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Thc bond-orbital model (BOM) and thc coherent-potentIal approximation (CPA) arc Used to study thc
valence-band structures of the III-V compound semiconductors Gap, GaAs, GaSb, Inp, InAs, and InSb and
their alloys. All the third-neighbor bond interactions are included, but the main outstanding defects in the
BOM found by previous authors remain. However, the model reproduces the major structure of the observed
densities of states. The BOM is especially convenient for alloys because it effectively isolates the important
disorder parameters and facibtates the execution of CPA. The model's parameters are deduced by fitting to
the photoelectric thresholds and x-ray photoemission spectra, We found that the most interesting CPA
results are not the densities of states usually studied. but are the more detailed band properties like energy
shifts, effective misses, alloy scattering, and optical-absorption-line broadening. This @ark provides a basic
understanding of the effect of alloy disorder on the nonlinear concentration dependence of the energy at the

top of the valence band and line broadening of the fundamental optical gap Eo.

I. INTRODUCTION

Because of the importance of semiconductors in
science and technology, there have been extensive
theoretical and experimental investigations of
their electronic structures. " Consequently, a
quantitative understanding of many important
parts of the band structures has been deduced.
However, the theory of the electronic structure of
disordered semiconductors and substitutional al-
loys is quite rudimentary by comparison. Yet
many modern devices function because of the

.special properties of these alloys, e.g., GaAsP
light emitters, QaAs-QaAlAs solar cells, HgCdTe
infrared detectors, etc. This motivated our in-
tex'est in applying a. more advanced alloy theory,
the coherent-potential approximation' ' (CPA), to
study the substitutional zinc-blende alloys. This
paper contains the results for the valence-band
structures of several III-V compound alloys. The
techniques used here are readily extended to the
conduction bands and to other alloys.

Two theoretical models which have been used
frequently to describe the electronic structure in
semiconductor alloys are the virtual-crystal ap-
proximation (VCA) and the semiempirical di-
electric model (DM) of Van Vechten and Berg-
stx'esser. ' Neither of these methods, including
perturbation-theory extensions, is sufficiently
genexal to account for the entire range of impor-
tant band properties that are measurable. On the
other hand, CPA is a xnethod that can do so. It is
a little surprising that since the pioneering work
on the SiQe alloy system by Stroud and Ehren-

reich, ' there has been no major effort to apply
CPA to these rather important semiconductor al-
loy systems. This may be partially a consequence
of the level of difficulty and the conclusions drawn
in their work. Since CPA calculations involve
complicated numerical Brillouin-zone (BZ) in-
tegrations, simplifying assumptions were needed
to make the calculation tractable. Furthermore,
their emphasis was on the alloy density of states,
and the potentials of Si and Ge do not differ by
enough so the CPA and VCA results have intex-
esting distinctions. However, there are larger
potential differences among the III-V and the. II-VI
compounds. Also, there are physical properties
of the systems that are fax more sensitive to alloy
disorder than the density of states, e.g., the
variation with alloy concentration of the band gap,
the effective mass, the mobility, etc. In addi-
tion to these factors, BZ integration methods have
been developed recently'0 that are simple and ac-
curate. Finally, since Stroud and Khrenreich
published their work, considerable px'ogress has
been made in the application of the CPA, parti-
cularly to metal alloys, "hydrides, "and phonon
spectra. " %e believe that CPA will prove to be
equally useful for semiconductor alloys, especi;
ally when it is applied to study properties which
are sensitive to disordex.

CPA has been shown to be the best possible
"single-site" approximation. 4' It not only yields
correct results for various limits, e.g., the low-
concentratlon~ weak- scattering~ and atomic
limits, but also produces semiquantitative an-
swers in the hxgh-concentration and strong-scat-
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tering regimes. The theory also permits a sys-
tematic extension beyond its single-site context
(i.e., the cluster CPA)." However, CPA is
easiest to implement when the disorder is local-
ized. In a substitutional semiconductor alloy like
Ga„ini,As, the cations (i.e., Ga and In) are ran-
domly distributed on one fcc sublattice and each
of them is bonded tetrahedrally to four As anions
on another fcc sublattice displaced by (-,', —,', —,')a
relative to the first. The length a is that of the
cube edge. Clearly, the most important aspect of
disorder in this alloy is the difference between
the GaAs and InAs bonds. This disorder can be
readily treated in CPA starting from a tight-
binding bond-based model referred to ag the "bond-
orbital model"" '"(BOM).

The BOM employed here is similar to that used
by many previous workers. "" The model re-
produces most of the features of the best empiri-
cal-pseudopotential band-structure calculations. '
However, some details are not given properly by
the versions of BOM tried to date. In order to
examine. the possibility of correcting some of the
defects noted by previous workers, we have
studied the role of the interaction between third-
nearest bonds. We shall demonstrate that these
higher-order matrix elements do not improve the
situation. In particular, even with these inter-
actions included, there is still no dispersion of
the bands along the Z axis.

The main advantage of the BOM over othertight-
binding basis sets is that its matrix elements of
the Hamiltonian divide naturally into large dia-
gonal terms and smaller off-diagonal. terms. This
facilitates approximations and allows identifica-
tion of the important terms. To gain some insight
into the variation of the BOM parameters from
one material to another, we parametrize them
for six III-V compounds in three different ways.
We found that the large diagonal bond energies
have moderately large systematic variations from
one compound to another for all three fitting meth-
ods. However, the smaller off-diagonal matrix
elements varied by much smaller amounts and the
changes are not systematic. Consequently, the
off-diagonal elements are treated in VCA, while
CPA is reserved for the diagonal elements. This
simplifies the analysis greatly. This study also
emphasizes the need to determine the parameters
from a common experimental source. For this
purpose, our BOM parameters were finally deter-
mined by fitting the broadened~ density of states to
the x-ray valence-band spectra measured by
Ley et al. '

When disorder in the bond energies is treated
in CPA and other parameters are assigned ac-
cording to VCA, the 4&4 matrix equation for the

CPA self-energy reduces to a scalar equation.
The only Brillouin™zone integration arises in the
calculation of the VCA Green's function. A
straightforward iteration procedure" leads to a
rapidly converging solution. Similar to the pre-
vious CPA result for the SiGe alloy, ' our result"
for the III-V compound alloys shows that the CPA
density of states merely represents an uninterest-
ing smoothing of the VCA result even for the
strongest-scattering case among the six alloys
studied. The smoothing is characterized as un-
interesting because its effects lie just outside the
resolution limits of current experiments. As the
experiments improve, this extra smoothing could
become interesting. However, as noted above,
CPA results that can be compared against experi-
ments do arise. One interesting example is the
concentration variation of the energy levels. CPA
predicts a positive bowing parameter for the
fundamental gap E,." The CPA calculation also
predicts that the broadening of the levels at the
top of the valence band will be quite small, which
again is consistent with the lack of alloy broad-
ening in the observed ED spectra. "'" These re-
sults help to resolve some questions about the ef-
fect of disorder on the gap variation in semicon-
ductor alloys. "

The rest of the paper is arranged in the following
order. In Sec. II, the BOM is defined, including
the expressions for the matrix elements and the
band energies along the symmetry axis. In Sec.
III, the procedures for determining the BOM
parameters and the effects of truncation are dis-
cussed. In Sec. IV, a comparative study of the
BOM parameters determined from three differ-
ent experiments is made, and the best of these,
a fit of the broadened QOM density of states to
the x-ray valence-band spectra for six III-V com-
pounds, is presented in detail. The combined
CPA-BOM calculation is formulated in Sec. V.
The results for the III-V compound alloys are
presented and discussed in Sec. VI. The conclu-
sions are summarized in Sec. VIII, and exten-
sions to this project are suggested.

II. BOND-ORBITAL MODEL

A semiconductor with a zinc-blende structure
such as GaAs consists of two sublattices, the
anion (i.e., As) and the cation (Ga) sublattices,
which are displaced from each other by a vector
r=( —,', —,', —,')a, where a is the lattice constant. Con-
sequently, each anion in the crystal is surrounded
by a tetrahedral arrangement of four cations and
vice versa. A schematic picture of a flattened
network of the structure is shown in Fig. 1. The
recent work by Harrison and his co-workers"
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a {o,o, o)

b ( I/O, I/O, I/O)

c (I/2, I/2, 0 )

d (I/O, 5/4, - I/O)

e (0, I/2, - I/2)

f (- I/O, I/4, -l/4)

g (5/4, 5/4, I/O)

h (I/2, I, I/2)

(-It+, Zta, - S/~)
f

7 I (I/e, I/e, I/e)

72 (-I/e, - I/e, I/e)

7& (-Ite, Ite, -Ite)

7q {Ite,-I/e, -Ite)

I IG. l. Schematic flattened diagram for zinc-blende crystals. The +pen circles represent the anions and the dots
represent the cations, Each atom is surrounded by four bonds. The centers of the bonds are specified by four vectors
Tj,, 72, 73, and ~4 from each anion. The location of the atoms in the diagram are labeled with lower-case letters. The
coordinates and the vectors are in units of the. lattice constant a. The interactions between bonds are also indicated in
the diagram.

has demonstrated that the systematics af the
bonding and various physical properties ean be
reasonably described by a simple molecular
model referred to a,s the "bond-oxbital model. "
In this model, the basis functions are centered on
bonds connecting each anion and the nearest ca-
tions. These basis functions are constructed from
the combination of the sP' hybrides of the two
atoms adjacent to the bond that diagonalize the
local Hamiltonian. '~ This construction results in
bonding and antibonding orbitals. In the bond-
orbital approximation for the valence bands, the
antibonding states are discarded, and Bloch states
are formed from linear combinations of the
bonding states only. The earlier work by Stoker, "
and the more recent studies by Shevchik, Tejida,
'and Cardona, ' and by Pantelides and Harrisonle
yroduced BOM px'edictions for most of the in-
'teresting semiconductor electronic properties
'including the density. of states, ' the expressions
for the various matrix elements, and the
band energies. While the bands agree with

.other results in many important structures,
'there are some defects associated with the
'model. The most noticeable defects, which
directly affect the density of states, are a mis-
singdipintheupper Z, band and the lack of dis-
persion for the bands along the Z axis."'""

Based on the I esults of the tight-blndlng band
structures by, Chadi and Cohen, "Pantelides"
speculated that these defects were caused by the
omission of the anion-anion interaction in the
BOM calculations. As a consequence, we have in-
cluded all the third-nearest-neighbor bond inter-
actions to see if these extra matrix elements
would lead to a better starting point for the alloy
study. Since the effects of these matrix elements
have not been discussed in the literature and
since they will be used later in the alloy study, we
shall next treat them explicitly.

We begin by establishing the BOM basis set and
our notation. We use one of the fcc sublattices
(for definiteness the anion sublattice) as the refer-
ence lattice in which each lattice point is repre-
sented by a lattice vector ~. Then each point ] is
surrounded by four bond orbitals () I n)j centered
at the four displacements I + v.„(a= I, 2, 3, 4), where
Tq = (k k k)& &2 = (-k —k k)+ Tq = (-k k -k)&
7~=(-,', --„', -k)a (see Fig. I). Here we assume that
the orbitals ((j o)) are Wannier-type orbitals so
they are orthonormal (Io g'a') = 6y;- 5„„.In fact,
the bond oxbitals are not orthogonal, but most of
the effect of nonorthogonality can be absorbed in-
to the parametrizations. " When expanded in terms
of the bond basis set ((I', n)J, the BOM Hamiltonian
takes the form
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Ho = 2 I j~&&)~IHoli'o. '&&)'~'I I'i = D+ 6D2+ 6D3 + 6y si + 12y2 + 42y 3,
XS=D 2D2 2Ds 2y i+4y2+ 2y s

(Sb)

(3c)
If the bond-to-bond transition interactions are

truncated at the third nearest-neighbor bonds,
there are eight distinct interactiohs (ln~ Hog'a')
which are defined below (also see Fig. I):

D: (the bond energy) (j~ ~ H, gn&
y", : the matrix elements between adjacent bonds

with an anion ln commonq
yc. the matrix element between adjacent bonds
'th. -t'-'. --",
D, : thy matrix element between parallel second-

nearest bonds, i.e. , (/+~Ho(5n& with [j~ =a/W2,
y, '. the matrix element between nonparallel

second-nearest bonds,
D, : the matrix element between parallel third-

nearest bonds,
y,"'. matrix elements between nonparallel third-

nearest bonds with the closer ends adjacent to
anions,

y~c matrix elements betwee~ nonparallel thi
nearest bonds with the closer ends adjacent to
cations.
For later convenience, we further define the sym-
metric matrix elements

y'x= 2(y", +-y i) and y;-=l(y,"+y', ),
and the antisymmetric ones

y; = 2(y,"-y;) and y:=-k(y,"-y.')
The corresponding Bloch basis functions can be

constructed from the bond orbitals by

1k~&-=Q """""'If~),

where N is the total number of anions or cations
in the crystal and k is a wave vector in the
Brillouin zone. These Bloch functions are also
orthonorrnal, i.e. , ( kn [

k' n'& = 6„k 6~„., but they
are not the eigenfunctions of JI,. The matrix ele-
ments of Ho in terms of these Bloch basis func-
tions are related to the interbond interactions by
the expression

(k~~ H
~

k/~l& 6 e A (\+1(y 7'~t)

( xijoHi nO'& .
The explicit expressions, with the full third-
nearest bond interactions included, for these ma-
trix elements and for the band energies along the
6 and A axes are given in Appendix A. Prom these
expressions we can write the energies at the sym-
metry points I', X, and J. These energies are:

F„=D+6m, +6D, 2y', —4y, —14y', (Sa)
which is threefold degenerate,

which is twofold degenerate,

X =0 —2D —2D +2y'-4y
—2y ', v 2 (2y,'+ Gy,'),
D + 283 —.2D3- 2y i + 2y ~

which is twofold degenerate

(Sd)

(Se)

III. PARAMETRIZATION OF THE INTERACTIONS

AND THE EFFECT OF TRUNCATION

As studies on metals" and semiconductors have
shown, the only practical means for obtaining
quantitatively accurate band structures is to in-
corporate some experimental data into the calcula-
tion. This is especially true in these alloy
studies where the objective is a practical theory
to correlate with a, wide range of experiments.
Thus, we shall also adopt the empirical para-
metrization approach. To facilitate the paramet-
rizations, it is convenient to express the BQM
matrix elements in terms of the following en-
ergy separations:

Dm-y2 = g (L~ —X~)= 6~,

y, —2y2 —y3 = 8 (X~+X~ —2XS) —= 62,

D, D, —y', + y', = —g(2I ~
—I, —I,) =—6, ,

D, +D, —y, —3y', = 8(I'» -X,)=—6, ,

y', + 2y, + Vy,' = 8 (I",—I'„)-=6„
y,'+3y', = 8(X„-X,)-=6, ,

I

[(2D, —2D, + y, —y', )'+ 3(y', —y,')']"

(4a)

(4b)

(4c)

(4d)

(4e)

(«)

=!(I-, -I,)
-=6, . (4g)

Note that except for D, which measures the center
of gravity of the bands, all seven of the other
parameters needed for the band structures are
contained in the above equations. The determina-

L, =D —2D +2D +2y' —2y

~ 2H». 2D-. y; y.'-)'+ 3(y; y:-)'P'

(Sf)

%e note that, besides having more terms, the
above expressions differ in another way from the
corresponding equations in the previous work. "
Usually, the top of the valence band (i.e., I'»)
was used as the reference level, i.e. , I'» =0.
This choice is, of course, not suitable for the al-
loy problem since the I » level varies from com-
pound to compound. Thus, the parameters and
the energies that we have discussed so far a,re all
referred to the vacuum level.
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FIG. 2. Comparison of the bands calculated without
third-neighboring interactions (the sobd curves) and
those found including D

& (the dashed curve).

tion of D will be discussed later.
It should be mentioned that in order to produce

dispersion of the 4, bands and of the As bands
(see Fig. 2}, at least the second-nearestbond
paraIQeters D, and y, have to be included. "'"
The nuIQerlcal results of Pantelldes and HaI'x'i-
son'6 mere based on the truncation in which D,
= y', =y,'= 0. Then, the above equations yield the
foux' parameters

plus two sum rules 5, =5, and 5, —35~-4(5, —5,)
=0. ff D, is added, y'„y'„and y, are still. given by
Eqs. (5a)-(5C), respeciively, but D, and D, be-
come

Fig. 2) in the BOM band structures have been
pointed out by previous workers: (a) the top bands
at I" are too flat" (have effective masses at I'„
that are too large), (b) compared to more elabor-
ate calculations the dip in the upper ZI band (the
second band from the top along th'e K direction)
is not deep enough, '""and (c) more striking,
there is no dispersion along the Z direction (from
X to W) ""' From Fig 2 it is evident that the
inclusion of D, does not correct these defects.
However, Ds does help to pin down the I 3 level.

The next question is whether the inclusion of
y,' and y,' would impI ove the situation. Note first
that not all seven equations in Eqs. (1) are inde-
pendent. The sum rule in Eq. (t) still holds even
when y3' and y,' are included. This means that the
whole set of parameters cannot be determined with-
out additional information. However, we can un-
ders'tand the effects of these parameters without
actually carrying out the parametrization. First,
exaIQlne th6 effective masses. The dlspeI'sion fox'

the A, band has the general form [see Eq. (Al)
in Appendix A] A+ 8 cos2x, and the A, band has
the fol"111~ +@ cos4x [Eq. (A2)]. Tllls I116RIIS tilRt
the coefficients A., B, A', and B' and, thus, the ef-
fective masses at I'» are fixed once the two ends
of the bands are fitted. Hence, no improvement
in the effective masses is possible within the con-
text of- the present model. Also, the bands along
the Z axis remain flat even when y~ and y,' are in-
cluded. An analytic proof of this result is given in

Appendix B. Numerical experiments, with the ex-
pl'6ssloll yI/y~ = y3/y~ used to close tile 86't of eqUR-

tlons~ show that the dip ln the Z~ dlx'6ctlon ls not
affected much by y,', y,'. These results show that
the inclusion of y,' and j, do not help to cox'rect
the ren1aining defects of the BOM. Therefore, in
the rest of this work, we shall use the BOM with

y,'= y,'=0 but with all the other parameters defined
in Sec. I included.

4g, —36, -46, -4~, + 6, =0.
The four parameters in Eqs. (5R)-(5d) only de-

termine the energy levels I'»X5, XS,X, wit»e-
spect to the I'» level. The addition of the D,
parameter also fixes the I, level. Figure 2 shows
a, compaI'ison between the bands resulting from
these two different pI'ocedures, the first includes
D, (the dashed curves) and the other (the solid
cul'ves) 11Rs Dq = 0. T116 bands Rlong ills (100) axis
(i.e. , the & axis) derived from both procedures
a.re identical, but those going fI'oxn I' in other di-
rections ax'e different, particularly those along
the A direction. Three outstanding defects (see

Now that the model is established, we can obtain
the parameters from any set of band energies by
using the algebraic equations (5R)-{6b). A sys-
tematic parametrization has been carried out for
six III-V compounds: GaP, GaAs, GaSb, InP,
InAs, and InSb. Three sets of band structure re-
8U1'ts wel'6 8'tlldled. They Rl'6 (l) tile 110IllocR1

pseudopotential calculation by Chelikow sky and
Cohen, ' (ii} the valence-band energies determined
from the x-ray photoemission work by I.ey et
al. ,

I9 and (iii) the band energies derived from the
uv photoemission spectra by Eastman eg a$. '
Table 1 lists the input energies (relative to F„)
and the corresponding parameters except for D,



VA I, ENCE-BAND STRUCTURES OF III-V COMPOUNDS AND. . .

TABLE I. Input band energies (in eV%'1th respect to I )5) and the parameters based on Egs.
(5a) to (61). The labels (b), (c)„and (d) refer to the input energies, Hefs. 2, 19, and 28, re-
spectively.

GaI (b) -13.O -2.V -V.l
(c) -13.2 -2,7 -6,9
(d) -11.8 -2.7' -6.9

-9.5
-9.6
-9.7

-1.1 0.3437 -0.0625 -1.5125 -0.3000 -0.0563
-1;2 0.3094 -0.0375 -1.5187 ' -0,3375 -0.0656
-0.8 0.4562 -0.1375 -1.4375 -0.3500 -0.0188

GaAs (b) -12,1 -2.9 -6.9 -9.9 -1.3 0.3656 -0.0375 -1.4437 -0.3750 -0.0344
(c) -13.8 -2.5 -V.l -10.V -1.4 0.243V O.O3V5 -1.6625 -O.4500 -0.0313
(d) -12.9 -2.9 -6.9 -10.0 -0.8 0.4687 -0.1625 -1.5000 -0.3875 -0.0563

GaSb (b) -12.O -2.5
(e) -11.6 -2.7

-6.8 -9.3 -1.2 0.2969 -0.0125 -1,4437 -0.3125 -0.0219
-6.9 -9.4 -1.3 0.3281 -0.0125 -1.4062 -0.3125 -0.0219

InP (b) -11,3 -2.0
(c) -11,0 -2.0

InAs (b) -12.5 -2.2
(o) -12.3 -2.4

-5,9
-5.9
-6.4 -10.0
-6.3 -9.8

-0,9 0.2562 -0.0250 -1.3750 -0.3625 -0.0187
-1.0 0.2437 0.0 -1.3625 -0.3750 -0.0063

-0.9 0.3094 -0.0500 -1.5312 -0.4500 -0.0156
-0.9 0.3437 -0.0750 -1.4750 -0.4375 -0.0313

InSb (b) -11.3 -1.9
(c) -11.7 -2.4
{d) -11.2 -1.9

These numbers vmre
those in (b).

~6 0

-6.5

-8.8
-9'.5
-9.0

-0.8 0.2656 -0.0375 -1.3937 -0.3500 -0.0094
-1.4 0.2313 0.0500 -1.4250 -0.3870 -0.0187
-1.05 0.2281 0.0250 -1.4312 -0.3125 0.0156

not available from the original source. %'e used the same values as

[The values for D —I'» can be obtained from Elf.
(9)]. Several general results can be observed.

(i) Tile size of tile matrix ele111611'ts fol' R glvell
compound decreases very rapidly as the separation
between the connected bonds increases. For
example, Ds ls about oQ6 order of magQitude smal-
ler than D, and y, is only about 1% to 3% of y', .

(il) The VR1'IR'tlo11 of the 11101'6 inlpol'tRn't lRI'gel'

hopping matrix elements D„y'„and y', from one
con1pound to RQother ls fRll ly sn1all and Qot, very
8ystematlc~

(iii) The variation of these parameters for the
same coIDpound uslQg different 8ets of band-struc-
ture data is at least as large as that between dif-
ferent compounds.

(iv) The smaller parameters y, and D, seem to
vary in a, random fashion. These observations not
only provide some justification for using the CPA
alloy model to be discussed later but also indicate
the impoxtance of determining the pa, rameters
for alloy calculations by fitting to a consistent
data set.

The experimental data, of Ley et a$.'9 furnish a
suitably consistent starting point. Their data
include all six of the Ga and In compounds treated
here. However, if we simply start from the sym-
metry point energies given in their Table I, the
resulting BOM densities of states do not fit their
major peaks. This occurs because their energies
were based on a. fit to a more sophisticated band
structure. Consequently, we have refit directly
to their data by adjusting the parameters so that

the peaks of the calculated bxoadened density of
8tRtes agree with the posltlons of the experimental
peRks.

The density of states can be calculated efficient-
1y by using a simple Brillouin-zone integration
method recently developed by one of us. ' The un-
broadened densities of states p, (E) for the six
compounds studied are given by the short dashed
curves in Figs. 3(R)-3(f), while the broadened
p(E) are given by the solid curves. The broaden-
ing was carried out by a convolution of p, (E) with
a Lorentzian of width I'(E):

A linearly varying l"(E) was used which starts
with a value of 0.35 eV at the highest energy and
ends with a value of 0.5 6V at the lowest energy
shown in the figures. Also in Figs. 3(a)-3(f), the
experimental spectra by Ley et al. , the long dashed
cul"ves, Rre shown for compRrlson. The peak posi-
tions are accurately reproduced; the line shapes
for the lower two peaks are also approximately
cox rect, but the distinct low-energy shouldex'8 in
the experimental curves on the top peaks are mis-
sing in the theoretical curves because of the de-
fects of BOM mentioned earlier.

The energies at I', X, and I, and the corre.-
sponding bond parameters are tabulated in Table
Q. Most of these values are close to the corre-
sponding va1ues in Tab1e I, but there are some
differences. The parameters in TaMe 0 will be
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FIG. 3. CompRllson of the broRdened theoretical dGQsig of stRtes (the solid CUrves) Rnd the experimental x-ray
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used later in the alloy study.
Finally, we turn to the question of determining

the bond-energy parameter D From Eq.s. (Sa)-
(31), the difference D- I'» can be shown to depend
only on symmetry-point energy separations,

D —I'~6 =
~~ (X~ +X~ -2X~)

and is independent of the truncations discussed in
Sec. III. Thus, B can be determined empirically
using the band energies in Table II and the experi-
mental values of the photoelectric thresholds. The
values of B—I'» are listed in Table III along with
the thresholds measured by Shevchik et aE.' and
the values of D. The thresholds used here agree
with previous measurements to within 0.05 eV.
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TABLE II. Band energies (in eV) with respect to the top of the valence band and the intra-
bond matrix elements (also in eV) corresponding to the fitted valence-band densities of states
shorn in Figs. 3(a)-3(f).

GaSb

-12.8
-3.5
-6.7
-9.3
-1.5

7'0 3

-10.2

10.7

-2.0
-7.0

-11.6

-11.1

-6.2
-9.2

1y 3

-6.7
-9.7

-11.1
2 ~ 7

-6.0
-9.3
-1.5

-9.9

-12.2
-2.8
-5.8
-9.9
-1.0
-6.5

-10.5

-11,7
-2.9
-6.3

94
-1.5
-6 0

-10.1

0.3812

-0.0625

-1.3625

-0,3250

-0.1188

0.3406

0.0250

-1.5187

-0.4250

-0.1094

0.3906

-0.0625

-1.2687

-0.3750

-0.0594

0.2625

0.0375

-1.3125

-0.4125

-0.0375

0.3844

-0.0100

-1.3937

-0.5125

-0.0656

0.2937

0.0125

-1.3500

-0.3875

-0.0563

We see that the energy differences among the D
values are large compared to those among the
parameters in Table II. Vfe note that a measure
of the alloy scattering strength is the ratio of
difference between the interaction parameters of
the constituent compounds to the average band-
width (which is of order of 10 eV in our case). If
these numbers are very small, VCA is a good
approximation. The above results show that the
diagonal bond energies B are the only ones for
which CPA mill differ appreciably from VCA.

V. ALLOY MODEL

In this section, we shall define the BGM Hamil-
tonian for the III-V compound alloys and develop
the necessary CPA formalism. The numerical
methods required to implement evaluations of the
CPA equation mill also be discussed. The nu-
merical results obtained in the previous section
will guide our definition of the alloy model. Be-
cause the parameters in Table I do not vary sys-
tematically, and the uncertainties in the para-

Ii„„,=II+ V;, (10)

meters are as large as the variations among the
different compounds, it would be inappropriate in
this early stage of the development to attempt
to treat these parameters beyond the virtual-
crystal approximation. However, as noted before,
the differences between these parameters for
any tmo compounds is small compared to the band-
midths, so VCA is a good first approximation in
any ease. There is still another reason for this
choice. The present model, on one hand, properly
treats the major effects, yet remains simple
enough to be handled efficiently. The parameters
in Tables I and II are off-diagonal in the bond basis
and the treatment of this kind of off-diagonal
randomness" "mould involve considerable extra
complications.

Gn the other hand, the bond-diagonal parameter
7) has a larger variation from one compound to an
other and the procedure for obtaining this para-
meter [see Eq. (9) and Table 111] is well defined.
Thus, our alloy Hamiltonian takes the form

TABLE III. Values of D- I &5 from Eq. (9), the photoelectric thresholds from Hef. 29 and
the resulting bond energies (all in eV) for six III-V compounds.

GaSb

D- I"~5

threshold s
D

-5.1125 -5.6687 -4.7437
5.7 5.5 4.9

-10.8125 -11.1687 -9.6437

-4.5750 -4.7562 -4.7625
5.7 5.3 4.8

-10.2750 -10.0562 -9.5625
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H, ff =H+ Q ZT (12)

with the self-energy ZT satisfying the self-con-
sistent condition (t~) =0, where the atomic t
matrix is

f, = (V~ ZT)[1-—G.—«(V~ —ZT)) '. (13)

We can understand the more detailed structure
of Eq. (13) by thinking of the operators as matrices
in the basis set (I 1 o, )j. The self-energy is block
diagonal with each block identified by a j. More-
over, each block ha.s the identical 4x4 matrix
structure

where H is the BOM Hamiltonian in VCA, and the
indices j are the lattice vectors that locate the
substitutional atoms on their sublattiee sites. We
shall refer to these randomly distributed atoms
on one sublattice as A and B with fractional con-
centrations x and 1 —x, respectively. The random
potential can then be written

4

&,
-=Q I in&(D; —D)()o'I, (11)

C= 1

where DT takes the value D„ if an A atom is located
at j, and DI, if a B atom is at 3, and IT is the VCA
bond energy pa, rameter in H.

In the CPA formalism, the configuration-aver-
aged one-electron Green's function (G(z)) is re-
placed by an effective Green's function G,ff

(z H ff ), where the effective Hamiltonian has
the form

Z)= ]Q 0' ]A (18)

This result can also be obtained if one assumes
that each bond is an independent scattering center
and the "single-bond" CPA is applied to our mod-
el. We shall adopt Eq. (18) for our later discus-
sion.

A consequence of Eq. (18) is a tremendous re-
duction of the formidable BZ integrations. Eq.
(15) now reduces to a scalar equation

atoms are anions or cations.
The numerical solution for X and o in Eq. (15)

encounters the BZ integrations [Eq. (16)], which
for an extensive study is quite costly to compute
even though we are equipped with a powerful BZ
method. ' However, the effect of a nonvanishing A.

is to modify the effective hopping among bonds
adjacent to the random sites. From the numeri-
cal results of Sec. IV, we have just concluded that
at this stage, we should not treat these interac-
tions beyond VCA. Furthermore, the size of A. is
only a small fraction of o because

I X/«I is scaled
by the ratio IF JE„zI which is small. This can
be understood from Eq. (16) where the phase factor
exp[ik ~ (v —7z)] for o. vP will result in some
cancellation in the BZ integrations. Numerical
evidence supporting this argument can be found in
the work of Wolfram and Callaway'4 for simple-
cubic crystals. Thus we expect that to the same
level of approximation as our alloy. model [Eq.
10] we can take

« = -(D„-D o)f(z -o)(D,-D o), --
where

(19)

f (z —«) =-
& i ~l G.«I i ~&

Thus, in the matrix representation, Eq. (13),can
be cast into the form

Z = —[(D„—D)l '- Z] ~ F. ~ [(Dz —D)1 —7],
where F has the matrix elements

jn G ff ja
4 a=a

4N 3& Geff j&
] C(

1
TrQeff

&.z(z) =-&i o IG.«I SP) = —Q e'""
k

xg„z(k, z), (16)
1

4N

1

„g z-o —~.(k)

(
0 1 3 1

N (2«)' ~ ss . z-o —e„(k)

with

gggg(ky z) [z Heff (k)] 8 (17)

The matrix element [H,«(k)] is similar to H„8(k)
defined in Appendix A except that D is replaced
by D+ 0' and either y ~ is replaced by y,"+ X or
y', by y', +A. depending on whether the random

1 " 1
d&

41T ~ z —0' -E'

(20)

n 1
d'k6(e —e„(k))

1 p(e)
4 z-a-e
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and p(e) is the VCA density of states per unit cell.
Thus, the CPA equation. becomes very easy to
evaluate once p(e) is calculated. The iteration
procedure" based on the average-t-matrix (ATA)
equation will be used to solve Eq. (19).

Before discussing the numerical results, we
should point out that-the parameters in the VCA
H can have different forms depending on which
averaging procedure is used. '" The simplest
procedure ls a stralghtforw'ard average& l.e. ~ H
=xa~+yH~, of the two Hamiltonians for the pure
constituent compounds. This averaging procedure
yields band energies with a linear concentration
dependence. However, more elaborate averaging
procedures could be adopted. These procedures
are intended to account for renormalization of
the potentials in the alloy that occur because of
charge shifts in the disordered system and changes
in the lattice parameter. These effects will in-
troduce nonlinear concentration dependences'"
into the energies even in VCA. The matrix ele-
ments probably will not be just simple mean values
or even quantities rigidly scaled by a simple pow-
er law of the lattice spacing. " A more sophisti-
cated averaging procedure may have to be con-
sidered to complete the analysis. However, since
our primary goal at this stage of the alloy w'ork

is to examine the nonlinear modifications to VCA
introduced by CPA, we shall adopt the simple
avera, ging procedure for IY.

VI. NUMERICAL RESULTS FOR THE ALLOYS

The CPA and VCA calculations have been car-
ried out for the six III-V compound alloys listed
in Table IV in the manner described in Sec. V.
The table also contains the scattering strength,
5 —=D„-D~, for each alloy. As we are most in-
terested in the difference between the CPA and
the VCA results, we shall examine in detail the
results for the alloy Ga In, As which has the
largest l5l and, for comparison, another alloy
InAs„gb, „with a smaller I5I. The results for
the other alloys will be presented as needed.

TABLE IV. Semiconductor alloy systems A„B& „
studied in this work. The scattering strengths & are in
eV.

~ =D~-Dg

0.3562
0.5375

-1.1125
-0.0812
-0.2188
-0.4937

C)
)—

(h
O
Q

2-

Ga0~ I A
l

I

Ii

I)

II

-l6 -I4 -l2 -IG -8 -6 -4 -2 0
ENERGY (ev)

FIG. 4. Comparison between the densities of states
resulting from VCA (the dashed curve) and CPA (the
solid curve) for the Gao 5Ino SAs alloy.

Figure 4 compares the CPA (the solid curves)
and the VCA (the dashed curves) densities of states
p for the alloy Gap SInp 5AS The CPA density of
states merely represents a smeared version of
that from VCA. The difference would be unde-
tectable if both were broadened following the pro-
cedure used to compare the pure crystal densities
to experiment in Figs. 3(a)-3(f). While they are
not shown here, the p of Ga„In, „As for x=0.1, 0.3,
0.5, 0.7, and 0.9 have also been studied. In no
cases did we find any unusual structures such as
virtual bound states or impurity bands. The CPA
density of states is even closer to the VCA result
for the other alloys listed in TaMe IV because
the scattering strengths in these cases are small-
er. Until experimental resolutions are improved,
it is clear that VCA and CPA are equally good for
describing broadened spectra. , like the photoemis-
sion energy distribution curves.

However, as mentioned before, there are more
detailed features of the C PA results which are
more interesting and can be tested by experiment.
Below we shall examine the energy-level shifts,
the related effective masses, and the scattering
lifetimes. We have shown that these results pro-
vide a fundamental understanding" of the concen-
tration variation of the Ep gap and 'the lack of
broadening in the measured Ep spectra. "' ' "
Since the basis for discussing these quantities
are the self-energies o(E+i0)—= q(E) —iy(E) and
the function E(E + i0) = 4f(Z+ i0) =ReE —i-wp(Z),
where f is defined in Eq. (20) and p(Z) is the CPA
density of states. We plot 0 and E in Figs. 5 and
6, respectively, for Ga„In, „As and InAs„Sb, „
with x=0.1, 0.3, 0.5, O. V, and 0.9.

Since the magnitude of y, even in the strongest-
scattering case Ga„In, „As, is small compared to
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As mentioned before, our VCA energies are
linear functions of g. The CPA energies are seen
to deviate from the linear x dependence, but these
deviations are different for different levels. %e
notethatthe solutionto Eq. (21) with e„(k) =e,„,
at the top of the VCA valence band yields the con-
centration dependence of the photoelectric thresh-
old. This along with the variation of the E, gap
has bein discussed in detail elsewhere. "

Before passing onto other matters, we note that
the variation of the effective mass at the va, lence-
band edge is also easily determined from q(E)
Since our present empirical BOM band structure
predicts effective mRsses thRt Rl e too larger R

detailed analysis of the variation m~ with concen-
tration is unwarranted. However, it is interesting
nonetheless to examine hoer such an analysis pro-
ceeds and at least look at the trends it produces.
The effective mass mv*c„at the top of the VCA
bands along a, given direction relates the energy
variation, 5c„ to an infinitesimal 5k in that direction
by 5e„=-)j'5)t'/2mvt'c„. The corresponding 5E at
the top energy E in CPA using Eq. (21) becomes
5E = fj 5k /f (1 —dj)/dE)jjjvgq wh1ch llllplles 'tile

the bandwidth, the usual relation among the CPA
band energies E, the VCA band energies e„(k), and
the real part of the self-energy I)(E) is valid,

E —e„(k) —q(E) =0. (213

Figure 7 shows a, comparison between the VCA
bands (the solid curves} and the CPA bands (the

dashed curves) for the x=0.5 alloy. More Iluan-
titative examples of the energy changes are shown

in Table V, where both the CPA and the VCA band

energies at I', X, and L for Ga„In, „As for five
concentrations are listed. A general pattern can
be observed: the higher energies of a subband
are shifted upward while the lower energies move
downward. This ia a general feature of the CPA
solution. This feature is clearly borne out in Fig.
5(a) where for, each concentration the real part
of o, q =—Res, is positive at the top of the band
and negative at the lower end arid varies in a,

systematic fashion in between. The energy shifts
for the other alloys (e.g., see Fig 6for.
InAs, Sb, „) studied are jlualitatively similar but
are quantitatively smaller because they have
smaller scattering strengths 5.

FIG. 5. Heal part q (the solid curves) and the imaginary part y (the dashed curves) of (a) the self-energy and g)
the F function defined in the text (HeF solid curve, -Imr =&p dashed curve} as a function of energy, for Ga„In& „As,
with concentrations x=0.1, 0.8, 0.5, 0.7, and 0.9. The zero of the abscissa is the energy at the top of the valence
band of InAs.
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FIG. 6. Heal part q (the solid curves) and the imaginary part p (the dashed curves) of (a) the self-energy and (b) the
E functiondefined in the text (BeFsolid curve, -ImF =rp dashed curve) as afunctionof energy for InAs„Sb& „with concen-
trations ~ =p.]., p.3, p.5, p.7, and p.9. The zero of the abscissa is the energy at the top of the valence band of Insb.

relation between the two masses:

m+ =m+ j. -—~
CPA VCA (22)

where mv4c„= [ (x/m„*) +(y/mII)j '. Thus, the quan-
tity dq/dE mea-sures the differential ratio (m4 „
—mv4 „)/m„*«, which from the numerical output
is always positive at the I'» point for Ga Ing As
alloys with va.luce ranging from 1% to 5Vo. How-

ever, from the shape of the I) curves in Fig. 5(a)
just below the top of the valence band, it is evident
that dt)/dE changes sign from x=0.1 to g=0.9.
From the slopes of the straight-line portions of

q one finds dII/dE =0.01-, 0.02, 0.05, 0.005, and
-0.005, respectively, for x=0.1, 0.3, 0.5, 0.7,
and 0.9. This behavior will influence hot-hole
phenomena slightly. It is evident from Fig. 7,
that for the Ga, ,In, ,As alloy, mcPA is larger than
m* „, since the CPA bands have a lower curvature
at the I'» point than the VCA bands.

As mentioned earlier, the alloy broadening y
is sensitive to energy (see Figs. 5 and 6). Table
VI lists the y values at the same energies listed
in Table V for five Ga„In, „As alloys. One inter-
esting point to note is that y for the I"» levels are

I

s InosAs

-4

LLI -6

C9

LLIz -8
IJJ

-IO-

-l2

-14

L

k (2'/a)
K, U X

FIG. 7. Comparison of the band structures of
Gao &Ino &As calculated from VCA (the solid curves)
and from CPA (the dashed curves) as given by Eq. (21).

quite small, consistent with the experimental find-
ing" " '8 that alloying has very little effect on
the broadening of the F.0 spectra. Previously,
this lack of alloy broadening has been used as
evidence against the existence of any alloy dis-
order" contribution to the observed nonlinear
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TABLE V. Comparison between the CPA valence-band energies (the g defined in Kq. 21)
and the corresponding VCA values at the symmetry points for five Ga„In& „As alloys. The
first number for each state is the CPA result and the second number is the VCA result. All
the energies are in eV with respect to the top of the valence band (F&5) of the pure InAs com-
pound.

Concentration (x} 0.5 0.7 0.9

X,

0.007
-0.020

-12.443
-12.389
-2.913
-2.920
-5.939
-5.970
-9.956

-10.000
-1,072
-1.3.62
-6.676
-6.632

-10.590
-10.598

0.034
-0.060

-12.865
-12.769

30235
-3.166
-6.397
-6.33.0

-10.117
-10.200
-1.274
-1.360
-6.896
-6.793

-10.863
-10.847

0.021
-0.100

-13.239
-13.100
-3.514
-3.400
-6.816
-6.650

-10.290
-10.400
-1.460
-1.600
-7.075
-6.934
11.159
114 113

-0.024
-0.140

-13.597
-13.530
-3.744
-3.640
-7.116
-6.990

-10.504
-10.600
-1.751
-1.840
-7.178
-7.065

-11.447
-11.395

-0.121
-0.180

-13.935
—13.910
-3.925
-3.880
-7.375
-7.330

-10.760
-10.800
-2.084
-1.080

7 ~ 221
7.179

-11.716
-11.691

concentration dependence of E,. These results
demonstrate that such an argument is unjustified.

While even the largest width y at the I'» point
is small compared to the resolution of optical ex-
periments (including modulation spectroscopy) it
does reach a value of y =0.008 eV for the

Gao, Ino, As alloy. The width is related to the
mean time between collisions 7 by the equation
r =I/By. Thus, in this case 7' =4x10 '4 sec, which
is quite short. For states deep in the valence
bands, y can be as large as 0.2 eV corresponding
to a 7 =10 "sec. Although the scattering lifetime
7, strictly speaking, is not the same as the mo-
mentum transfer time 7 that appears in the mo-
bility calculation, they are closely related. In
view of such a large v, it is unlikely that hot holes
will have a large mobility in concentrated
Ga„In, „As alloys.

The energy dependenees of both q and y discus-
sed above can be qualitatively understood from
the CPA equation [Eq. (19)] . A lower-order ap-
proximation to o can be obtained by substituting
o =0 og the right-hand side of the equation. Then
the solution is

TABLE VI. Imaginary part of the self-energy (in eV),
y = Imo (E+&0}, at the CPA band energies listed in Table
V for fi.ve Ga, In& „As alloys.

Concentration (x ) 0.1 0.5

top of the valence band and always negative at the
bottom. It is also evident that the Imf(Z -cr)
=-~ vp(Z) is zero outside the CPA-broadened band.
If the same argument is applied to the conduction
band, then it will shift, because of disorder, down
toward the valence band. Hence, as we have
already concluded from prior arguments, disorder
tends to narrow the band gap."

While the lower-order approximation in Eq. (B3)
is qualitatively correct in relating o to I" and, in
particular, . yields the correct sign of q and the
smallness of' y at the band top, no detailed agree-
ment between the shapes of p and y should be ex-
pected for the scattering strengths in the DI-V
compound alloys. A comparison between Figs.
5(a) and 5(b) and between 6(a) and 6(b) shows that
for x=0.5 the shapes of the curves for o and I
are remarkably similar, but they have marked

o =xy6'f(z —o) . (B3)

An alternative expression to Eq. (BO) for f(Z -o)
can be written in the form4

f(Z -o) =- p(Z')

where p(Z) is the CPA density of states. It is easy
to see that the Ref (Z —o) is always positive at the
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ri
X5
X3
X)

Lg
Ig

0.002
0.004
0.094
0.074
0.011
0.027
0,006
0.061

0.005
0.007
0.173
0.169
0.038
0.086
0.013
0.121

0.008
0.005
0.155
0.127
0.051
0.145
0.014
0.123

0.007
0.004
0.101
0.038
0.052
0.179
0.009
0.087

0.004
0.001
0.034
0.012
0.037
0.095
0.028
0.030
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.differences for the lower concentrations. For
Ga, In, ,As in Fig. (5), while the peaks of p(E) for
the top band shift from higher to lower energy as
x'increases the corresponding peaks of p shift
in the other direction. Similar variations of the
peak positions of y are also found in Fig. (6) for
InAs„Sb, „. Although the density-of-states curves
show no evidence of virtual bound states, the y
curves display precursors to such features for
the low-concentration alloys. The peak of y at
x =0.1 for Ga In, „As (GaAs as an impurity in
InAs) is around 3 eV, which is a remnant of the
center of the peak position of the GaAs density
of states [see Fig. 3(b)]. Similarly, the peak of
y at 2 eV for Ga, ,ln, ,As (InAs as the impurity)
coincides with center of the peak position of the
pure InAs density of states [see Fig. 3(e)]. Sim-
ilar findings also apply to InAs„Sb, „alloys.

These features can be understood, along with
some others, in terms of the following physical
model. For moderate scattering strengths (well
away from the split band limit), y(E) tends to be
large in energy regions where two conditions are
satisfied: (a) there is overlap between the den-
sities of states p„(E) and ps(E) of the pure con-
stituents, and (b) the alloy density of states p(E)
is large. The first condition arises because res-
onant scattering (or a large amount of state mix-
ing) can occur. The second condition enters be-
cause in that case there is a large density of final
states into which scattering can take place. Now

it is easier to understand the shape of the y(E)
curves Near . the band edges, p(E) goes to zero;
hence, y(E) also is small there. In the GaInAs
alloy, the GaAs valence bands are generally at
lower energies than the corresponding bands in
InAs (see Table 1V). Focus attention on the upper-
most large feature in y(E) in Fig. 5 at the various
concentrations. On the InAs-rich side (x =0.1)
this feature peaks around -3 eV. This is because
the GaAs as an impurity in InAs has states in this
region which strongly scatter the holes. At the
other end of the concentration range (@=0.9),
where the InAs is the impurity in QaAs, the peak
of y is at a higher energy - -2 eV. An important
consequence of this shift in the peak of y is that
alloy scattering is stronger near the top of the
valence band in the GaAs-rich side than in the
opposite case. For example, at -1 eV, the self-
energies are y-=0.1 eV for &=0.9 but only -0.005
eV for x=0.1. This should have important con-
sequences on hot-hole phenomena. Based on these
arguments, we can speculate about the trends
that will be found when the conduction-band cal-
culation is done. GaAs has a much larger band

gap than InAs. Thus, while the GaAs levels in
the valence band are at lower energies than those

of InAs, the reverse will be true in the conduction
bands. Hence, once again impurity scattering
near the conduction-band edge should be stronger
on the QaAs-rich side.

Thus, while there are similarities between mp

and y in all the alloys, they never have exactly
the same shape as can be seen from Figs. 5 and
6. Hence, it is essential to use the complete CPA
Eg. (19) rather than the approximate expression
Eg. (23) if details are to be given properly T.his
reemphasizes the need for using CPA rather than
VCA since Eci. (23) is, after all, an improvement
over the lowest-order correction to VCA,"and it
is still inadequate.

VII. SUMMARY AND DISCUSSION

There are two major subdivisions to this work:
the critical reexamination of BOM as it applies
to band structures, and the CPA calculation of the
properties of the III-V compound alloys from BOM.
There are two reasons for using BOM. First,
BOM provides a physical picture of the bonding
in zinc-blende compounds. Second, the model
effectively identifies the important alloy disorder
parameters which it turne out can be incorporated
into the framework of CPA.

However„BOM has intrinsic defects which pre-
vent it from attaining high accuracy for all fea-
tures of the band structur'es. ' It does not predict
the correct effective masses nor the correct ener-
gy dispersion along Z or Z axis. Moreover, we
found that this lack of dispersion along the Z axis
cannot be remedied either by including the third-
nearest bond interactions nor by including the
antibounding basis functions (see Appendix 8).
Based on the conclusions of Chadi, ' the inclusion
of some d-state character into the basis set, and
an explicit accounting of the nonorthogonality of
the basis functions may remedy these faults. How-
ever, we note that the usual linear-combination-
of-atomic-orbitals (LCAO) results" show that
this dispersion along Z exists if the matrix ele-
ments, in the terminology of Slater and Koster, '
like E„(110)and E,(011) are different and are in-
cluded. Since the bond bases (including the anti-
bonding state) and the LCAO bases are related
to each other by a unitary transformation, the two
descriptions should be completely equivalent. The
LCAO matrix elements E,(110) and E,(011) in
terms of the bond bases involve the second-,
third-, and fourth-nearest bond interactions. To
understand the cause of the defects in BOM, the
symmetry of the matrix elements and the higher-
order terms have to be carefully reexamined.
Despite these problems, the broadened density of
states based on the present BQM fit the gross
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features of the experimental spectra reasonably
well. Therefore, one expects the BOM param-
eters derived by fitting this data to be at least
qualitatively correct.

A calculation 'based on the single-bond C PA ls
shown to be easily implemented. The only BZ in-
tegration needed is the calculation of the VCA den-
sity of states, and this can be effectively carried
out using the new BZ integration method. ' While
the CPA and the VCA densities of states differ,
the differences in the alloys studied would be dif-
ficult to resolve experimentally at present. The
more useful CPA results involve detailed features
such as band-level shifts, effective masses, scat-
tering lifetimes, etc.

While the explicit results found for the six III-V
compound alloys are informative, the most im-
portant consequence of this study is the develop-
ment of the procedures to obtain detailed informa-
tion about semiconductor alloys using CPA. More-
over, when it is improved as suggested below,
the theory will be sufficiently broad to encompass
the full range of experiments conducted on these
materials. Then it will be possible to interrelate
the results of many experiments through a single
formalism. The improvements and extensions
needed to make this a quantitative method include:

(i) improvement of the pure constituent's band
structures by including (a) the conduction bands,
(b) the spin-orbit interactions, ""and (c) some
d-state character and nonorthogonality in the basis
set"; (ii) a systematic study of the best paramet-
rization method" with emphasis placed on isolating
the important variations from one compound to
another; (iii) incorporation of alloy potential re-
normalizations to account for charge shifts and
lattice-constant changes'; (iv) examination of the
need to treat the off-diagonal elements in a cluster
CPA"~'~; (v) calculation of the transport prop-
erties, ~' e.g. , the mobility, the frequency-de-
pendent dielectric constant, etc. While a good
start has been made, it is fairly obvious that much
remains to be done in this field.
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APPENMX A

The matrix elements H, „,=- {%n~H, ~%c.') for the
BOM described in Sec. I are listed below. The
symbols x, y, and z stand for —,'u„a, -,'aya, and

4k,a, respectively.

H„=D+2D,[cos(2x+2y)+ cos(2x+ 2z)+ cos(2z+ 2y)] + 2D, [cos(2x —2y)+ cos(2y —2z)+ cos(2x —2z)],
H„=D+ 2D,[cos(2x+ 2y)+ cos(2y —2z)+ cos(2x —2z)] + 2D, [cos(2x —2y)+ cos(2y+ 2z) + cos(2x+ 2z)],

H» D+ 2D,[ cos(2x ——2—y)+ cos(2y —2z)+ cos(2x+ 2z)] + 2D, [ cos(2x+ 2y)+ cos(2y+ 2z)+ cos(2x —2z)]

H„=D+2D,[cos(2x —2y) + cos(2y + 2z) + cos(2x —2z)]+ 2D,[cos{2x+2y) + cos{2y —2z) + cos(2x+ 2z)]

H„=2lyg cos(x+y)+2y, cos(x —y)cos2z+y,'[cos(Sx+y+2z)+cos(Sx —y)+cos(Sx+Sy)+cos(x+ Sy —2z)

+ cos(Sx+y —2z) + cos(x+ Sy+ 2z)+ cos(Sy —x)])
—2f (y,'»n(x+y) -y,'{sin(Sx+y+ 2z)+ sin(Sy —z) + sin(Sx+ 3y)+ sin(x+ Sy —2z)+ sin(Sx+y —2z)

+ sin(x+ 3y+ 2z)+ sin(3y —x)]),
H» = 2(y f cos(x+ z)+ 2 y, cos(x —z) cos2y+y,' [cos(3x+ 3z)+ cos(3x —2y+z)

+ cos(x —2y+ Sz)+ cos(3x+ 2y+ z)

+ cos(Sx —z)+ cos(x+ 2y+ 3z)+ cos(Sz —x)])
—2&(3'/sin(x+ z) —'/3[ sin(Sx+ 3z) + sin(Sx —2y +z)

+ sin{x- 2y+ Sz)+ sin(Sx+2y+z)+ sin(Sx- z)+ sin(x+2y+ Sz) +sin(Sz x)]),

H„=2{l,'c»(y +z)+2y, cos2x cos(y —z)+Z,'[cos(2x+y+3z)+cos(3z —y) +cos(2x+3y+z)+cos(3y —z)

+ cos(Sz+y —2x)+ cos(Sy+Sz)+ cos(Sy+z —2x)])

—2${l'& sin(y+ z) —l'
& [sin(2x+y+ 3z)+ sin(Sz —y) + sin(2x+ 3y+ z) + sin(Sy —z)+ sin(y+ Sz —2x)

+ sin(Sy+ 3z) + sin(Sy+ z —2x)]),



VAI. ENCE-BAND STRUCTURES 0F III-V C0MI'0UNDS AND. . .

H» =2(y 1 cos(y - z)+ 2y, cos2x cos(y+z)+y,' [cos(z - Sy —2x)+ cos(By+ z)+ cos(Sz —Sy)+ cos(2x-y+ Sz)

+ cos(2x —Sy+ z)+ cos(Sz —2x —y) + cos(Sz+y)] }
+ 2$(yl sill(y —z}+y 2 [sill(z —2x —Sy) —sill(By+ z) + sill(Sz —Sy)+ sill(2x+ Sz —y)+ sill(2x —Sy+z)

+ sin(Sz —2x —y)+ sin(Sz+y)]},
H„=2(y', cos(x —z)+ 2y, cos2y cos(x+ z)+y', [cos(z —Sx —2y)+ cos(3x+z)+ cos(Sz —x —2y)+ cos(x+ Sz)

+ cos(2y+ z —Sx) + cos(Sz —3x)+ cos(2y+ 3z —x)]}
+2q (y', sin(x z)+y, [sin(z Sx Sy) —sin(Sx+z) + sin(3z —x —2y)+ sin(x+Sz)+ sin(2y+z —3x)

+ sin(3z —3x)+ sin(2y + Sz —x)]},
H„=2 (y 1 ces(x -y)+ 2 y, cos2z cos(x+ y}+y,' [cos(3x+ y) + cos(y —Sx- 2z)+ cos(x+ 3y)+ cos(3y —x - 2z)

+ cos(Sy —x+ 2z) + cos(2z —Sx+y) + cos(Sy —Sx)]]
+ 2i (y, sin(x —y)+y', [sin(y —Sx —2z) —sin(Sx+y) + sin(x+ By) + sin(3y —x —Sz}+sin(Sy —x+ 2z)

+ sin(2z —Sx+y) + sin(Sy —Sx)]}

%e note that, except for the additional terms in-
volving y', and y,', the above results appear in the
appendix of Ref. 15. There the indices 2 and 3 are
interchanged. It turns out that these additional
terms do not affect the relations between the band
energies and the Block matrix elements along the
[100] and [ill] directions. These relations (in
the twofold degenerate case) for the d axis are

&2 =H11 -H14 ~2,1=H11+H14+2 IH12I

-and for the A axis are

~s =&23- &u

1 ~ 1 2( 11 22 28 [( 11 22 22).12lH„l] ~}.
The explicit expressions for the energies for these
two axes are

APPENMX B

Here we show that there is no dispersion of the
BOM bands along the Z axis even with the whole
set of parameters in Sec. II included. We start
with the H matrix at the symmetry point X in
terms of the four Sioch hases IX1&,
and lX4&:

is is

-is A -x -ts
-is -r h -is

is is

A2 = D+ 2D2+ 2D2 —2y', —By2

+4(D, +D, +y, +2y', ) cos2x,
42, ~

=D+ 2D2+ 2DS+ 2y~ + 6y3

+ 4(D, + D, +y, + 2y', ) cos2x

+([(2y', +4y, + 6y', ) cosx+ By', cosSx]'

+ [(2y', —2y', ) sinx —By', sinSx]'}'~2

A =D+4D +2D 2y 2y 6y

+(2D2+4D, —2y, —By* ) cos4X,

A, ,=D+2D~+403+2y', +2y, +6y~3

+ (4D, + 2D, + 2y, + By', ) cos4x

+ (4[D2 -D2+ y41 + y, + Sy',

-(D, -D, -y, +4y', ) cos4x]'

(Al)

(A 3)

5 -=D —2D2 —2D, ,
z=- -2y', +4y, +2y', ,

s = 2yc 6yo ~

Let us define a unitary transformation which
transforms the set ( lXn&, n = 1,4} into a new set:

lzi& -=lx»,
lZ2&=—cosy lX2) -siny lX4},

lzs& =- lxs&,

+12[(y', +2y, +4y', ) cos2x+ Sy', cos6x]'

+12[(y1 —4y,') sin2x —Sy', sin6x]'}'~2. (A4)

lZ4& —= siny lX2) +cosy lX4) .

This transformation changes the matrix H~ into
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r slny —2s cosy

-is
r cosy -is siny

r siny+is cosy

-r cosy+is siny

is

zs

-r cosy -is siny

-r cosy+is siny

-r cosy+is siny

-zs

-r cosy -is siny
(B2}

This matrix can be shown to be identical to the
Hamiltonian matrix at k= (1,k, 0)(2m/a) along 2yP

with k„related to y by y= 4k, a. Thus, the eigen-
values of H~ are identical to those of H~ and there
is no dispersion, i.e. , E(k) is a constant, along
the Z axis.

The above argument can be extended to include
the antibonding orbitals. In that case, the H„
and H~ are 8 ~ 8 matrices having the form:

&e, a„)
Hvc Hv

where &c Hcv and Hv a e 4x 4 matrices having
similar forms to (Bl) and (B2). Thus, Hr and Ifz
can be transformed into each other by a similar.
unitary transform. Once again, there is no dis=
persion along the Z axis.
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