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The mean-value-point technique for Brillouin-zone averages is shown to be applicable to the calculation of
electronic dielectric screening' matrices. The dielectric-matrix elements for which the technique is not accurate
are only a few and for them a separate simple prescription is given. Detailed results are presented for the
o =0, § =0, and §—0 € matrices of diamond, Si, Ge, a-Sn, MgO, and NaCl. Comparison with a nearly-

free-electron model is also discussed.

I. INTRODUCTION

The calculation of physical properties of crys-
tals generally requires difficult and time-consum-
ing Brillouin-zone integrations. A considerable
simplification was proposed by one of the authors!
who showed that average values over the Brillouin
zone are often well approximated by the value at
the Baldereschi or mean-value point which is dic-
tated by crystal Symmetry. The coordinates of
this point were explicitly given for cubic lattices
and possible applications of the method were indi-
cated in the calculation of the electronic valence
charge density p(T) and of the average one-elec-
tron valence-band energy E.

This idea stimulated several subsequent investi-
gations which can be classified into three cate-
gories., The first includes the works in which the
position of the Baldereschi point is determined for
crystals other than cubic®?® or for crystals subject
to external perturbations.? The second category
corresponds to improvements of the method by us-
ing several representative points®® which allow
simple convergence tests. Finally, the third cate-
gory includes the many applications of the method
in calculations of those physical properties which
were indicated in the original publication, i.e.,
p(f) and E, Most applications are concerned with
the computation of p(T) to gain information on
chemical bonding,® or in self-consistent band-
structure calculations (for example, calculations
of surface states’) where a simple method to ob-
tain p(T) is of great help. First-principles calcu-
lations of elastic constants and phonon frequencies?®
also need a fast method of obtaining p(¥) and E.
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Applications to cohesive energies and structural
problems do not seem to have been attempted yet.
Little attention has also been paid to the question
of whether the Baldereschi point can be of help in
other areas of solid-state physics. We know of
only one attempt in this direction, by Straus and
Ashcroft® who show the validity of the method to
calculate temperature-dependent structure factors.
In this paper we show that the Baldereschi point
is extremely useful in studying the electronic di-
electric properties of solids in the static limit
(w=0), i.e., in evaluating the elements €(d+G,q
+G") of the dielectric matrix (DM).'® Our results
indicate that even if the method is not equally pow-
erful for all elements of the DM, the elements
which require a more careful treatment are few
and appropriate prescriptions for them are given.
This additional application of the Baldereschi
point supports the conjecture by Phillips'* that
these special points may have conceptual im-
plications besides being convenient computational
tools. In the following sections we apply the mean-
value point technique to a direct calculation of
€ +G,§+G") for the group-IV semiconductors,
and for the insulators MgO and NaCl. Section II
illustrates the details of the method, the conver-
gence checks made, and presents the results, for
the lowest reciprocal vectors. These results are
discussed in Sec. III, and compared with those of
a nearly-free-electron approximation.

II. CALCULATION AND RESULTS

The linear electronic response of a crystal to a
static external perturbation is described, in the
random-phase approximation, by the matrix'®

€@+G,q+G) =053+ 2 —
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where the factor 2 reflects spin degeneracy and
NQ is the crystal volume. In (1) G and G' are re-
ciprocal-lattice vectors whereas q and Kk are de-
fined within the first Brillouin zone, |v,k) and
|c k) indicate Bloch states with momentum K in the
valence and conduction bands, respectively, E (k)
and E (k) are the correspondmg one-electron en-
ergies. The summations over k and v reflect the
fact that the total polarizability of the crystal is
obtained by adding up the contributions of all the
electrons present in the system. The K summation
in particular is extremely time consuming since
for each k we must calculate the electron Bloch
functions in order to compute the matrix elements
indicated in (1). The necessity of lengthy calcula-
tions is probably the reason why up to now dielec-
tric matrices have been evaluated for a few crys-
tals only. Also, in most of these cases, only the
diagonal elements €(q+G q+G) have been calcu-
lated. A complete calculation of e(q+G q+ G')
turns out in fact to be a typical application of the
mean-value-point technique. Since this technique
is valid only for slowly varying functions we must
verify whether it can be applied in our case.

For computational purposes, we prefer to

work w1th the “symmetrical dielectric matrix”

<(q+G q+ G’) which is simply related to ¢ by

E(q+ G,'&+G')=(|?1+G‘/|ﬁ+ G'|)€(§+G,'&+G’) .

)

The advantage of working with € is to avoid the di-
vergencies'? presented by €(q,q+G') in the limit

q-~0.

We have _gerformed extensive calculations of

€(q+G,q+ G’) for various semiconductors and in-
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TABLE I, Symmetrical-dielectric-matrix elements
e(q+G §+G') for dlamond calculated with the Balderes-
chi point in the limit § —0 for q ||(1,0,0). These values
are compared to those obtained with the two-point and
ten-point techniques of Chadi and Cohen. All nonvanish-
ing and symmetry—mdependent values of € are given for
G and & belonging to the stars of (0,0, 0), (1,1,1), and
(2,0,0). Some additional values belonging to the DM
“wing” are also given. The values have been obtained
using the local pseudopotential band-structure calculation
by Van Vechten (Ref. 13). The dielectric-matrix ele-
ments for 4=0 are the same except the elements €(0, G)
and €(G 0) which vanish for G=o0.

G & B point Two-point Ten-point
(0,0,0) - (0,0,0) 3.180 6.366 5.274
(1,1,1) (0,0,0) =0.211 —-0.243 —0.241
(1,1,1) (1,1,1) 1.438 1.442 1.441
(1,1,1) (1,1,1) 0.004 0.003 0.004
(1,1,1) (I,1,1) =0.025 —0.024 —0.024
1,1,1) d,1,1) =—0.118 —-0.136 —0.132
(2,0,0) (1,1,1) 0.073 0.075 0.074
2,0,0) (I,1,1) 0.006 0.009 0.009
(2,0,0) (2,0,0) 1.337 1.345 1.344
(Z,0,0) (2,0,0) 0.001 —0.013 —0.010
(0,2,0) (2,0,0) —0.020 —0.022 —0.021
2,2,0) (0,0,0) 0.007 0.035 0.023
(3,1,1) (0,0,0)  0.046 0.072 0.064
(1,8,1) (0,0,0) 0.031 0.051 0.046

sulators for both q= 0 and 4~ 0 and for the lowest
113 values of Gand G’. The values of e(g+ G q+ G’)
for diamond, Si, Ge, a- Sn, MgO, and NaCl

for 4ll (1,0,0) in the limit q- 0 and for the 15 low-
est values of the vectors G and G’ are glven in
Tables I-VL. The DM elements with G and G’ be-
longing to the (0,0,0), (1,1,1), and (2,0,0) shells

TABLE II. Symmetrical-dielectric-matrix elements €§+G,§+G’) of Si for 4 [/(1, 0, 0) in
the limit § —0. The first three columns refer to the local band-structure calculation by Cohen
the nonlocal calculation is based on the band structure by Cheli-
The dlelectmc-matrlx elements for q=0 are the same except the
elements €(0, G) and €(G, 0) which vanish for G=o.

and Bergstresser (Ref. 13);
kowsky and Cohen (Ref. 21)

G @

B point Two-point Ten-point Ten-point nonlocal
(0,0, 0) (0,0,0) 4,793 10.909 12.102 11.305
(1,1,1) (0,0,0) -0.365 —0.464 -0.441 -0.392
(1,1,1) (1,1,1) 1.711 1.708 1.710 1.718
(I,1,1) (1,1,1) -0.016 -0.018 -0.018 0.007
1,1,1) (1,1,1) -0.020 -0.025 -0.023 0.025
1,1,1) (1,1,1) -0.113 —-0.151 -0.138 -0.156
(2,0,0) (1,1,1) 0.085 0.090 0.089 0.118
(2,0,0) (1,1,1) 0.008 0.013 0.012 0.034
(2,0,0 (2,0,0) 1.529 - 1.544 1.541 1.552
(2,0,0) (2,0,0) -0.008 -0.031 -0.023 -0.023
(0,2,0) (2,0,0) -0.025 -0.030 -0.028 0.008
(2,2,0) (0,0,0) 0.043 0.194 0.117 0.124
(3,1,1) (0,0,0) 0.087 0.197 0.151 0.138
(1,3,1) (0,0,0) 0.033 0.094 0.068 0.084
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TABLE III. Symmetrical-dielectric-matrix elements €(q+G,q+G) of Ge for q [|(1,0, 0) in
the limit  —0. The first three columns refer to the local band-structure calculation by Cohen
and Bergstresser (Ref. 13); the nonlocal calculation is based on the band structure by Pandey
and Ph1111ps (Ref. 22) The dielectric- matrix elements for =0 are the same except the ele-
ments €(0, G and e(G 0) which vanish for G¢0

G & B point Two-point Ten-point Teri~point nonlocal
(0,0, 0) (0,0,0) 5.202 29.420 15.906 15.045
(1,1,1) (0,0,0) —-0.384 —0.426 -0.430 -0.335
(1,1,1) (1,1,1) 1.707 1.702 1.706 1.685
(1,1,1) (1,1,1) -0.008 -~0.008 -0.008 0.002
(1,1,1) (1,1,1) -0.006 —0.009 -0.008 0.000
(1,1,1) (1,1,1) -0.127 -0.163 —0.149 -0.135
(2,0,0) (1,1,1) 0.104 0.111 0.109 0.100
(2,0,0) (1,1,1) 0.018 0.025 0.022 0.031
(2,0,0) (2,0,0) 1.532 1.556 1.547 1.532
2,0,0) (2,0,0) -0.019 -0.056 -0.038 -0.039
(0,2,0) (2,0,0) -0.010 -0.019 -0.013 -0.012
(2,2,0) (0,0,0) 0.042 0.323 0.169 0.199
(3,1,1) (0,0,0) 0.097 0.301 0.200 0.187
(1,3,1) (0,0,0) 0.043 0.157 0.101 0.098
and which do not appear in the tables, either van- In our case, we place the origin halfway between
ish identically or are related by symmetry to those the two atoms in the primitive cell of semiconduc-
given in the tables. The DM symmetry group is tors and on the cation for insulators so that € is a
the same as that of the vector §, and becomes the real symmetric matrix. Electronic energies and
full crystal symmetry group only at §=0. It should wave functions have been calculated by the empiri-
also be noted that the DM elements depend on the cal local pseudopotential method.!®> Core effects
particular choice of origin in T space. In fact, we (i.e., core polarizability and orthogonalization of
see from Eq. (1) that if we displace the origin the valence states to the core) have been neglected
through a vector d, the DM elements (both € and ?) since they are expected to be rather small and in
transform according to any case they will not modify the conclusions of
G@3+G,3+G) =" C G+ G,5+G). (3
TABLE V. Symmetrical-dielectric-matrix elements
TABLE 1V. Symmetrical-dielectric-matrix elements &G +G,4+G) of MgO for q (1, 0,0) in the limit §—0.
&G +G,q+G") of a-sn for q[I(1, 0, 0) in the limit § —0. The values have been obtained using the local pseudopo-
The values have been obtained using the local pseudopo- tential band-structure calculation by Cohen, Lin, Roes-
tential band-structure calculation by Cohen and Berg- sler, and Walker (Ref. 13). The dielectric-matrix ele-
stresser (Ref. 13). The dielectric-matrix elements for ments for q 0 are the same _except the elements €(0, G)
q=0 are the same > except the elements (0, G) and E(G 0) and 6(G, 0) which vanish for G =0,
which vanish for G #0. — = .
= = g G G B point Two-point Ten-point
G G’ B point Two-point Ten-point - :
(0,0,0) (0,0,0) 2.753 3.313 3.187
(0,0,0) (0,0,0) 5.901 40.561 21.232 (1,1,i) (0,0,0) -0.309 -0.329 -0.325
(1,1,1) (0,0,0) =—0.433 —0.443 -0.459 (1,1,1) (1,1,1) 1.434 1.432 1.433
(1,1,1) (1,1,1) 1.773 1.769 1.774 I,1,1) (@1,1,1) 0.081 0.081 0.081
(1,1,1) (1,1,1) 0.000 0.002 0.001 (1,1,1) (1,1,1) =-0.040 -0.042 -0.041
1,1,1) (d,1,1) -0.005 -0.006 -0.006 (1,1,1) (1,1,1) =0.128 -0.132 -0.131
1,1,1) (1,1,1) —0.153 -0.187 -0.172 (2,0,0) (0,0,0) 0.321 0.346 0.342
(2,0,0) (1,1,1) 0.132 0.140 0.138 (2,0,0) (1,1,1) =—0.107 —-0.107 —-0.107
(2,0,0) (I,1,1) 0.027 0.033 0.030 (2,0,0) (1I,1,1) 0.028 0.030 0.029
(2,0,0) (2,0,0) 1.589 1.626 1.609 (2,0,0) (2,0,0) 1.299 1.297 1.298
(2,0,0) (2,0,0) —0.033 ~0.084 —0.056 (2,0,0) (2,0,0) —0.052 —-0.055 —0.054
(0,2,0) (_2, 0,0) —-0.002 -0.017 --0.008 (0,2,0) (2,0,0) 0.003 0.002 0.002
(2,2,0) (0,0,0) 0.044 0.433 0.220 2,2,0) (0,0,0) 0.036 0.030 0.031
(3,1,1) (0,0,0) 0.120 0.420 0.266 (3,1,1) (0,0,0) 0.025 0.034 0.033

(1,3,1) (0,0,0) 0.058 0.223 0.138 (1,3,1) (0,0,0) —0.004 0.000 -0.001




17 MEAN-VALUE POINT AND DIELECTRIC PROPERTIES... 4713

TABLE VI. Symmetrxcal—dwlectmc—matrlx elements
&{+G,q+G) of NaCl for q ||(1, 0,0) in the limit § —0.
The values have been obtained by using the local pseudo-
potential band-structure calculation by Fong and Cohen
(Ref. 13). The dielectric-matrix elements for 4=0 are
the same except the elements €(0, G) ‘and €(G 0) which
vanish for G=0.

G e B point Two-point Ten-point
(0,0,0) (0,0,0) 2.444 2.520 2.514
(1,0,0) (0,0,0) —0.328 —-0.331 —0.330
1,1,1)  (1,1,1) 1.471 1.470 1.470
(1,1,1) (1,1,1) 0.091 0.091 0.091
1,1,1) (I1,1,1) =0.052 —0.052 -0.052
1,1,1) (I1,1,1) =0.181 -0.182 —0.182
(2,0,0) (0,0,0) 0.407 0.412 0.411
(2,0,0) (1,1,1) =-0.143 —0.143 -0.143
(2,0,0) (1,1,1) 0.062 0.062 0.062
(2,0,0) (2,0,0) 1.3847 1.347 1.347
2,0,0) (2,0,0) —0.089 -0.090 —0.090
(0,2,0) (2,0,0) 0.005 0.005 0.005
2,2,0) (0,0,0) 0.068 0.067 0.067
(3,1,1) (0,0,0) =—0.010 —-0.009 —0.009
(1,3,1) (0,0,0) —0.008 —0.007 —0.007

this paper. As indicated in Tables I-VI, each DM
element has been calculated using the Baldereschi-
point' as well as the two-point and ten-point meth-
ods of Chadi and Cohen?® in order to test the con-
vergence.

The results of Tables I-VI show that different
DM elements have different convergence behavior
and can be classmed into three groups depending
on whether G and G’ vanish or not. _The most path-
ological case is the single element G=G'=0 for
which it is necessary to use as many as ten points
to obtain satisfactory results. The second group
of elements consists of the two DM “wings” cor-
responding to either G=0or G’'=0. For this group
the convergence is better, and two points usually
give reasonable results. Flnally, the full DM
“body” G G’#0 is already accurate to within a few
percent w1th the single-point alone. This accuracy
is similar to that originally found in approximating
the electronic charge density.’ It is more than
enough for all practical purposes, in view of the
many uncertainties involved in a DM calculation
like core effects, exchange and correlation cor-
rections, etc., which involve errors which are one
order of magnitude larger.

The differences in convergence among the three
groups can be understood as follows. Note that
for G 0 and §~ 0, the dipole limit gives

@, E+det @8 e, By~ 0, K| G T, B)
7 (0, kI Dle,k)

=o—tm . (4)
m  E (k) - E k)

The matrix element (,k|q*B|c,k) is usually a
slowly varying function of k whereas the energy
denominator strongly oscillates in the Brillouin
zone. Substituting (4) into (1) we see that each G

=0 (or G'= 0) adds one more power in the energy
denominator. The oscillations of the integrand be-
come larger, and the averaging more difficult. In-
cidentally, the limit (4) clarifies the nonanalyticity
of the “wings” of € and € at =0.'? In fact, they do
not vanish as §~0, and yet

(G'#0),

" (5)
as is easily seen by inserting (4) into expression
(1). Related formulas also hold for €, €* and €™.
This nonanalyticity requires a separate prescrip-
tion for §=0. This i provided by gauge invari-

ance, which requires no electronic response to a
constant perturbing potential, and, therefore,

€(0,8)=€4(G,0)=0, (6)

Lm&({,§+ G = - lim&(-g, -4+ G,
q—>0 q—>0

for all G#0. Asa consequence of (6) also the

“wings” of €, €, and € : vanish for q=0. _No such
problems arise for the G=G’=0 and the G G'#0
matrix elements of € and € which are analytic at
4=0. The dielectric matrices € and € at =0 are
therefore simply obtained from the corresponding
matrices calculated for -0 by setting their
“wings” equal to 0 and keeping all the other ma-
trix elements unchanged. The €-matrix elements
at =0 are therefore implicitly contained in Tables
I-VI which give the €-matrix elements for §- 0.
The inverse matrices € and € are in all cases
obtained by inverting the corresponding matrices
€ and € and, as a result, not only their “wings”
but in general all their matrix elements are not
analytic at §=0. No simple prescription can be
given to directly relate the inverse dielectric ma-
trices at §=0 to those for - 0 and therefore we
give in Tables VII and VIII the independent ele-
ments of € for =0 and 4~ 0, respectively. The
values given in these tables have been obtained by
inverting matrices of order 113 calculated with
the ten-point averaging method. In particular, we
note that the screening of a periodic potential (§
=0) has to be performed with the §=0 €™*-matrix
(i.e., the inverse of the =0 € matrix) and this
differs from just taking the “body” of the -0 €
matrix as is evident from a comparison of Tables
VII and VIIL

Finally, we note that the values of the DM ele-

ments reported in Tables I-VI should reflect the
different properties of the crystals, i.e., increas-
ing metallicity upon going from diamond to a-Sn
and the high ionicity of MgO and NaCl. We note
that while €(0,0) changes rather drastically, the
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TABLE VIL. Inverse-dielectric-matrix elements e+ 6,§+ G’) at =0. The elements €710, G) and €~X(d, 0) vanish
for G#0. The ¢! matrices have been obtained by inverting € matrices of order 113 calculated with the ten-point meth-
od.

G & Diamond Si local Si nonlocal Ge local Ge nonlocal a-Sn MgO NaCl
(0,0,0) (0,0,0) 0.190 0.083 0.088 0.063 0.066 0.047 0.314 0.398
(1,1,1) (1,1,1) 0.715 0.605 0.605 0.610 0.613 0.595 0.734 0.737
I,i,1) (1,1,1) ~0.001 0.008 0.004 0.006 . 0.003 0.0056 -0.03¢ —0.033
1,1,1) (1,1,1) 0.015 0.010 -0.004 0.006 0.005 0.008 0.021 0.021
(1,,I) (I,1,1) 0.060 0.045 0.049 0.048 0.044 0.051 0.053 0.065
(2,0,0) (1,1,1) -0.041 -0.038 —0.045 -0.045 -0.041 —0.052 0.053 0.064
(2,0,0) I,1,1) -~0.003 -0.005 -0.008 -0.007 -0.010 -0.008 ~0.010 -0.021
(2,0,0) (2,0,0) 0.761 0.667 0.666 0.669 0.672 0.652 0.798 0.791
2,0,0) (2,0,0) 0.001 0.006 0.003 0.011 0.010 0.015 0.024 0.030
(0,2,0) (2,0,0) 0.017 0.016 0.005 0.013 0.012 0.013 0.004 0.003

other values seem to change much less from crys-

tal to crystal.

Therefore, it is only the velative

importance of €(0,0) to the off-diagonal elements
which determines the magnitude and relevance of
the local-field corrections. They are much more
important in insulators than in semiconductors

and among the group-IV semiconductors they are

bigger in diamond than in @-Sn,

in agreement

with the.metallicity trend mentioned above.

- 41re

IG

TABLE VIIL

III. DISCUSSION

The success of the mean-value point in the cal-
culation of E(G G’) can be traced back to that of
p(¥).! A hint that the mean-value-point technique
should be equally valid in the calculation of p(¥)
and of the DM elements is provided by the exis-
tence of the relationship*

6 = |G| llmz q+G’)[€‘1 q+G,q+G') - 03,3/ WG,

(7

Inverse-dielectric-matrix elements 4G +G,§4+G) for a-»O along the [100] direction. The elements

corresponding to grouped together G & pairs are related by. symmetry at q 0 but not for q —0. Notice the dlfferent
The €1 matrices have been obtained by inverting € ma-

symmetry properties between diamond and rocksalt crystals.

trices of order 113 calculated with the ten-point method.

G & Diamond Si local Si nonlocal Ge local Ge nonlocal a-Sn MgO NaCl
(0,0,0) (0,0, 0) 0.205 0.092 0.098 0.070 0.072 0.052 0.388 0.522
(1,0,0) (0,0,0) 0.031 0.022 0.021 0.016 0.014 0.013 0.069 0.084
(1,1,1)  (1,1,1) 0.720 0.610 0.610 0.614 0.615 0.598 0.746 0.751
(1,1,1) (1,1,1) 0.004 0.013 0.009 0.010 0.006 0.008  —0.046 —0.046
(1,1, (1,1,1) -0.005 0.003 ~0.001 0.002 0.001 0.002  —0.022 -0.020
1,1,1) (1,1,1) 0.010 0.005 -0.008 0.003 0.002 0.005 0.009 0.007
(1,1,1) (1,1,1) 0.020 0.015 0.001 0.010 0.007 0.011 0.033 0.034
(1,1, (1,1,1) 0.056 0.040 0.044 0.044 0.042 0.047 0.041 0.052
(2,0,0) (0,0,0) 0. 0. 0. 0. 0. 0. -0.072 -0.101
(2,0,0) (1,1,1) —-0.041 ~0.038 ~0.045 -0.045 -0.041 -0.052 0.040 0.047
(0,2,0) (1,1,1) -0.041 -0.038 -0.045 -0.045 -0.041 -0.052 0.053 0.064
(2,0, 0), (1,1,1) -0.003 -0.005 -0,008 —=0.007 -0.010 ~0.008 0.003 -0.004
(0,2,0) (1,1,1) -0.003 -0.005 -0.008 -0.007 -0.010 -0.008 -0.010 -0.021
(2,0,0) (2,0,0) 0.761 0.667 0.666 0.669 0.672 0.652 0.811 0.811
(0,2, 0) (0,2, 0) 0.761 0.667 0.666 0.669 0.672 0.652 0.798 0.791
(2,0,0) (2,0,0) 0.001 0.006 0.003 0.011 0.010 0.015 0.011 0.010
(0,2,0) (0, 2, 0) 0.001 0.006 0.003 0.011 .0.010 0.015 0.024 0.030
(0,2, 0) (2,0,0) 0.017 0.016 0.005 0.013 0.012 0.013 0.004 0.003
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which linearly connects p(¥) and € via the bare
crystal potential W(G). Even if Eq. (7) does not
imply that contributions to p and to €! are pro-
portional in each region of k space, it does sug-
gest that a close parallelism should exist between
p and € averages. To see this parallelism in more
detail, let us consider the limit where the crystal
is obtained by perturbing a free-electron gas by a
weak, real self-consistent periodic potential V(G)
In practlce, most crystals have a potential which
is far too strong for such an approximation to hold,
but the validity of the argument remains. In Bril-
louin-Wigner perturbation theory, the Bloch states
are (apart from a normalization factor)

|+ Gy= et G, 2 [E@k+G) ~ E°(k+GN]™
GG

X V(GI ) i(E+G')or (8)

4me?

where E°(k)=7%%2/2m and E(K) is the perturbed
one-electron energy. The valence electron charge
density to lowest order in V is

o) = Z E (1+ X 18R+ B - PR G
Gua

XV(G’ - G) cos(G -6')‘?) 5

(9)

where NQ 1s the crystal volume and the summa-
tions over k and G cover all the occupied states.
Expression (9) shows that the Fourier components
of the electronic charge are proportlonal to the
Brillouin-zone averages of [E( k+G) E%(k+ G’ |l
The DM elements (1) have been calculated by Ber-
toni et al.*® using the same approximations leading
to expression (9). Their results for ¢~ 0 are

§d,3+G)=
44 Iql1q+Gl

and

4me?

§G+G,5+G) =10z R o
Iq+GlIgq+G’|

Fl&+G) - (&)

——..—:—-v—[ G O V(©) Z EE o) -

E®)][E(k+G) - E%K) ]2

X {ZV(G -G’ [ ;Z [E(k+G) _E(E)] [E®)

where the dots mean “same with G=G'” and F(®)
is the Fermi function. From expression (11) we
see that the DM elements for G G'#0 are propor-
tional to the Brillouin-zone average of the pro-
duct of two energy denominators, which however
are different, so that their oscillations do not add
up. Since the calculation of p(¥), expression (9),
involves a single energy- denommator average, we
do expect that p(¥) and e(G G’) should be calcul-
able by the same averaging technique with com-
parable accuracy in the results. On the other
hand, we see from (10) that for either G=0or G’
=0, the calculation of the DM element involves the
average of the product of three energy denominators,
two of which are equal. Itistherefore notsurprising
that the mean-value point is less accurate in this case.
Finally, for G=G’=0 the DM element contains
terms which involve the product of as many as five
energy denominators,'® which justifies why so
many representative points are necessary in this
case.

We can now check the accuracy of perturbation
theory in the calculation of DM elements. To cal-
culate expressions (10) and (11) one should usually
proceed numerically s1nce finding the perturbed
one-electron energies E(k) requires solving the

+ ]}, (11)

nearly-free electron secular problem. The obvi-
ous replacement E(k) E"(k) ;szz/ 2m causes un-

physical divergences unless x = |G|/2 kr<l. For

x <1, however, the replacement is legitimate and
expression (10) can be evaluated analytically,

~ > > 1 "a Va X 1-x
€(q,q+G) = a ( 3)(x2_1+1n' 1+x|l)’

(12)

where V and & are in atomic units. Since for G
=(27/a)(1,1,1) one has x=0.55, expression (12)
should be a reasonable approximation. We obtain
the values -0.15, ~0.14, -0.17, and -0.24 for
diamond, Si, Ge, and @-Sn, respectively, to be
compared with the values -0.24, -0.44, -0.43,
and -0.46 given in Tables I-IV. Thus, the accu-
racy of the free-electron perturbation approach is
at most fair, as already found by Bertoni et al.*
who, in their DM calculation for Si, had to multi-
ply by the constant factor 3.0 all € matrix ele-
ments obtained by perturbation theory in order to
satisfy the acoustical sum'rule.’® It is interesting
to observe that this scaling changes the Si value
from -0.14 to -0.42 in excellent agreement with
the value obtained from the “exact” band struc-

-E%k+G -G)]

-
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ture. The reason for the limited success of the
free-electron perturbation approach in the quanti-
tative prediction of the DM elements is that the
Bloch functions (8) are expanded up to linear terms
in the crystal potential only. Higher-order terms
cannot be neglected in calculating the band struc-
ture of semiconductors and insulators as shown,
for example, by Heine and Jones'” in their calcu-
lation of the covalent energy gap at the Jones-zone
surface of semiconductors. The 3.0 scaling fac-
tor introduced by Bertoni ef al. indicates the rele-
vance of these higher-order terms for covalent
and ionic crystals.

So far, we have shown that the Baldereschi-point
technique' and the representative point technique
by Chadi and Cohen® are suitable for the numerical
evaluation of the dielectric matrices for q=0 and
in the limit 4~ 0. These techniques are expected
to work even better for §#0. In fact, the conver-
gence difficulties encountered in the limit 0
were connected with the dipole limit (4), giving
rise to powers in the energy denominators higher
than 1. These difficulties should disappear alto-
gether along with the dipole expansion for q#0,
and we expect that the mean-value-point technique
should be excellent as § approaches the Brillouin-
zone boundary.

We can compare our values of the DM elements
for diamond with those calculated in the limit q— 0
by Van Vechten and Martin'® and reported by John-
son.'® The pseudopotential form factors used in
the two calculations are the same and the resulting
values for the DM elements are very similar. The
small differences can be attributed to the use of
different averaging techniques and to the larger
number of conduction states used in the present
work in the evaluation of expression (1). We find,
in fact, that the number of conduction bands to be
included in the summation (1)_.to attain convergence
strongly depends upon G and G’, a point already
stressed by Srinivasan.?’ For Si, for example, for
both G and G’ in the (1,1,1) shell the lowest 15
conduction states must be included in the summa-
tion (1) to obtain DM elements with 10% accuracy.
At the same time, for G G’ in the (4,2,0) shell,
we had to include as many as 90 conductlon states
to get the same accuracy. This is to be expected
since the matrix elements of e!@ "% in (1) are es-
sentially the Fourier transforms of the valence
wave functions at wave vector |q+ G| - [2mE( k)/
n2]Y2, For large G one needs to go to higher and
higher conduction bands before the matrix element
falls to negligible values.

We have also tested the sensitivity of the values
of the DM elements to the particular band struc-
ture Bsed _J:Il the calculation. We have reevaluated
&{+G,q+G") 3., using the nonlocal pseudopoten-

tial band structures recently proposed by Cheli-
kowsky and Cohen® for Si and by Pandey and Phil-
lips®® for Ge. The results obtained by the ten-point
technique are given in Tables II and III. The dif-
ferences with the local band structure results are
of the order of 10%. This figure can therefore be
taken as an indication of the overall accuracy of
the values reported in Tables I-VI.

Before concluding, a few words are in order
concerning the feasibility of DM calculations of
this type with w #0 for semiconductors, and at any
w for metals. Let us consider first a semiconduc-
tor or an insulator, and introduce a finite w. The
denominator in Eq. (1) is replaced by

>

AE(K,§, w) = [E(K+q) - E, (&) + hw +in]

where 7 is infinitesimal. As w increases from
zero, the minimum value of AE(K,q, w) decreases
from the energy gap E, to E, -7%iw. The denomina-
tor will then vanish for w>E /k at a number of K
points proportional to the “joint density of states,’
and the DM will correspondingly become complex.
Because now the integrand of (1) oscillates wildly,
one can anticipate that an averaging technique will
in general be unsuitable. This is true for any sys-
tem at Zw = E,, and it remains true for a metal
all the way down to w=0. In fact, one or more
averaging points may by chance fall very close to
the Fermi surface, and yield large meaningless
contributions to the sum. There is however
another circumstance, besides w << Eg/ﬁ, where
the mean-value-point technique should work well.
That is the opposite limit, of very large frequen-
cies, or w> Eg/h'. At such frequencies, well above
the most important interband transitions, the in-
tegrand in (1) becomes again a smooth function,
except for a few conduction bands that however
give a negligible contribution, and may be left out
of the summation. This idea might enable future
accurate calculations of, e.g., umklapp effects on
plasmons,?® both in metals and in

insulators.

In conclusion, we have shown how the mean-val-
ue-point technique can be successfully employed
for fast and efficient computations of dielectric
matrices of semiconductors and insulators and we
hope that this will open the way to extensive in-
vestigations of the dielectric properties of these
materials. The screening of periodic perturba-
tions through the concept of DM eigenvalues and
eigenpotentials,? the study of chemical trends,
the investigation of local field corrections and the
calculation of phonon frequencies are among the
applications that are presently under study and
which will be reported elsewhere.
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