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A first-principles self-consistent-field calculation of the electronic structure of the Si(111) surface with a
layer of cbemisorbed Cl atoms has been performed by means of the method of linear combinations of atomic
orbitals. A thin-film crystal consisting of twelve infinite (111) Si layers plus one layer of Cl on each side is
considered. The crystal potential is expressed as a superposition of localized function at each site, apd the
basis functions consist of two-dimensional Bloch sums of the 1s,2s,2p, 3s,3p atomiclike functions and of
contracted-Gaussian orbitals for each layer of the film, By means of the Gaussian techique, all the
multicenter integrals are evaluated exactly and the Hamiltonian matrix elements are computed by summing

these integrals over all the lattice points to convergence. The solution of the one-electron Hamiltonian is

carried to self-consistency. Application of Mulliken s method of population analysis enables us to determine
the fraction of electron charge allocated to each layer for a given wave function and quantitatively
characterize the localization of the surface states. At the I point of the two-dimensional Brillouin zone, we
find a surfacelike cr state at —13.4 eV (relative to the vacuum level) and a m surface state at —10.7 eV.
The localized behavior of the latter persists at k~~ points on the I M line. The calculated local density of
states (LDS) for the valence band agrees well with the experimental photoemission data. In the lower
conduction band we find one LDS peak due to surface states at —3.4 eV which corresponds closely to the
electron-energy-loss data. Estimates of the LDS for the upper conduction band have been made and the
results are in reasonable accord with experiment. A population-analysis calculation indicates a net charge of
—0.35 e/atom (e being proton charge) for the Cl layer and 0.27 e/atom for the adjacent Si layer with

some residual ionicity in the next few layers.

I. INTRODUCTION

In the last few years first-principles calcula-
tions of energy-band structure of solids based on
the method of linear combinations of atomic orbit-
als (LCAO) have been quite successful for a vari-
ety of crystals including the alkali and transition
metals, group-IV element crystals, aluminum,
metal oxides, alkali halides, and polyethylene. '

".

More recently application of this method has been
extended to imperfect solids such as point-defect
crystals'"" and amorphous Si.""The concept of
LCAO indeed has been used, for many years, for
qualitative description of the electronic structure
of solids, and many empirical calculations based
on techniques of parametrization have been per-
formed. Nevertheless, the difficulty of evaluating
the multicenter integrals which appear in the Ham-
iltonian matrix elements had rendered first-prin-
ciples calculations prohibitively unrewarding. The
recent success of the LCAO calculations may be
attributed mainly to the introduction of the Gauss-
ian-type orbitals (GTO)." When the atomic orbit-
als are expanded by the GTO's, all the multicenter
integrals involving the kinetic and potential-energy
terms can be either evaluated analytically or ex-
pressed in terms of the error function"'" so that
one can readily compute the Hamiltonian matrix
elements exactly by carrying out the lattice sum-
mation of these integrals to convergence. Tech-

niques for self-consistent-field (SCF) calculations
have been developed, '""and theoretical Fermi
surfaces, optical conductivities, and Compton pro-
files based on SCF LCAO band structures have
been reported. '""

In view of the surging interest in theoretical un-
derstanding of the electronic structure of solid
surfaces, ' it is natural to extend our LCAO
scheme to chemisorbed surfaces. The superpos-
ition representation of the crystal potential not
only provides a natural distinction between the
substrate and adsorbate atoms, but also automat-
ical(y reproduces the abruptness of the crystal
surface. The multicenter integrals involved in the
surface problem can be evaluated in the same
manner as for the bulk crystal. The specific sub-
ject of our study is the case of the Si(111) surface
with a layer of chemiadsorbed Cl atoms. Photo-
emission experiments for this system have been
reported, and the effects of the Si-Cl interaction
on the observed photoemission intensity delinea-
ted. "'" Also in Ref. 22 is a theoretical SCF cal-
culati. on of the valence-band local density of states
and an analysis of the peaks therein from the view
point of Si-Cl bonding. Comparison between the
theoretical results with the experimental data
makes it possible to determine the site geometry
of the adsorbate. The calculation given in Ref. 22
is based on the method of pseudopotential. In this
paper we describe an SCF LCAO procedure for
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first-principles calculations of the electronic
structure of the C 1-adsorbed Si(111) surface. The
calculated energy spectrum for both the valence
and conduction bands can be compared with the ex-
perimental data. Also the LCAO form of the wave
functions enables one to analyze the electronic
states in terms of the atomic characters and de-
termine quantitatively the electronic charge dis-
tribution in the crystal.

For clean surfaces, self-consistent first-prin-
ciples calculations of the electronic structure of
crystals, infinite in two dimensions and either
semi-infinite or finite in the third, have been per-
formed by different methods. " The works of
Appelbaum and Hamann deal with semi-infinite
crystals; the electronic states are solved by the
technique of scattered waves. ' On the other hand,
thin-film crystals (-10 layers) are used by All-
dredge and Kleinman. " It is a common practice
to stack a series of thin films with a constant dis-
tance between two adjacent ones sufficiently large
so that the electronic charge density is virtually
zero midway between two films. In this manner
the crystal potential can be regarded to have a
three-dimensional periodicity and therefore can be
expressed in a Fourier series. Consequently the
electronic wave functions can be handled by a
plane-wave-like expansion. " The approach of
Appelbaum and Hamann and that of Alldredge and
Kleinman have since been applied to many differ-
ent systems. In addition to the works by those two

groups, studies of Cu(100) surface (three-layer
film) and diamond (100) surface (a stack of 21-
layer films) have been performed by the LCAO
technique with Gaussian basis. "'" There are also
first-principles SCF calculations for surfaces in
which a finite cluster is used to simulate the solid;
the methods of treatment there are quite different
from those employed for solid surfaces of infinite
extent.

As to first-principles theoretical calculations
for surface adsorption, the method of Appelbaum
and Hamann has been extended to the case of Si
(111)with H atoms. " Non-SCF calculations on
adsorption of 0 and CO on Ni surfaces have been
performed by the method of linear combination of
muffin-tin orbitals. "

Our treatment of the adsorption problem is
based on the Hartree-Fock-Slater scheme. We
consider a single thin film (14 layers) of solid
which is infinite in two dimensions, but no quasi-
periodicity in the third dimension is assumed. The
one-electron Hamiltonian is solved by using
LCAO-type basis functions in which the atomiclike
orbitals are expanded by GTO. In computing the
multicenter integrals involving the crystal poten-
tial, the Coulomb and exchange interaction of all

the atoms in the solid are fully taken into account.
By means of the Gaussian technique, all the multi-
eenter integrals are evaluated exactly. The Ham-
iltonian matrix elements are expressed as a sum-
mation of the multicenter integrals over the infin-
ite lattice sites which is carried out to conver-
gence. An iteration scheme has been developed to
carry the solution to self-consistency. As our
starting point we first perform an SCF calculation
for the bulk Si crystal. Although an SCF LCAO
scheme has been previously developed for bulk
crystals, '" we have made some changes in the
computational procedure so as to make it more
directly adaptable to the adsorption problem. We
will describe in some detail this SCF procedure
for the bulk crystal in See. II, since much of the
technique developed therein forms the foundation
for the adsorption work. Following this will be an
account of the computational method for the Si(111)
Cl system. Presentation of the results, compari-
son with experiment, and discussion will be given
in Secs. II-VI.

The term "method of tight binding" has been of-
ten used interchangeably with the LCAO method in
bulk-crystal works. The name "tight binding" in
surface work has been associated with the semi-
empirical approach in which the Hamiltonian ma-
trix elements are chosen by some empirical means
and, usually, only include nearest-neighbor (and
sometimes second-nearest-neighbor ) interac-
tions. "'" In the last few years, ealeulations
based on this procedure have met with consider-
able success for clea.n surfaces, and it has been
extended to chemisorbed systems. "'" Both the
empirical tight-binding method and our method
employ basis functions involving atomic orbitals,
but we calculate the matrix elements from first
principles and include interaction of an atom with
all other atoms in the crystal regardless of their
distances. Furthermore, our LCAO scheme pro-
vides the option of including additional basis func-
tions (other than those associated with the occupied
atomic shells) so that it is also applicable to the
unoccupied conduction states.

II. SCF BAND CALCULATION OF THE BULK SILICON

CRYSTAL

We designate the two interpenetrating face-cen-
ter-cubic (fcc) sublattices of lattice constant a
(5.429 A) as 1 and 2 and choose our coordinate
axes to be parallel to the cubic axes. The two
sublattices are displaced from each other by

t, -t„where t, —t, = —,'a(l, 1, 1). From a given at-
omiclike orbital (such as 1s, 2s, 2/x, etc. ), a
Bloch sum can be constructed for each of the two
sublattices. Instead of using the Bloch sums of the
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individual sublattices directly, we take as the ba-
sis functions the "plus" and "minus" combination,
as is done in Ref. V,

5' (k, r) = I'(a)N 1Q e"s"[p (r R—„-t,)

+P (r-R„-t,)], (1)

where Q denotes a localized orbital, R„ is a
translational vector of the fcc lattice, N is sym-
bolically the number of unit cells in the crystal,
and

I'(a) = fI (-a) = 1, when a is s type,

I'(a) = -fI (a) =i, when a is p type.
(2)

The use of Eq. (1) as basis functions has the ad-
vantage of making all the matrix elements real.
Although a common choice for Q is the set of oc-
cupied orbitals of the free atoms (1s-3p), higher
accuracy can be achieved by using a series of sin-
gle Gaussians of different widths for P .'" The
use of single-Gaussian Bloch sums, however, en-
tails a much larger basis set. To retain good ac-
curacy with a moderately small basis set, we re-
sort to the method of contracted Gaussians. "'"
Following the procedure of Ref. 33, we solve the
energy secular equation for k=0 using a basis of
11 s-type and 11 p-type single-Gaussian Bloch
sums of exponents 0.186040, 0.25V 644, 0.503922,
1.45221, 3.93V 14, 12.8156, 30.6395, VV. 6064,
214.004, 657.466, and 2330.01." (Deacription of
the crystal potential is given in the next para-
graph. ) According to the weightings of these Bloch'
sums in the 1s core-state eigenvector, we con-
struct a linear combination of the Gaussians cen-
tered at the same site (called a contracted Gaus-
sian) which is taken as the 1s "optimized. orbital. "
A similar procedure is used for 2s and 2p. To
generate the 3s and 3p optimized orbitals, we use,
respectively, the I',„and I'»„eigenfunctions to
form the contracted Gaussians. To these optim-
ized orbitals, we add an e-type function [exp
(-0.186040 r') -exp(-0. 257644 r')] which is then
orthogonalized to 1s, 28, 3s, and a similar p-type
function so as to improve the variational freedom;
they are referred to as the s' and p' orbitals. By
comparing eigenvalues of this 13-function set
(which amounts to 26 basis functions because of
two atoms per unit cell) to a larger pure single-
Gaussiqn set involving 88 basis functions, we find
that valence-band energies differ by no more than
0.08 eV and the energies of the bottom part of the
conduction band by no more than 0.15 eV. One can
also introduce some d-type Bloch sums for addi-
tional variational freedom. However, since we do
not use d-orbitals in the surface adsorption work,
they are not included in the bulk calculation.

In the earlier work of LCAO band calculation of
diamond type crystals, the crystal potential was
expanded in a Fourier series. ' This technique
made computation of matrix elements expedient,
but is limited to systems with three-dimensional
translational symmetry. In order to have a
scheme applicable to systems of lower symmetry,
we adopt the local decomposition representation
for the crystal instead of employing Fourier ex-
pansion. This entails a consider abl, e modification
in the computational procedure to our SCF LCAO
scheme for bulk crystal" published previously.
In the present work the crystal potential is ex-
pressed as a lattice sum of local functions cen-
tered at each atom. These functions are chosen
so that their range does not exceed two or three
times the value of the associated atomic radius.
Furthermore, the angular dependence must be
chosen to be compatible with any rotational. and
mirror symmetries of the crystal. For silicon
the angular dependence may be spherical or have
the form xyg. Higher-order terms such as
[x'+y'+z' —(-, )r'] exist but are not included (jus-
tification for their omission will be given in the
next paragraph). We have then,

V„,(r) = Q U~(r —R„-t~),
v

U, (r) = U, (t')+xygU„, (r), (4)

(5)

The first summation in Eq. (6) allows for the r '

singularity near each silicon nucleus. A typical
multicenter integral appearing in the Hamiltonian
matrix element involves the product of a Gaussian
at site A. , another at 8, and U, (or xyeU„„) cen-
tered at C. The integrals associated with the first
summation in Eq. (6) can be expressed in terms of
the error function and those associated with the
remainder of (6) and gyzU, can be reduced to
analytic form.

To start an SCF calcul. ation we use the over-
lapping atomic potential (GAP) as the initial ap-
proximation of the crystal potential. . In other

The relationship between U, and t'J, is due to the
glide-plane symmetry of silicon. Evaluation of
multicenter integrals is greatly facilitated by ex-
panding the localized potentials by Gaussians, i.e. ,

U(~) = P (A, /~)e-'~" + P (.e-' ", (6)
tff

with
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words; the zeroth-order version of U, (called
U,"') is taken as the spherically averaged potential
of a free Si atom computed from the atomic Har-
tree-Fock wave function with the statistical ex-
change approximation. Using the 13-function set
we solve the secular equations IH, &

—ES,
& I

=0 to
determine the one-electron energies and wave
functions for four k points in the Brill.ouin zone
(BZ), namely, I', X, L, and W. The first-order
crystal electron density can be obtained by per-
forming a numerical integration over the Brillouin
zone using these four points. We calculate the
electron density at 357 points in the fundamental
wedge of the silicon crystal which has a volume
of —,', of the Wigner-Seitz cell. The electron den-
sity at points outside the wedge may be found by
appropriate rotations and translations. The funda-
mental wedge is defined by

x&y & Iz l&0, with x +y ~l —,a, (8)

and

x+y+z & (3/8)a, if y &a/8,

x+y+z &(3/8)a, if y &a/8.

The crystal electron density is decomposed into a
superposition of localized functions over the lat-
tice points, i.e. ,

where p' is determined from the calculated values
of p„„(at 357 points in the fundamental wedge) by
means of a multicenter numerical curve fitting.
Here p' may contain a spherical part and an angu-
lar part including terms like rye, x'+y'+z'
—(6)r', etc. However, we find thatagood fit of Eq.
(10) can be achieved by using only the spherical
term (p', ) and the xyz term (p'„„),hence no higher
angular terms are included. The relations between

p,', p'„, and p'„p', are similar to Eqs. (4) and (5). In

fact the Coulomb component of the electronic part
of U is determined by solving the Poisson equation
with p'. Since the only angular part of p' is the
xyz term, it is not necessary to carry U beyond
this term. We have found it convenient to fit the
electron density with functions like (o'/v)(1. 5 —ar')
e ", (o.'/&t)(4. 5 —ar')xyze ", and (a/z)(ar' —0.5)
e "/r as they yield Coulomb potentials of the
form e ",xyze '", and (1 —e '" )/r, respectively.
For p'(r) we use eleven terms of the first kind,
two terms of the second kind, and two terms of the
third. The two 1/r-type terms must be con-
strained, as stated in the auxiliary conditions
of Eq. (6) so that the electronic Coulomb potential
approaches Z/r as r -0 and p(0) remains finite.

The exchange part of the crystal potential is han-

died by the statistical approximation. Since
[p„,(r)]'&" is not equal to the sum of (p)'~', it is
necessary to separately fit p„„' 'from the calcu-
lated values for 357 points into a lattice superpos-
ition form as

A multicenter, nonlinear fit is performed using
terms like e " and (xyz)e " (ten of the former
and two of the latter). Again g, and g, assume the
form of Eqs. (4) and (5). The U functions are com-
posed of the contributions from the nuclear charge,
the electronic Coulomb term, and the exchange
term as

3o.(3/8w)'~3g, (r), k = 1, 2. (12)

If p' and g were handled the way described above,
the integral in Eq. (12) would generate a Z/r term
to cancel the first term so that U~ is in the Gaus-
sian form as depicted in Eqs. (6) and (7). From
the first-order electron density one generates the
first-order U and Vzpy Solution of the secular
equations based on this potential yields the sec-
ond-order electron density and the iteration pro-
cess is repeated until self-consistency is reached.
During each iteration the contraction coefficients
for the Gaussians in the 1s, . . . ,3p optimized or-
bitals are recalculated in accordance with the new
Hamiltonian so as to allow for orbital relaxation.
Since curve fitting is used extensively in our
computation, it is important to ascertain whether
the calculated energies depend in any appreciable
way on the curve fitting. To this end we perform
another fit for Eqs. (10) and (11) using an entirely
different kinds of localized functions. The differ-
ence in the resulting energies is typically 0.02 eV.
All the functions determined by curve fit, such as
p'(r), and g(r), ultimately appear in the multicen-
ter integrals, thus fluctuations due to slightly in-
exact fitting are evened out by the integration and
would have a very small effect on the matrix el-
ements.

In our calculation of V„„, absolute potential is
used throughout without any additive constants.
Therefore the energy eigenvalues are referred to
the vacuum level. Our SCF LCAO calculation for
I iF shows that one can get accurate vacuum levels
relative to the valence band. "

We first chose a = 1 for the parameter in the ex-
change approximation. The SCF calculation with
the 13-function set gives the top of the valence
band at 6.36 eV below the vacuum level. and an in-
direct band gap of 1.43 eV. They are larger than
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the corresponding experimental values of 5.15 and
1.16 eV.""Our calculated indirect gap is also
slightly larger than the value of 1.10 eV obtained
by the SCF orthogonalized-plane-waves (OPW)
method. " (Augmentation of our basis set by sin-
gle Gaussians decreases the band gap to 1.37 eV
which is still larger than the OPW value. The
OPW scheme of Ref. 38 involves some approxima-
tions associated with dividing the states into val-
ence states and core states and with the way the
core states are treated. However, we have not
investigated whether they can account fully for the
discrepancy. No vacuum-level energies are given
in Ref. 38.) With o. =0.90 in our SCF calculation,
the top of the valence band lies 5.19 eV below the
vacuum level and the indirect band gap becomes
1.17 eV. The vacuum level plays a very important
role in surface problems. An incorrect energy
separation between the valence band and the vac-
uum level for the limiting bulk crystal would affect
the surface-adsorption states and obscure the
comparison between theory and experiment. For
this reason we adopt a =0.90 for the bulk Si cry'-
stal. (Additional discussion will be given in Sec.
VI. )

III. METHOD OF CALCULATION FOR SURFACE

ADSORPTION

The crystal under consideration is a (111)slice
from an infinite silicon crystal with one layer of
Cl atoms opposite to each surface Si atom such
that the Si-Cl bonds are perpendicular to the sur-
face. This structure has been confirmed by the
experiment of Howe et al." The single-bond
length for Si-Cl is quite constant for a number of
molecules, being 2.050 A for SiH,Cl, 2.021 A in
SiHCl, 2.021 A in CH SiCl„and 2.01 A in Si2C16.
Accordingly we choose the Si-Cl distance as 2.032
A for our problem. It is assumed that the outer
layers of Si atoms are not relaxed from their in-
finite- crystal positions. This assumption is rea-
sonable because the Si-Cl bonds stabilize the
boundary Si atoms, as opposed to the case of clem
surfaces where layer relaxation is an important
factor. We choose the ~ axis to be normal to the
surface. Each layer, which is infinite in two di-
mensions, possesses the same translational in-
variance, but different layers may be displaced
from each other as shown in Fig. 1. To fully
specify the location of the atoms in the eth layer,
we need only give the position (T„) of one of its
constituent atoms. All other atoms of this layer
can then be obtained through the two-dimensional
translation vectors R~. For this work, we take
a film consisting of 12 layers of Si plus an over-
layer of Cl on each side. One of the Cl layers is

FIG. 1. Atomic-position structure of the Si(111) sur-
face with one layer of adsorbed Cl atoms. The numeral
7 denotes the Cl atoms, 6 denotes the adjacent layer of
Si atoms, 5 denotes the atoms in the next layer, and so
forth.

designated as n= 7, and one on the opposite side
as n= —7. The adjacent Si layers are n= 6 and
n= —6, etc. In this labeling system there is no
layer corresponding to n= 0. The vectors T„T„
T» T„T„T„andT, are, respectively, (all in
A), (0, 0, 10.260), (0, 0, 8.228), (0, 2.216, V.445),
(0, 2.216, 5.094}, (0, -2.216, 4, 310), (0, -2.216,
1.959), and (0, 0, 1.1V 5). Other layers may be found by
inversion through the origin, e.g. , T,=(0, 2.216,
-1.959). Because the potential is written in a
direct-space representation rather than as a
Fourier series, it is not necessary to stack iden-
tical films along the z direction to produce a
quasi-three-dimensional periodicity.

The general procedure is to (i} select a set of
basis functions; (ii) construct an initial crystal
potential to start the SCF calculation; (iii) com-
pute the matrix elements for this potential and
solve the secular equations; and (iv) from the
solution of the initial Hamiltonian, generate an
improved Hamiltonian and iterate to self-con-
sistency. The major guideline is that in the LCAO
basis functions the atomiclike functions are ex-
pressed in GTO and that the crystal Hamiltonian is
decomposed into a superposition of local functions
which are in Gaussian form, analogous to Eqs.
(3)-(V). (A description for each major step is
given in Secs. III A-III C.)

A. Basis functions

Conforming to the planar translational symmetry
of the crystal, we characterize an electron state
by a two-dimensional wave vector k„. The layer



Bloch sum for the rkth 1Ryer of atoms is

8 (k„r)= —g e'""'& ~' '&f&,(r H—,—T„), (13)

where N is symbolically the number of atoms in
the layer, and the local functions Q& are the atom-
ielike orbitals of the Si and Cl atom expressed in
Gaussians. For Si atoms, Q,. covers 1s, 2s, 2P,
3s, 3P, s', and P' contracted Gaussian orbitals
employed in the SCF band calculation of the bulk
crystal. In the ease of Cl we identified Q, as the
ls, 2s, 2p, 3s, Rnd 3p atomic %'Rve functions ex-
panded in the same set of Gaussians as used for
Si, plus an s' and P' orbital forpined in the same
way as their Si counterparts. This gives us 13
Bloch sums for each layer, hence a total of 182
basis functions. The Hamiltonian matrix elements
between two 8„,. functions, are in general, com-
plex; this makes the secular equations difficult to
handle. However, taking advantage of the inver-
sion symmetry of the thin film, one ean find a set
of basis functions B'„&for which all matrices are
real, i.e.,

II„',(k„, r) =I'(q)[a„,.(k„r)+a „,(k„, r)], (14)

where I'(j) are given by Eqs. (3) if one replaces ry

by j therein.

B. Initial crystal potential

In the SCF calculation for the bulk crystal, we
take the OAP as the starting potential. However,
for the adsorption problem, the GAP approxima-
tion is not a good choice as a starting point, for, if
it is so used, both the adsorption features and the
bulk silicon features must be taken to self-consis-
tency simultaneously. We find it advantageous to
separate the bulk SCF work from the adsorption
SCF work. To this end we take the infinite-crystal
SCF potential derived from Sec. II and decompose
it into a lattice sum of localized potentials for each
Si atom in the form of Eq. (3). The starting poten-
tial for the thin-film problem is a direct superpo-
sition of this localized potential for each Si atom
in the film and an atomiclike potential for each Cl
atom on the two overlayers. This starting poten-
tial has the advantage that it already gives the cor-
rect SCF behavior for the interior part of the film.
Consequently as we iterate the solution toward
self-consistency, we find appreciable change in the
electron density only near the surface of the thin
film; hence, SCF interaction need be done for only
a few layers near the two surfaces rather than the
whole f ilm.

C. SCF procedure

Since the starting potential is a superposition of
localized potentials which are in the Gaussian form

like Eqs. (6) and (7), the Hamiltonian matrix ele-
ments ean be computed exactly as all their constit-
uent multieenter integrals can be either evaluated
in analytic form or expressed in terms of the er-
ror function. The energy levels and wave functions
are determined by solving the secular equations
for several k„points in the irreducible part of the
two-dimensional BZ. In order to obtain the next
improved crystal potential, we first compute the
electron density of the film p& by a numerical inte-
gration over k~„ i.e. ,

p'l'(r} = g ~(k )g*.« )Iy;(k r)I' (»)
i~k

where g; stands for the one-electron wave function
for the ith band, g;(k„) is 0 or 3 depending on
whether the state is empty or fully occupied, and
&u(k„) is the weighting of the particular k„point in
the two-dimensional integration. The superscript
in p& indicates that it is the first-iteration result,
Here we use three points I', M, andI7as shown in Fig.
2, with weightings of 0.25, 0.50, and 0.25, respec-
tively (Th.e high-symmetry points in the two-di-
mensional BZ are designated by letters with a bar
to distinguish them from the symbols for the three-
dimensional BZ.) It is interesting to compare p'&'

with the electron density corresponding to the
Coulomb part of the initial potential described in
Sec. IIIB. The latter, referred to as p&&), is sim-
ply a superposition of p', [derived from the SCF
bulk calculation as defined by Eq. (10)] at each Si
site and a free-atom Cl chaxge density at each Cl
site in the thin film. As expected, p~&' and p'f are
found to differ appreciably only in the surface re-
gion. Therefore, we curve fit their difference as
a summation of localized functions over the atomic
sites on the three outer layers on each side of the
film, (n=V, 6, 6, -6, -6, -'I); viz. ,

P'&'(r) —p & (r) =g g u„(r —H~- T'„) . (16)
&=k5g %6y+7

The localized function u„(r) is, of course, layer
dependent. Furthermore, it may contain any
angular component that is compatible with the point
group C,„. Thus the u functions are taken to have

Silicon (III) Brillouin Zone

FIG. 2. Two-dimensional
Brillouin zone of the Si(111)

K surface.
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f,(r)= P«, p'~e ". &".

f
(18)

the general form"

M(r) =f.(r)+zf, (r)+(2z' x'-y'-)f. (r)

+ z(2z' —Sx' —Sy')f»(r) +y(y' —3x')f„(r) .

(1V)

Truncation of this angular expansion is justified by
the success of a good fit. We express the radial
factors as

the following terms in the angular expansion:

v„(r) = G„,(r) +zG„,(r)+ (2z' —x' —y') G„,(r)

+ z(2z' —3x' —Sy') G„„(r}

+y(y' —Sx')G„„(r),

where the 6 functions have the usual Gaussian
form

G,.(r) = g g, ',e

(23)

The parameters a, &
and y, are to be determined by

fitting Eq. (16). The exponential factor in Eq. (18)
makes M„(r) a localized function; y is generally
around 3. For f,(r) two damping factors are used,
one exponent about 3 and the other about 12. The
degree of the polynomials is no greater than 5.
From the electron density we obtain the corres-
ponding Coulomb part of the thin-film potential by
solving the Poisson equation,

[V&y'(r) —V& y'(r}]c..&

F f „—R —T„d„, ()9)
5=+5 p k6y 47

It is easy to show that the integral on the right-
hand side has the same angular dependence as u„,
so that we write

u„ r' r —r' dv''

=F„,( )+ rzF„,(r) + (2z' x' y')F„-,(r-)

+z(2z' —Sx'- Sy')E„»(r}+y(y'- Sx')F„»(r),

(2o)

where the E's can be expressed in analytic expo-
nential form. To facilitate multicenter integra-.
tion, it is expedient to cast the E's in a Gaussian
version by means of curve fitting as

with the parameters f' and P' to be determined by
fitting Eq. (23). For statistical stability in the
curve-fitting procedure, we evaluate the electron
density at many more nonequivalent points (945}
than the number of parameters. The first, -itera-
tion correction to the crystal potential for the thin
film is then

V&"(r) —V&q&(r) = [V&"(r)—V&'&(r)] ,„,

+ [V&',&(r) -V&;&(r}] .

Its matrix elements can be computed readily be-
cause both the Coulomb and exchange components
are put in the Gaussian form through Eqs. (19)-
(24). Once the solution of the first-iteration Ham-
iltonian is obtained, the entire procedure is re-
peated to reach self-consistency;

For the potential associated with the Si atoms,
we adopt the value of 0.90 for the statistical ex-
change parameter as explained in Sec. II. As for
the Cl atoms, we adhere to the conventional choice
of 0. =1. The use of multivalue a for molecular
systems in Xe-SCF calculations has been done
frequently. 4' To allow for the different values of
n in our problem, rather than dividing the crystal
charge density of the thin f ilm into a portion be-
longing to Si atoms and one to the Cl atoms, we
use a position-dependent a defined as

E&=Qg& ge &gj (21)

Similarly the new exchange potential, which is equal
to Sn(3/8&&)&»[p&&&&(r)]' ', differs from the initial
exchange potential only in the near-surface region
so that their difference is again fitted to a super-
position of another set of localized functions near
a few outerlayers,

n =0.90 for ~z
~

(9.292 A,

n = 1.00 for ~z
~

)9.292 A, (26)

(22)[V&&y&(r} —V oq&(r)]»= Q Q v„(r —R„—T„),
8~%5zk6y k7

wher e the subscript Xdesignates the exchange part
of the potentials involved. Like the electron-den-
sity difference, we find it sufficient to retain only

where the z coordinate of the electron is measured
relative to the plane midway between the n =1 and
r&=-1 layers. (A discussion of the effect of the
choice n on the energy results is given in Sec. VI.}

IV. RESULTS: ANALYSIS OF THE ELECTRONIC STATES

An advantage of the LCAQ representation of wave
functions is that it displays directly the atomic or-
bital character and the interatomic bonding without
the need of making an electron contour plot. Fur-
thermore, for a given wave function, one can as-
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sociate a fractional electron population to each
atom by adopting the criterion of Mulliken. ~' To
illustrate the essential idea, let us consider a
triatomic molecule whose atoms are at points A,
B, and C, with a one-electron I.CAO molecular
orbital

-10-

$=aP~+bP +cf (27)

where Q~ is a normalized atomic orbital centered
at A. The integrated electron density is then

(y I t(» = 1 = a'+ b'+ c'+ 2ab (&f „I p, &+ 2b c8, I 0 c &

(28)

Clearly a', b', and c' should be associated with the
atoms at A, B, and C, respectively. The cross
term 2abg„I Ps& is divided equally between A
and 8 so that the fractional electron attributed to
the atom at A is a'+ab(P„

I Ps& + ac(Q„I Pc&.
This way of partitioning electron charge has been
applied to molecules with great success." For
surface adsorption systems we can use it to deter-
mine the charge associated with the adsorbate and
substrate atoms. This gives us a clear criterion
for identifying the surface states as well as quan-
titatively characterizing their degree of localiza-
tion. In this section we examine the individual
states that are closely associated with the surface
adsorption. By applying the Mulliken population
analysis, ' we determine the ionicity of the Cl and
Si atoms in different layers.

A. I' point

To gain insight into the properties of the surface-
like states, we first focus our attention to the I'
points (R„=O) because the symmetry of this R„point
makes the analysis of the electronic states sim-
pler. Column a of Fig. 3 shows the occupied ener-
gy levels obtained for k~j o. Since the z axis for
the surface problem is taken along the [111]direc-
tion of the fcc lattice, the 1" point in the two-di-
mensional BZ may be correlated with the [111]
line (referred to the cubic axes) in the three-di-
mensional reciprocal space. For comparison, we
also exhibit in Fig. 3 (column b) the valence-band
levels of the bulk Si crystal for all k points on
[111]. A gap withfn the valence states arises be-
cause we include only the states along the A line of
the BZ. This is illustrated by the I'Jt. L part of the
energy-band diagram which is shown in column c
of Fig. 3. The most. noticeable differences between
columns a and b are the levels in the forbidden re-
gions of the bulk crystal, -24.2 and -13.4 eV. For
each of these energies there are two nearly degen-
erate levels due to the two surfaces of the film,
but we need only discuss one of each pair. The
state at -24.2 eV is highly localized at the Cl layer

(a) ( b) ( c) (d)

FIG. 3. In column {a) are the occupied I' —point energy
levels of a thin film consisting of 12 layers of Si(111) and

one Cl overlayer on each side. The same kind of levels
of a film with 24 layers of Si(111) and one Cl overlayer
on each side are given in column (d). Column (b) shows
the coverage of the valence-band- levels of the bulk Si
crystal along the 1 AI. line of the three-dimensional BZ;
the splitting of the s-pg and px-py branches is illustrated
in column (c). The vacuum level'is taken as the zero-
energy reference.

consisting of predominately Cl 3s orbitals with lit-
tle 3pz admixture. The electron distribution has a
weighting of 0.91 and 0.09 for layers 7 and 6, re-
spectively, and zero for layers 5-1. The state at
-13.4'eV also has its major electron concentration
at the Cl layer, but is somewhat less localized
than the previous one, the distribution weighting
for layers 7-4 being 0.53, 0.18, 0.16, and 0.04,
respectively. This state is truly a surface state
(rather than a surface-resonance state) because
there are no bulk states of the same symmetry
near that energy. The wave function at the Cl sites
has a large 3Pz component with some 3s mixing,
and shows bonding (o' type) with the adjacent Si
layer. The state at -18 eV in column a is slightly
below the bulk valence-band limit indicating some
distortion due to the surface overlayer.

To make further analysis of the thin-film and
bulk states, it is convenient to classify them ac-
cording to irreducible representations of the C,„
point group. [The thin f'ilm has an additional in-
version symmetry which merely introduces a (+) or
(-) label as in Eq. (14) and does not affect our
analysis. ] These energy levels shown in Fig. 3 are
of either A, -type (s, pz) or E-type (px, py). From
Fig. 3(c) we see that the E levels (valence band) of
the bulk states are confined to the energy range of
-5.19 to -6.60 eV. The thin film, however, has
sets of E doublets (four states altogether) at -10.7
eV which are well below the -6.60 eV limit and
whose electron distribution on layers 7 and 6 are
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0.91 and 0.08, respectively. These m-like states
are weakly bonded with respect to the Cl and the
adjacent Si atoms. They lie much below the energy
limits within which E states may propagate through
the infinite crystal and hence are forced to be lo-
calized on the surface. We get two sets of local-
ized E doublets because of the two surfaces of the
film; the two sets are, of course, virtually degen-
erate. No other I' thin-film states show very
strong preference to the Cl atoms. The A, states
immediately above the localized level at -24.2 eV
and the E states immediately above the localized.
w levels have small electron densities near the Cl
atom, but are mostly concentrated at layers 6 and
5.

It is important to ascertain whether a 14-layer
film is sufficiently thick to reproduce the bulk fea-
tures of the crystal and to isolate one surface from
the other. For this purpose we repeat the calcula-
tion for the 1" point using a 26-layer thin film (24
layers of Si with one layer of Cl on each side). The
energy levels are shown in column d of Fig. 3. The
o and m surface states are now at -13.37 eV and
-10.76 eV, respectively, as compared to -13.38
and -10.74 eV for the 14-layer calculation. There
are, of course, more levels in column d than in
column a because of the 12 extra layers of Si, but
the general patterns are very much alike. As re-
marked before, each surface state occurs as a
nearly degenerate pair because of the two surfaces
of the film. The energy splitting of such a pair is
a measure of the interaction between the two sur-
faces in the film for the particular surface state.
For the 14-layer calculation the splittings of the
surface w state is less than 0.0005 eV and that for
the o' state at -13.4 eV is 0.09 eV. The latter is
larger because it is less localized on the surface
and the splitting is due to the small residual am-
plitudes near the n =1 layers. Upon enlarging the
film to 26 layers, this residual amplitude dimin-
ishes; indeed the o-state splitting becomes 0.003
eV.

B. The I'M line

Along the I'M line there is a mirror symmetry;
hence, the energy levels can be labeled by A, (s,
pz, and —,')(3px+ —,'py) and A, (- —,'px+ —,')(3py). Again,
a thin-film A,

'

level occurs below the energy limit
of the A, bulk states so that it remains a true sur-
face state. The A, states can couple with 8 and Ps
functions of the lower layers, thereby penetrating
into the interior of the crystal. Thus, the surface
m state at I" splits into a true surface state A, and
a surface-resonance state A, along the I'M line.
At the M point, the A, component is at -11.1 eV
with a population of 0.83 at the Cl layer and 0.15

and 0.02 for the next two Si layers, whereas the
distribution weights for the A, member (-11.4 eV)
at n =7 through n =4 are 0.72, 0.04, 0.16, and 0.03.
Both the surface type A, and A, levels occur in
nearly degenerate pairs. The surface o-like level
(-13.4 eV at 1') becomes contaminated by Px, Py
admiXture at M. As a result, one finds several
levels with appreciable population at Cl, but none
shows the' same degree of localization as the 0

state at I'. (Similar analyses can be performed for
the surface states at other k points, but will not be
detailed here. )

C. Ionicity of the adsorbate-substrate interface

For a given one-electron wave function we can
assign a certain fraction of its charge to each layer
of the atoms. When this is done for all occupied
wave functions, the electronic charge, hence ioni-
city, for each atom may be determined. This re-
quires an integration of all the k, states over the
BZ which we replace by a summation over 15 k„
points. To each point we assign a weighting factor
which is proportional to the part of the area of the
BZ that is closest to the k„point in question. This
calculation gives the number of valence electrons
per atom for layers 7-1 as 7.35, 3.73, 4.17, 3.90,
3.91, 3 96, and 3.98. We see a 0.35 unit of nega-
tive charge on Cl in line with the higher electro-
negativity of Cl over Si. The outermost Si layer
shows a net+0. 27 unit of charge. The remaining
numbers signify that some residual ionicity per-
meates to as far as layer 3.

V. RESULTS: DENSITY OF STATES AND COMPARISON

PATH EXPERIMENT

The density of states (DOS) is given by a numer-
ical integration over the BZ,

D(al Pf 5(E,(k„)—a=)dk„, (29)

by means of a triangular integration scheme. The
fundamental wedge of the BZ is partitioned into a
number of small triangles. At the corners of each
triangle, the energies are determined from the
secular equation. We then approximate each ener-
gy band to be of the form E(k„, k,) = a+ bk + ck, in-
side a triangle. Specifying an energy e determines
a unique line in the k plane. The DOS for that
triangle and that energy is proportional to the
length of the line enclosed by the triangle. The
DOS for each triangle and each band is summed to
yield the total DOS. We first performed the cal-
culation with 164 triangles or 45 k„points and
found the results to be nearly identical to those
using 16 triangles or 15 k„points. Some noise is
introduced by approximating the smooth bands
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with faceted surfaces. This is removed with a
smoothing process in which we consider the DOS
as a histogram of vertical strips centered at en-
ergy e„4E wide and h; high, and replace each
strip by a normal distribution of area h, h&,

k(e) = (h,.Le/v 2mo) exp[ —(e —e,)'/2a. ']. (30)

In our calculation, 4e is chosen as 0.01 eV while
o is taken as 0.1 eV.

For the calculation of the local density of states
(LDS), the weighting of the jth basis function (a
layer Bloch sum) in the ith band must be deter-
mined. The LDS for the jth basis function is then
defined through this weighting function as

CJ.
O
O

-l5 —
lO

Energy (eV)
gp, ,(k„)8(E(k„)—a) dk„.

i

In the triangular integration scheme the weighting
function for a given band is taken as a constant,
independent of k „ throughout the small triangle,
equal to the average of the values at the three
corner points. The determination of the weighting
function is again based on?gulljken's criterion4'
cited in Sec. IV, namely,

(32)

where Sz, is the overlap matrix element between
the jth and Eth basis functions and V„ is the coef-
ficient of the 1th basis function in the ith band wave
function. To get the LDS for a given layer, we
sum DJ(e) over all basis functions associated with
that layer.

Experimental work on ultraviolet photoemission
spectroscopy for the Si(111)C1system has been
performed by Rowe et al. ' Their photoemission
intensity reflects the LDS if one neglects the ma-
trix-element effects. (In the following subsections
we will present our calculated LDS and compare
with the photoemission data. )

A. LOS for the valence band

In Fig. 4 are displayed the LDS for the Cl layer,
Fig. 4(a); the LDS for the Cl plus the first (adja-
cent) Si layer, Fig. 4(b); and the LDS for the Cl
plus the first and second Si layer, Fig. 4(c). In-
spection of these curves reveals two dominant
peaks at 11.2 and 13.4 eV below vacuum. The per-
sistence of these two peaks in all three curves in-
dicate that they are closely related to the Cl at-
oms. Indeed, they correspond, respectively, to
the localized m state and the localized o state at
I' as discussed in Sec. IVA. Of course each peak
contains energy levels from different parts of the
BZ, so the o and m description is only approxi-
ma, te. We have seen in Sec. IVB that along the

FIG. 4. Local density of states for the valence band
of the 14-layer Si(111)Cl film for the Cl overlayer (a);
for the Cl plus the first (adjacent) Si layer {b); and for
the sum of the Cl, the first Si, and the second Si layer
(c). The zero energy corresponds to the vacuum level.

I'M line the surface m states remain localized
and undispersive whereas the o state picks up
small px and py constituents and becomes diffu-
sive. This is reflected by the large difference in
height between the two peaks. Their energies are
in very good agreement with the two prominent
peaks in the photoemission data" (peak C at -10.9
eV and peak B at -13.0 eV, both expressed rela-
tive to the vacuum level). In addition we find two

broad peaks in the LDS, one at -8.7 eV and one
at -16 eV. They are inconspicuous in Fig. 4(a),
but become better developed as more Si layers
are added. For this reason we attribute them to
the bulklike states. We also see reasonable cor-
respondence between our two bulklike peaks an&

the observed peaks D (-8.2 eV) and A (-14.9 eV)
in the photoemission data. " The same kind of
identification for the four observed peaks in terms
of the bulklike states (A and D) adsorbate o and v

states (B and C) has been suggested in Refs. 21
and 22. The ultraviolet photoemission data re-
ported by Pandey, Sakurai, and Hagstrum" shows
a main peak at -10.7 eV and three smaller peaks
at -7.5, -13.0, and -15.7 eV which are in good
agreement with our LDS results.

B. Lower conduction band

Before extending our LDS calculation to the con-
duction band, it is advisable to ascertain how well
one can describe the conduction states by means
of the 13-function basis set. To this end we have
calculated the conduction-band DOS for the bulk Si
crystal using the 13-function set as well as an ex-
tended set consisting of the 13 functions plus four
s-type and four p-type single Gaussians of expo-
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nents 0.257644, 0.503922, 1.45221, and 3.93714.
The results are presented in Fig. 5. Up to the
vacuum level (E = 0) the DOS obtained from the 13-
function set agree well with that from the extended
basis. Thus one can be quite confident about using
the 13-function set to study the part of the conduc-
tion band below the vacuum level (referred to as
the lower conduction band) for the chemisorbed
surface. The LDS calculated for the Cl layer, for
the Cl layer plus the next Si layer, and for the Cl
layer plus the next two Si layers are shown in Fig.
6. The peak at -3.4 eV may be associated with
adsorption, whereas the two peaks at -2.3 and
-1.0 eV'are essentially due to bulk states because
they are absent in the Cl-layer LDS and because
they appear at the same energies in the DOS of
the bulk crystal (Fig. 5). It is stated in Ref. 21
that a Cl-induced transition (electron-energy-loss
data) observed for Si(111) f x 7 has the final state

I I I I I I
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O
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0
Energy (ev)

FIG. 6. Local density of states for the lower conduc-
tion band of the 14-layer Si{111)Clfilm for the Cl over-
layer (a); for the Cl plus the first (adjacent) Si layer
{b); 'and for the sum of the Cl, the first Si, and the sec-
ond Si layer (c). The zero energy corresponds to the
vacuum level.

0
Energy (eV)

FIG. 5. Conduction-band density of states of the bulk
Si crystal calculated by using the 13-function basis set
(a) and by using the extended basis (b). The zero energy
corresponds to the vacuum level.

2.3 eV above the top of the valence band. This is
equivalent to 3.2 eV below the vacuum level if we
use the experimental value of 5.5 eV for the energy
difference between the vacuum level and the top
of the valence band. We see that this state at
-3.2 eV is close to our calculated peak at -3.4 eV.

The -3.4-eV peak consists of energy levels from
a, group of k „points including I". In the 1 wave
function, the 3s and 3ps orbitals on the Cl atom
have their relative phase so as to be pointing in-
ward whereas the hybridized 3s-3pz orbitals on
the adjacent Si atoms point toward the Cl layer.
The Cl and the neighboring Si are antibonding with
a larger amplitude on Si. The population-analysis
calculation shows that the fractional charge allo-
cated to the Cl layer is considerably smaller than
those to the next few layers of Si. Outside the l
point, some px, py admixture sets in, but the indi-
vidual atomic constituents by and large remain
pri'marily s-Pz-like with strong cancellation be-
tween the Cl and adjacent Si atoms. Although the
Cl valence orbitals include both 3s, 3p and the
s', p' supplement, the s', p' components in the
wave functions are small compared to 3s, 3p.
Hence we can roughly characterize the -3.5-eV
peak as a o-type antibonding state between Cl and
Si.

C. Estimation of LDS for the upper conduction band

Howe et a/. have observed some peaks in their
photoemission spectra corresponding to states
above the vacuum levels. " This makes the study
of the upper conduction band (the part above the
vacuum level) especially interesting. However,
one cannot expect to obtain very accurate results
for these high conduction states using the 13-function
basis set. One can, of course, supplement itby sin-
gle Gaussians, including those on floating sites out-
side the film. While this procedure has been
fruitful for bulk crystals, application to the
thin-film problem would make the size of the sec-
ular equation too large to handle with our local
computing facility. Nevertheless, we notice that
in the case of the bulk crystal the 13-function set
gives an upper-conduction-band DOS which still
shows good resemblance to the one deduced from
the extended basis set. For this reason we en-
deavor to carry the 13-function calculation even
above the vacuum level. It must be emphasized
that the LDS curves for the upper conduction band
of the chemisorbed film, which is shown in Fig. 7,
should be regarded only as a theoretical estimate
for qualitative purposes. In spite of this reserva-
tion, the LDS curves do reveal some interesting
features. The two peaks at 3.7 and 4.7 eV are
clearly Cl related as they undergo little change
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FIG. 7. Estimated local density of states for the upper
conduction band of the 14-layer Si(111)Cl film for the
Cl overlayer (a); for the Cl plus the first (adjacent) Si
layer (b); and for the sum of the Cl, the first Si, and
the second Si layer (c). The zero energy corresponds
to the vacuum level.

from Fig. V(a) to Fig. V(c). They are very close
to the experimental data labeled as P and y which,
referred to the vacuum level, have energies 3.4
and 4.8 eV, respectively. The nearly exact agree-
ment, of course, is fortuitous; nevertheless, the
overall correspondence between the LDS and the
observed peaks is interesting. The I DS for the
adsorbate layer alone [(Fig. V(a)j exhibits a struc-
ture at 2.2-2.9 eV, but it disappears as the con-
tribution from the adjacent substrate layers are
added. Instead a broad structure at 0.5-1.7 eV
evolved; it is reminiscent of the one at the same
energy range for the bulk Si crystal as shown in
Fig. 5. Hence this is lax'gely a bulk-state effect.
The e peak observed by Howe et al."is at 1.0 eV
above the vacuum level but is not quite as broad.

We have also analyzed the nature of the states in
the 3.7- and 4.7-eV peaks. None of them belong
to I', yet for most states the Cl components have
more s, pz than pi, py constituents. Furthermore
they are antibonding states between Cl and Si.
These states distribute over a wide region which
covers the 3.7-4.7-eV double peak. In some ways
they are similar to the states near the -3.5-eV
peak described in Sec. VB. However, the 3.7-
4.7-eV states have much higher localization at the
Cl atoms than do the -3.5 eV-states. Furthex-
more, the Cl orbitals'in the 3.7-4.7-eV wave
functions contain more s', p' than 3s, Sp compon-
ents, in contrast to the -3.5-eV states which are
predominantly Ss-3p type. Thus we regard the
3.7-4.7-eV stat~s as a set of higher a-type anti-
bonding states. It is almost tempting to introduce
the name 4s-4p-0' antibonding states, but the atom-
ic 4s, 4p states of CI are so much distorted in the

solid that they do not offer a realistic descrip-
tion. We may add that the Si orbitals, unlike the
Cl ones, are still mainly 3s, 3p mith only modest
s', p' admixture Qne can understand this because
the totality of all the Si 3s, 3p states span enough
conduction states so that some of them can inter-
act with the Cl "4s-4p" states, whereas the s', p'
orbitals are absolutely needed to form the "n=4"
Cl orbitals. This explanation also suggests that
the 13-function set may be too limited to accurate-
ly reproduce the "n=4" states. %hen more basis
functions are added to strengthen the variational
freedom, the energies of some of the higher 0
antibonding states may decrease appreciably.
Hence, high accuracy cannot; be claimed for the
3.7-4.7 6V region; in fact the shape of the double
peak may change substantially (or may even
merge) as the calculation is refined.

VI. DISCUSSION

We have presented here a self-consistent LCAQ
calculation of the electronic structux'6 of the
Si(111)Cl surface The. general method is essen-
tially an extension of the one developed for bulk
crystals. The basis set includes the minimal
1s, . . . , 3p orbitals plus an extra. s-type and an
extra p-type function, so that it has sufficient
variational freedom to accurately reproduce the
occupied states as mell as the lower conduction-
band states. The resulting LDS for these two
kinds of states are in good agreement mith exper-
iment. Qur calculation also gives the enex'gies of
the highex' conduction states, but they are of lower
accuracy. Because of the possibility of experi-
mentally probing the conduction states above the
vacuum level, it would be desirable to perfect the
J CAQ scheme for those high states. This ean be
done by supplementing the bRsls sets with several
sets of single Qaussians, since in the case of bulk
crystals accurate energies for the highly excited
states have been obtained by the single-Qaussian
technique. 33 For a 14-layer thin film, each single
Gaussian (including s and p type) gives rise to 56
basis functions. This puts a serious limit on the
number of single Qaussians that can be accommo-
dated. However, by orthogonalizing the 3s, 3p, s',
p', Rnd single-Qaussian Bloch sums to all the 1s,
2s, and 2p core Bloeh sums, the latter ean be de-
leted from the basis set. Using the orthogonaliza-
tion technique, it should be possible to handle a
basis set containing 3s, 3p, s', p', pt.us three or
four different single Gaussians (s and p type) with
a computer of very large core memory. Alterna-
tively the basis functions may be distributed dif-
ferently among different layers. For instance,
one may allocate more variatiorial freedom to the
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outer layers than to the interior layers or even
introduce floating sites outside the film.

The selection of the exchange parameter ot de-
serves some comments. Let us first review some
SCF electronic calculations for bulk crystals and
atoms in this regard. In a series of QPW studies
for Si and III-V compounds, "'~' band gaps derived
from n =1 are found to-be in good agreement with
experiments whereas n = 3 gives too small gaps.
(It is interesting to note"4' that if one adopts the
OAP approximation instead of going to self-con-
sistency, then u = —', gives better results than n = 1.)
Energies were expressed relative to the top of the
valence band (rather than to the vacuum level) in
those works. Qn the other hand, u = —', has been
used successfully for alkali metals, aluminum,
and transition elements. ~*' A slightly lower value
(n =0.64) was selected for iron. ' For free atoms
the combination of n in the range of 0.69 to O.VV

(depending on Z) with the Slater method of transi-
tion states works well for excitation and ioniza-
tion energies. ~~ In case the transition-state tech-
nique is not used, o. = 1 is preferable.

If we are mainly interested in the structure of
the valence and conduction bands, a =1 would be
the right choice. Indeed our calculated band gap
for bulk Si with n =1 (1.43 eV using the 13-function
set and 1.3V eV using an extended set), though
slightly higher than the experimental value, is
quite satisfactory. However, n =1 places the va-
lence band of the bulk crystal 1 eV too low relative
to the vacuum level (Sec. II). For bulk-crystal
studies energy-level differences rather than ab-
solute energies are of major concern, but the
vacuum level plays a much more important role
in surface problems. Since the valence-band
edges are only slightly distorted in going from the
bulk crystal to the surface case, the 1-eVdiscrep-
ancy for n = 1 would appear also in Si(l 11)Cl. This
not only suppresses the valence band but also may
alter the interaction between the surface and bulk
states. Consequently we select o. =0.9 for Si. As
to Cl we use atomic calculations as a guide. Since
our calculation for Si(ill)C1 is not of the transi-
tion-state type, n =1 is used for Cl in this paper.
As a test we have repeated the thin-film calcula-
tion keeping n = 0.9 for Si but changing n to 0.95
for Cl. The surfacelike eigenvalues derived from
the initial crystal potential (Sec. Ill 8) differ sub-

stantially from the corresponding ones with u(Cl)
=1.0, but as self-consistency is reached, the two
sets of energy spectra become more alike. The
two Cl-related peaks in the valence-band LDS,
for example, are at 10.9 and 13.3 eV for n(C1)
=0.95. Thus our approach is to choose the ex-
change parameter for the substrate by the crite-
rion of the vacuum level and use free-atom cal-
culations as a guide for selecting n for the adsor-
bate. The calculated energies of the substrate-
adsorbate system do not appear to depend very
sensitively on the n value of the adsorbate.

It is not necessary to confine oneself to the Xn
version of the statistical exchange approximation.
For example, the signer interpolation form is
used by A~lbaum and Hamaen. ""In a recent
paper cm the energy bands of ferromagnetic nickel
(bulk), Wang and Callaway explicitly introduced
some correlation effects by using the exchange-
correlation potential of von Barth and Hedin in
place of the Kohn-Sham-Gaspar exchange approx-
imation. 4 Undoubtedly the optimal value of n as
gauged by the vacuum level would vary depending
on the particular form of the exchange or ex-
change-correlation potential adopted. It would be
very desirable to.study how these various approx-
imations affect the vacuum-level energies of the
bulk crystal and the free-atom energies so as to
arrive at a more unified version of the exchange-
exchange-correlation potential.
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