either
n+ 1 or n —1, so (n;} is minimal; they are all
made up of sequences of the form n'(n + 1) and
n'(n s 1), where either f = s+ 1 or t = s - 1, so the

(P;}can take only the values 2n or 2n + 1, and

{P;}is minimal, and so on. It follows at once
from the lemma that the U(n;}, U(P;}, . . . for a
generalized-Wigner -lattice conf iguration are less
than the U(n; },U(P; },. . . , respectively, for any
other configuration satisfying (A4). Further, the
algorithm of Sec. III automatically constructs
a configuration corresponding to the density p, so
it i,s confirmed that the generalized Wigner lattice
defined by the algorithm of Sec. III is the lowest
energy state with that density.
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