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The local electrostatic stability against homogeneous deformations of uniformly charge-compensated lattices
of point charges of the Wigner (unary or single charge species) and Dyson (binary or two charge species in
equal concentration) types is explored. Within the scope of these calculations only the bce, fcc, and hep
unary lattices are found to be locally stable with the bcc having the lowest energy of the three. Among
binary lattices, locally stable lattices at various charge ratios of the two species are found to be the CsCl,
NaCl, sphalerite (ZnS), tungsten carbide (WC), and the 1:1 gold-copper (AuCu). At very large charge ratio a
lattice here dubbed almost bec is found to be locally and possibly globally stable. Parameters and energies
for the above lattices plus that of some locally unstable lattices are given as well as the energies of
segregated unary lattices of the two species for all values of the charge ratio. This allows the most-stable
lattice at each charge ratio to be determined. It is further conjectured that among binary lattices with a
basis of more than two atoms, the wurtzite (ZnS) structure is probably also locally stable over some charge-
ratio range. No simple correlation between structure and electrostatic energy has become apparent, but the
energies of all locally stable forms differ by 0.1% or less. Some implications are briefly discussed.

I. INTRODUCTION

The concept of a simplified model for solid mat-
ter consisting of charged point particles free to
move in a uniform background of charge (now of-
ten called the “jellium” model) was introduced in-
to physics by Wigner® more than forty years ago.
He used it as a basis for estimating electron cor-
relation energies in metals, but the model has
proved useful in other contexts, and interest in it
both from application to new physical situations .
(such as white dwarf stars and the crusts of pul-
sars) and as a theoretical: model for studying some
aspects of conventional matter has continued and
grown. The recent appearance of an excellent re-
view of “jellium” models by Care and March?
makes an extensive discussion of most of these
matters unnecessary. But even for this simplest
of models of condensed material, many basic
questions remain unanswered. In this publication,
we shall limit our attention to the stability of
Wigner and Wigner-Dyson? lattices to homoge-
neous lattice deformations. We consider only suf-
ficiently low temperatures and densities such that
statistics are presumably irrelevant and assume
further that the charged particles are spinless (or
at least have no spin-dependent interactions). Sta-
bility under a homogeneous deformation can here
be taken as meaning that the lattice modes for the
wave vectors K -0 are stable (have real frequen-~
cies) for all directions of K.

It is useful to make a few remarks about the
state of our knowledge in even this simplest re-
gime. Wigner originally proposed that at suffi-
ciently low density, the particles (all presumed to
have the same charge) could be sufficiently well
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localized at such small expense in zero-point en-
ergy that the total energy in the ground state was
dominated by the classical electrostatic or
Coulomb interactions between particles and be-
tween particles and the oppositely charged back-
ground. Under these conditions one would expect
the particles to assume the geometrical configu-
ration of minimum energy and for an infinite sys-
tem this would be expected to be a simple lattice.
Some calculations by Fuchs® indicated that among
some of the simpler lattices [simple cubic (sc),
bee, fee] the bece lattice had the lowest energy. It
has been accepted as reasonable by most authors
that this is the globally stable state of the system.
It is not beyond question, however, that it could be
also an amorphous solid or a “complicated” lat-
tice—that is, one having many “atoms” in its ba-
sis. We shall here proceed under the assumption
that it is a lattice with no more than two “atoms”
to the basis.

One should remark further that even at this ele-
mentary level one has two types of stability to
deal with: local stability, that is, stability with
respect to small homogeneous deformations, and
global stability or the determination of the struc-
ture which has the absolute minimum in energy
of the various local minima. We shall not deal
here with the question of quantum corrections to
the electrostatic energy (zero-point vibrational
energy) which become important at increasing
density even at the absolute zero of temperature
nor thermodynamic stability associated with the
effect of finite temperatures and the minimization
of the free energy of the system.

It is convenient also to introduce some termi-
nology. We shall call a system (or lattice) in
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which all particles® (“atoms”) have the same
charge a “unary” system, and one in which there
are particles of two different charges a “binary”
system, distinguishing the two types of particles
(“atoms”) as “species.” We shall not go beyond
binary systems here and even in the binary case
will restrict ourselves to the case where the con-
centrations of the two species are equal. We shall
use standard terminology for primitive translation
vectors of the lattice, Bravais lattices, and the
basis of a lattice. Our considerations will be lim-
ited to lattices with one or two atoms to the basis.
We shall restrict the use of the term unit cell to
the parallelopiped associated with a set of primi-
tive translation vectors unless otherwise indicat-
ed. We shall write for the charge on a particle in
a unary lattice Ze and for the charges in a binary
lattice Z,e, and Z,e, and in this case define Z
=%(Z,+ Z,) so that Ze is always the average charge
per particle. We shall also define

= Z1/(Z1+ Z,), fo= Zz/(Z1+ Z,)

as the fractions of charge carried by each parti-
cle species. The volume per particle (irrespec-
tive of species) will be designated by

vl
Thus, a “pinary” lattice in the limit £=0.5 (iden-
tical charges for both species) will have the same
energy as a unary lattice with the same charge
per particle. The electrostatic energy takes the
general form

= —3aZ%*/r,
or, if 7, is measured in Bohr radii,® me*/7*, and
E in atomic units (a.u.)

EG%) =~ 2%/27,
or with E in Rydbergs
E®=_-Z% /v .

The numerical constant @ for various lattices is
the object of the calculations below.

Questions which then need examination and are
discussed below on the basis of computer calcula-
tions are: (i) Is the bec lattice indeed the unary
lattice of lowest electrostatic energy? (ii) What
are the ofher locally stable unary lattices? (iii)
For binary lattices of equal numbers of two spe-
cies, which lattices are locally stable for each
value of f, which has the lowest energy, and for
the same f, does a segregated mixture of two lat-
tices each composed of one species have a still
lower energy? This tells us for each f which sit-
uation is likely to be globally stable.

We present below what results we have been
able to obtain as a result of computer calculations

based on three computer programs: (a) a pro-
gram to calculate electrostatic energies by Fuch’s
method® for unary and binary lattices; (b) a mini-
mization program of substantial flexibility which
could search out points which were potentially lo-
cal minima of the electrostatic energy in the five-
parameter or eight-parameter space of homoge-
neous deformations for unary and binary lattices,
respectively, and (c) a program which could ver-
ify whether or not such points found by (b) were
relative minima or saddle points and hence could
establish (within limits) whether these points were
indeed locally stable."

II. CALCULATIONS FOR UNARY LATTICES

Our first results deal with unary (single-spe-
cies) lattices. We began with Bravais lattices
(one “atom” in basis) of higher symmetry (bcc,
fce, sc), calculated the energy constant g, and
checked the local stability of the lattice. Then
passing to lattices with two “atoms” in the basis,
we did the same for more familiar symmetric lat-
tices of this type (hcp and diamond). These were
followed by searches for other local minima us-
ing the minimum search program and starting
from randomly selected initial lattices. All such
searches terminated only in either a bcc, fce, or
hep lattice. None of the results obtained were un-
expected except possibly for the fact that the lo-
cally stable hcp lattice does not have the ideal
¢/a ratio, namely, (¢/a) g, = (9?2, but instead the
value ¢/a=1.0016(c/a);y.,, Which is remarkably
close to ideal but definitely different.

The results for the energies of the locally sta-
ble lattices as well as for some which are of in-
terest though not locally stable are given in Table
I. We believe the error in the energies to be no

TABLE I. Energy constants for various unary lattices.

Lattice Energy constant

Locally stable lattices:

Body centered cubic (bcc) e =-1.791 858 52

Face centered cubic (fcc) Qe =-1.791 747 23

Hexagonal close packed (hcp)? - =-1.791 676 90
Locally unstable lattices:

Simple cubic (sc) a, =-1.760 118 90

Diamond (dmnd) yna =" 1.670 851 41

Almost bece [abee(3)], £=0.5

Ideal hexagonal close packed
(ihcp)b Gihep

s = - 1698 805 24

=-1.791 676 24

efa=1.001 6 (c/a)yon (€/@); g0 = )%

Pcla = (c/a);gqy-
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greater than two units in the last quoted digit in
each case. The results are in agreement with
those of Fuchs® for the bec and fec lattices, with
that of Carr” for the sc lattice, and that of Kohn
and Schecter?® for the hcp lattice. An earlier cal-
culation of Herring and Hill® indicated that the
minimum energy for the hep lattice occurred at
a c¢/a ratio close to ideal. The programs which
we employed can be used with values for f outside
the range (0, 1) to determine the Madelung energy
of ionic lattices. Our results are in agreement
with the very accurate Madelung constants of
Sakamoto'® for the NaCl, CsCl, and ZnS lattices,
but not quite so precise.

We emphasize that we have not sought to find
stable lattices which have more than two “atoms”
per unit cell. Our programs would also have
missed a very shallow relative minimum or one
of small extent in parameter space with one or
two atoms per unit cell.

III. CALCULATIONS FOR BINARY LATTICES

In view of the possible astrophysical signifi-
cance of binary (Wigner-Dyson)'* Coulomb lat-
tices we have attempted a fairly comprehensive
search for such lattices with local stability
against homogeneous deformations and as a re-
sult obtain significant information about the likely
global symmetry for all values of the charge-ra-
tio parameter f (defined earlier) from £=0.5
(equal charged species) to f=1 (one species neu-
tral). The results for 0<f<0.5 are, of course,
identical with those for f=1-f while for f nega-
tive, the species have opposite sign and the lat-
tice would certainly be (electrostatically) unsta-
ble.

In the case of binary lattices, one can use sim-
ple arguments to suggest the existence or range
of local stability as a function of f for various lat-
tices. We outline these arguments below and
eventually present the totality of available results.

(a) Consider the binary CsCl lattice, which has
two atoms per unit cell. If f=0.5 all atoms have
the same charge, the lattice becomes a bcc lat-
tice and we know this to be locally (and probably,
globally) stable. On the other hand, if f=1.0,from
the electrostatic point of view, the lattice becomes
an sc lattice which we know to be locally unsta-
ble. Hence, as we increase f from 0.5 to 1.0, we
must pass a critical value of f at which the CsCl
lattice becomes locally unstable. We find this
value to lie in the neighborhood of f=0.8621.

(b) Consider an NaCl lattice for f=1.0 in which
case it is electrostatically an fcc lattice and
therefore locally stable. As f decreases to f=0.5;
it becomes a unary sc lattice which is locally un-

stable. Hence, there is a critical value of f in this
range below which local instability of the NaCl
lattice sets in. We find the value. to be in the
neighborhood of 7=0.7545. )

(¢) Let us now return to the fcc lattice and con-
sider the smallest cubical cell (which contains
two “atoms”) with, say, A atoms at the corners
and at the centers of all the faces. Now replace
the center atoms on the side faces of the cube by
B atoms but keep A atoms at the centers of the top
and bottom faces of the cube. We then have a bi-
nary lattice whose primitive translation vectors
extend from, say, from one lower corner atom to
an adjacent lower corner atom, to the face-cen-
tered atom at the base, and to the corner atom
directly above. The second vector of the basis
may then be selected to be that from the same:
corner atom to one of the side face~centered at-
oms. Clearly if the A and B atoms are different,
the cubical symmetry is destroyed and the lattice
becomes tetragonal. We shall call this lattice
AuCu [Wyckoff'? RX type AuCu (j)]. When f=0.5
it degenerates to a simple fcc lattice. As f in-
creases to unity one would come back to an sc lat-
tice in this limit. Thus, again there is a critical
value of f at which the lattice becomes locally un-
stable. What actually happens is that as f in-
creases from 0.5 to about 0.528 the stable c¢/a ra-
tio decreases steadily from 1.0 to about 0.95; as
f increases further the ¢/a ratio drops suddenly
to 2-Y/2 for which value the lattice is actually a
CsCl lattice. As indicated earlier this lattice

TABLE II. Energy constants for WC and AuCu lattices.

Lattice e ‘ c/a Energy constant a

wC 0.50 1.0016  (c/a)y,,* -1.79167691
0.52 0.9973 €c/a) yem —1:792770 65
0.54 © 09846 (c/a),, -1.79610715
0.56 0.9640  (c/a)y,,, -—1.80184567
0.58 09364  (c/a),, -1.81023087
0.60 09028  (c/a) -1.821 56411

ideal

0.615° 0.8910  (c/a),y,, ~—1.83212024

AuCu  0.500 1.0000  (c/a),,, -1.79185852
0505 09986 (c/a),,, -1.79183540
0510 09946  (c/a),,, -1.79210049
0.515 0.9871  (c/a) g, -1.79254439
0520 09754  (c/a) -1.79317055
0525 09552  (c/a),, -1.79398514
0.520° 09504  (c/a),,, -1.79546627

ideal

2 (c/a)igeq = G .
b Approximate limit of local stability.
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then remains stable until f reaches 0.8621. A ta-
ble of energy constants ag,,c, and the locally sta-
ble c¢/a ratio of AuCu lattices is given in Table II
over the range of local stability.

(d) Let us now consider a bcc lattice of atoms of
species A. Suppose that we introduce one atom of
species B in the unit cell but that the charge of
species B is much smaller than that of species A.
Thus, the presence of B’s would have small influ-
ence on the positions of the A’s, but the B atoms
would seek out positions which minimize locally
the electrostatic energy; i.e., the positions of
lowest electrostatic potential in the A lattice.

A stable point is found for B’s of very small
charge where the B’s lie in the face of the bce cu-
bic cell one-quarter of the way across the face on
a line lying midway between two parallel edges of
that face. This arrangement leads to a (nonreg-
ular) tetrahedral arrangement of the nearest
neighbors of each particle, but this lattice is lo-
cally stable'® only in the narrow range 0.9993
< f<1.0. We have dubbed this lattice simply “al-
most bec” or abce. Incidentally, this approach
applied to the fcc lattice yields the NaCl lattice
which was explored earlier. But it yields also the
zinc-blende or sphalerite ZnS structure stable
from f=0.9625+ 0.0005 to f=1.0. We designate the
zinc-blende structure simply as ZnS.

(e) Finally, we consider the hcp lattices. In the
unary case this is not a Bravais lattice so the
change to a binary lattice consists in making the
second basis “atom” of the lattice a B atom.
Wyckoff'? uses the nomenclature tungsten carbide
or WC [also WC (z)] for this lattice. This is lo-
cally stable at f=0.5 with ¢/a=1.0016(c/a)gey »
where (c/a) jyeu=(§)/° but as f increases become
unstable at a critical value of f in the range 0.615
<f<0.616. At the same time, ¢/a decreases to
0.873(¢/a) e Numerical values are given in Ta-
ble II.

(f) It is now relevant to speak of other possible
locally stable binary lattices of the type we have
been considering but whose existence cannot be
inferred from the general arguments as above.
Here we have again used a minimum search pro-
gram starting from randomly selected points in
the parameter space of lattices with two atoms in
the basis with f=0.6, 0.7, 0.8, and 0.9. These are
long searches since the parameter space is eight
dimensional. We found no new lattices in this way
and in the overwhelming number of cases the
search ended in either NaCl or a CsCl lattice and
very occasionally in the WC lattice. In our nec-
essarily limited numbers of searches made only
for f values differing by 0.1, we did not reach any
of the more esoteric lattices such as the ZnS,
abcc, or AuCu. We would certainly have missed

lattices with very limited stability ranges either
in f or, for given f, in the parameter space. It is
reasonable to conjecture, however, that among bi-
nary lattices with a larger basis than two atoms,
the wurtzite lattice is likely to be locally stable in
the range just below F=1.0.

(g) The last possibility we must consider for bi-
nary lattices, as Dyson pointed out in his original
discussion, ? is that with two species it is possible
that the lowest energy of the system may be real-
ized by segregation of the two species with each
crystallizing in the lowest-energy unary lattice,
presumably bee. In fact, it will be useful to use
the energy of such a segregated bcc-bee system
as a function of the charge parameter f as a base
line from which to measure the values of the en-
ergy parameter ¢ for all lattices. As Dyson
showed, for two unary lattices with charges Z; and
Z; and with Z= %(Z,. +ZJ.) the energy of the two seg-
regated lattices will be given by the energy con-
stant® :

Ouegl8,7) = 8 (20)7/+ ;2 = 297 (1)

Thus, with the choice a; =a; =ay, we obtain this
reference energy constant which is plotted as a
function of f in Fig. 1. The same formula can be
used for the other segregated lattice situations,
but it should be noted that for two different lat-
tices (such as bece and hep), the constant ¢ will de-
pend on which of the two species forms which lat-
tice. We shall write the energy constants in these
segregated cases in the form aseg(i,j) where 7 is
the lattice formed by the species of kigher charge
and j that of lower charge. (It is in this manner
that they are designated in Fig. 4 where ¢ and j
run over bcce, fcc, and hep.)

3.0 T T T T T T i T T

-0geg ( bee, bee)

FIG. 1. Coulomb energy constant a(bce,bee) for two
segregated lattices consisting of two species with un-
equal charges (except at f=0.5) each crystallized in a
bece lattice. Accurate values may be calculated from
Eq. (1) in conjunction with Table I; in this case a;=a;

=@ pece
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FIG. 2. Difference in Coulomb energy constants Aa
=a —ag,(bce,bee) for locally stable lattices over their
range of local stability. The CsCl lattice appears to be
the globally stable lattice from f=0.5 to f~0.7076; the
segregated bee-bece lattice is then apparently globally
stable from 0.7076 to f=20.8386, at which point the NaCl
lattice appears to become the globally stable lattice al-
most tof=1.0. There the lattice we have called abcc is
more stable (see Fig. 3). The cross bars show the
limits of local stability for each lattice.

IV. RESULTS

For those interpenetrating Bravais lattices
whose configurations do not change with f such as
CsCl, NaCl, ZnS (zinc blende), and abcc, the en-
ergy for each value of f can be calculated by the
formulas:

Gogr = Boee + 4(8%0 = aye)(f = 2)?,

Aneer= o+ 43 Page— ) (f = 3)° @)
B205= @ geungt 44 = Aamnd (f = 3)°

Bavee (1) = A anee(3) + 4[4 %0, = @ o3 ] (F = 3)2.

The energy constants ay., Gy, Ao Aamngy AN @ pec(3)
are given in Table I. For the AuCu and WC lat-
tices, the configuration of the stable lattice changes
with £ and such simple formulas are not available.
For this reason the energy constants together with
the c¢/a ratios for these binary lattices are given
in Table II.

In Fig. 2, we have plotted the energy constants of
the various locally stable binary lattices over their
range of local stability relative to the energy con-
stant g bcc, bee). From this figure, we can see
which of the lattices we have explored is possibly
the globally stable lattice for each value of the
charge ratio f. The region of this graph where
f=1is shown on an expanded scale in Fig. 3 so
that details can be observed. Even in this figure
in the region where the abcc lattice is apparently
globally stable, its difference from the segregated
(bce, bee) lattice is too small to be discriminated,

L ZnS

Seg bcc

103 Aa

abce )

NaCl 4

|
0.96 0.97

1 | I

i
098 . 099 1.0
f

FIG. 3. Magnified view of the region about f=1.0 in
Fig. 2. The abcc lattice although slightly lower in ener-
gy, coincides with the agg(bcc,bee) curve to the accur-
acy of the figure from about the point where the latter
crosses the NaCl curve.

1

the difference being of order 2x10~°, Finally, in
Fig. 4 we show the energy constants of the vari-
ous segregated, locally stable lattice combinations
plotted with the baseline again given by a.fbcc,
bce).

V. SUMMARY

In general, no surprising results have emerged
from this study. One finds that energy differences
for locally stable lattices at any f value are quite
small, of the order of one part in 103, For the
global stability of binary lattices, the general sta-
bility results confirm the results of Dyson except
for a physically uninteresting region in a very
small neighborhood about £ =1.0, in spite of the

0.5 0.6 0.7 0.8 0.9 1.0

FIG. 4. DifferenceAa,, (i,j) = Gyqq (,7) -Aseg(1, 1) where
i, j=1, 2, and 3, respectively, stand for the bee, fec,
and hep lattices. The first figure in parentheses repre-
sents the lattice of the species of higher charge, the
second representing the lattice of the species of lower
charge. The lowest curve should be labeled (2,1) rather

_ than (3,2). The baseline is (1,1)= (bcc,bcc).
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fact that we have uncovered five more locally sta-
ble lattices than were considered by Dyson. It al-
so seems to be very difficult to understand the pat-
tern of correlation between energy and lattice
structure. This combined with the smallness of
energy differences of locally stable lattices, sug-
gests that in the density regime where the Wigner
lattice structure is valid in the electrostatic limit,
the presence of even relatively small numbers of
other charge impurities may have major effects
on the lattice structure in their neighborhood (or
within the radius of the Debye screening length
when the background charge is a degenerate elec-
tron gas.) Further stability questions with respect

to the effect of lattice vibrations will be explored
in a later publication.

Note added in proof. The NaCl curve in Fig. 2
should terminate with a cross bar at f=0.755
rather than 0.71.
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