
PH Y8ICA I, RK VIE% 8 VOLUME 17, NUMBER 12

Finite-energy f-sum rules for valence electrons
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Thc nuIQbcr of clcctrons effective in optical proccsscs up to an cncrgy co 5 iI(40) may bc dcflined in three

distinct vrays, a situation vrhich had led to considerable confusion. This is a consequence of the fact that
osciHator-strength sums may be constructed from the imaginary part of the dielectric function c,(eo), the

extinction coeNcient v(e), or the energy-loss function Imfe (ff))]. Here these quantities are investigated for
an electronic system embedded in a polarizable medium of dielectric constant e&. This model closely

approximates valcncc clcctlons moving ln the backgroUnd of polarizablc ion cores irl 8 condcnscd phase. Thc
oscIHator"strength sums arc found to differ SIgniflicantly and arc, not simply rclatcd at cncrgIcs for which the

embedded system s osciHator strength is not exhausted. In the lixrut in which exhaustion occurs, the sums

differ only because of the shielding effects of the polarizable medium. The f sum for ez(eo) then yields the
system's conventional osciHator strength while the f, sums for v(eo) and ImI'e '(co)] yield effective "strengths"
that are reduced from the conventional value by factors of c&

'" and a& ', respectively. Similar results hold

for the three dcfInitions of n, ft(eo). The analysis of 8 system in terms of partial f sums is shomx to provide a
check on the sdf-consistency of optical data as vveH as a means of determining core polarizabilities. These
effects are iHustrated for metaHic aluminum.

I. INTRODUCTION

The Thomas-Reiche-Kuhn f-sum rule' has proved
to be one of the principal guides to the analysis of
optical spectra. g The rule may be expressed in a
number of equivalent forms, ' but in all cases the
exact result involves knowledge of a function de-
scribing dissipative processes over all frequen
cies,

In the present paper @re consider a class of finite
f sums for a system embedded in a medium with

constant polarizability, a situation closely realized
in condensed phases by valence electrons moving
in the "medium" of the polarizable ion cores. It
is shown that partial f sums for the dielectric func-
tion, the extinction coefficient, and the energy-lose
functi. on differ because of the polarization of the
inner core levels. The results are then employed
to discuss the separation of valence-electron oscil-
lator strength from the effects of core polariza-
tion. The application of partial f sums as a self-
consistency check on optical data is demonstrated
for metallic aluminum.
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where &~ is the plasma frequency [4&&&'/m]~', &
denoting the electron density. While formally dis-
tinct, these rules have a common basis, in, causal-
ity and the equations of motion. '

In analogy with these f-sum rules lt has become
common practice to define the effective number
density of electrons contributing to the optical
properties up to an energy ~ by the partialf sums'

(d E'&((d ) d(d

(d K(CO )d(d

m
"«~(~) l, -~= s a

&u' Im[~"'(cu')] «'. (6)
The f sum rule may be written in three formally

distinct forms for the analysis of optical spectra.
These involve the imaginary part of the dielectric
function &,(+), the imaginary part of the refractive
index &(&o), and the energy-loss function Im[& '(&o)].
The three forms ares

pere the subscripts &, &, and & ' are used to dis-
tinguish the partial f sums involving &,(~), &(~),
and Im[& '(~)], respectively. For reference, ex-
amples of these partial f sums for a model insu-
lator and a model metal in free space are given in
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FIG. 1. Values of Reft (~) for R single Lolentz os-
cillator Inod«of an insulator (a) in free space (b)
embedded in a dielectric medium with die1ectgic con-
stant ef) =1.05. Curves marked e2, K, and Im(1 je) are
for the integrands cde2(m), cot(ar), and ap Im[e "l(cu)],
respectively. The Lorentz oscillator parameters used
r p

=
p and y= ~ (d (for definitions see Ref. 6).

H ') "{'H'

Gomparison with Eri. (5) shows that from &d =0 to
the point cd„where rr(&u') first passes through unity

Figs. 1(a) and 2(a), respectively.
The reason for the difference in these definitions

of rr«r(rd) is that the integrands describe different
properties of matter: e, ((d) is a measure of the

te of energy dissipation from an electromagnetic
wave, rr(rd) measures the decrease in amplitude o
the wave, and Im[e '(&d}] is related to the energy
lost by a fast charged particle.

The differences may be explicitly demonstrated
b writing the integrals in terms of common func-y
tions, say, the real and imaginary parts of the re-
fractive index, +(rd) and rr(rd), respectively. This
yields for Eris. (4) and {4)

r4ff((d)l~ =
2 2 f rd rr(rd )K(rd ) drd

'o I.O
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FIG, 2. Values of n

&&
(m) for a Drude metal (a) in

free space and (b) embedded jn a dielectric medium wi h
dl.electl'ic con8tRnt cy =1.05. The notRtlon is the same
as in Fig. 1 with parameters up=0 andy

Qp p.

rr «(")I.. =s «(")I.=s «(")l,-r =&

and

d(n. frl, } d{rr«rI„) d(rr«rI, ,)-
d CO d CO d(ut)

In a simple system such as a Drude metal' or the
single Lorentz oscillator model of an insulatore
rr(rd) crosses unity at only one finite value of ru.

Consequently in these systems ~, =~ and the or-
dering of Eq. (9) holds for all rd as is evident in
Figs. 1(a) and 2(a). In more complex systems in
which there can be multiple crossings of unity by
rr(rd) there does not appear to be a simple argu-
ment to establish the ordering of the values of
r4«(&d) for &u, &&d&ru„. However, recent studies of
aluminum and silicon by Shiles and Smith" and
polystyrene by Inagaki et gl."suggest that the or-
dering of Erl. {9)is often maintained in real ma-
terials.

«r(ru}lr "«~(rd)l» &«r(rd)l, -r,
' ce rr(rd)&1 in this range. Moreover, from &d„,smce

~ ~ ~ ~ Otthe highest finite value of rd for which &(rd) is um y,
to infinity @(&d)&1 so that the same equality must
hold, since
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HI. FINITE-ENERGY f SUMS

In general the three forms of xxexI(xu) bear no sim-
ple relation to one another. How&ever, in the ide-
alized ease in vrhieh the absorptions of a matex'ial
may be divided into vridely separated groups such
as valence-electron and core-electron absorptions,
a useful relation obtains. At enexgies less than
those for coxe excitations the valence or conduc-
tion electrons of such a system may be regarded
as moving in a transparent medium consisting of
the ion cores with a x'eal dielectric function &x(&u).

Then. for energy 4 large compared vrith the ab-
sorption of the valence electrons, but below those
for core excitations, the dielectx'ie function is real
and may be expanded'

lim e(&u) =ex(xu) —&u'~, „/&u'+ "~
where ~&, „

is the plasma frequency of the valence
ox conduction electxons. In the limit of cox'e exci-
tations lying at frequencies very high compared
with those fox valence electrons, g(xu} may be
taken as a constanty &y2 and the limits of the OPtl-
eal constants are

Ixm & (xu) =g - a/~ „/xu'+."
{d~Cp

lxxlx xx (4u) =Q —
Ix + ~ ~ ~

{xim {xi 2~ y

lim 8 x(tu)=e, '+ xu'~ „/8',&u'+" ~ .
{xf~{8

Finite f-sum rules may then be derived using stan-
dard methods employing a Cauchy-theorem inte-
gx ation about a semicircular path of radius in
the upper half plane. " The results are

&u'&, (&u') d&u' = —
Iud... (16)

(dp ~&u'Ix (Iu') d&u' ~— (17)
0

fd
& &p,e2

40 Im —,—dN = ——
6(xu )

Tllese Rx'8 exRc't Bl tile lxInxt of (u ~ (this IIIRy be
shovrn using supereonvergence methods~ vrith &, a
constant at all frequencies}. For finite X9 they are
accurate" to within terms of the order of Iud~, „(y/
4), where y is a damping constant equal to the
vridth at half maximum of the.valence-electron
plRBInoll I'esollRlxce xxx 1m[& ((u)].

Comparing these three finite-energy rules edith

the definitxons of Nexx(xu) yieMs

xx «(x9)IK =xx «(&)lc/~~5' (19)

xx «(d&)l,-x =xx,xx(dI)l, /e', .
That is,

xx «(dt)l. :xx «(19)l.:xx II{&)l.-x::I:&x~'.&x' .
Note that these ratios are in accord vrith the in-
equalities of Eq. (9) even though xx{xu) could cross
unity at many points below .

T116 convex'gence of the flQlte-enex'gy sum rules
xs ilhlstx'Rted xtx Figs. 1{b) Rnd 2 {b) fox' the sRIIle
Lorentz insulator and Drude metal as in Figs. 1(a)
and 2(a), but now assuxning them embedded in a
medium vzith a typical background dielectx ic con-
stant && =1.05. The three functions have the same
general shapes as the &, =1 curves of Figs. 1(a)
and 2(a); that is, they all rise monotonically from
& =0 reaching gx'adually rising plateaus beyond the
plasma frequency as the oscillator strength of the
embedded valence electrons is exhausted. How-
ever, in the present case the plateaus do not eoin-
eide, but have heights in the ratios of 1:&~~'„&,'.

IQ t11is hfgh-frequency limit the density of valence
elec tx'ons

N„=(xxx/4xxe')&u~x,
„ (22)

is directly gxvell by' xx«x{19)le I'egRI'dless of &y, whex'8-
as xxe«(&9)l„and xxe«(d})l,-x depend on &&. Thus, it is
consistent to identify Ne«(dx)l, as the number of elec-
trons effective in real processes up to energy ~.
On the other hand, Ne«{x9)l„and %«(&u)l;I both in-
volve && and measure not only real processes below
, but also virtual core-state processes above 8.

This point has practical consequences in the
analysis of electron energy-loss experiments
where Im(& '}is often incorrectly normalized by
applying the f-sum rule in the form of Eq. (18),
but vrithout accounting for the &2~ factor in the de-
nominator.

IV. EFFECTS OF FINITE w AND MSPERSION IN e& (u)

The xesults of Sec, III allo% the determination of
&& from the valence-electron spectrum provided @
is taken to a sufficiently high frequency that the
oscillator strength of the valence electrons is ex-
hausted. In practice, oscillator-strength exhaus-
tion is only appxoximately achieved before an x-
ray edge is encountered. Moreover, at higher en-
ergies dispersion in the background dielectric
function e, (tu) may become significant, invalidating
the approximation of a constant a, made in Eq. (12).
It is therefore of interest to consider how q ~ as de-
termined from values ofn„,{&u) differs from the

actual&, for f sums taken to a frequency tu that is
only a small multiple of ~~ „.

The values of && calculated from Eqs. (19) and
(20) uSxng values of xxeff(19) fx'onl tile model calcu
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FIG. 3. Apparent values of the background diel'ectx'ic

constant calculated from Eqs. (19), (20), and (23) as a
function of the upper limit of the finite f sums for a
xnodel insulator. Values of n,ff(m) shown in Fig. 1(b)
for the single Loxentz oscillator model with e& =1.05
were employed. The curve labeled f(:, e was calculated
via Eq. ils) from n«f/5) l„and a,frit) I, , simBarly e

e denotes the calculation based on Kq. (20) and f(:, e ~

the calculation using Eq. (23). At 4 =3' e (9)
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FIG. 4. Apparent values of the background d' l
constant calculated from Eqs. (19), (20), and (23) as a
function of the upper lixnit of the finite f sums for a
xnodel metal. Values of s0fg(02) fol the Drude metal
with e~ =1.05, similar to those shown in Fig. 2(b) were
Used the only change was to use ty values of i (g and
~ co rather than ~er than &&(d&. The y= &&(d& values pass between
the curves shown.

lations of Figs. 1(b) and 2(b) for && =1.05 are given
ln Figs. 3 and 4 Rs R function of + These appar-
ent values are denoted by g,,»(8). Curves labeled
&, & (dashed curve) and & ', & (solid curve) are the
values for t&ff(~)l, /s ff(~)l, ]' and ts «(~)l, /
+«f(&}l~-i] ', respectively. In the case of the Drude
metal (Fig. 4) sets of curves for two different val-
ues of the parameter' &u~/y are given The va.lue
&~/v= 20 is representative of metallic aluminum

o
e' I log IO4

ENERGY, (d(eV)

FIG, 5. Values of e,&&(Co) for metallic aluminum after
shBes and Smith, Ref. 7. Position of the three I edges
and the E edge are shown by arrows. Note that GO

exceeds 3 below the I- edge because of redistribution
of oscillator strength froxn the core electrons. The
core-electron oscillator strength is reduced by a cor-
responding amount so that the f sum rule is satisfied
by the atom as a whole.

tod IO5

near the plasma frequency.
In general the calculated values of &~(Q) are

greater than the actual background value. How-
evex, at frequencies greater than 2&&, the cal-
culated values approach the actual value rather
closely, and for representative values of the elec-
tron damping& +aigpp(~) 1 is within better than 5%
of g- j. by @=3~&,„.Thus it appears that values
of e& can be reliably estimated from +«f(Q) pro-
vided the upper limit of the f sum is chosen to be
several times the valence-electron. plasma fre-
quency, i.e., for frequencies at which values of
N«r((a&) have reached the slowly rising but parallel
plRte Rus.

An alternative means of calculating && is to elim-
inate +«r((c&)I, from Eqs. (19) and (20) to obtain

S=I: ~ (&)I./ ~ (+)I,- ]". (22)

In practice, this form is more useful than E
19 a

Rn qS,

dat
and (20) in the case of metals where opt 1x'e op lcR

a a in the far infrared is unreliable or lacking.
The x'eason is that the infrared portion of the spec-
trum makes a larger contribution to +«f(~)I, than
to either +en((u)IK or n«f(&)la ~ [see Figs. 2(a), 2(b4
and 5]. Consequently, calculation of && from Eq.
(22) is less sensitive to uncertainties in the infra-
red. The dependence of s (m) on

"
l

lated fr
on ~ Rs calcu-

a e rom Eq, (22) is similar to that for values
calculated fro m N«f(&)le and &«f()le-~ via Eq. (2o).

his is shown for the remodel examples by the dotted
curve labeled &, & ' in Fige. 3 and 4.

b
The qualitative effects of dlspex sion ma bl n may e seen

y R similar model calculation in which the RppRr-
ent values of the background g„»(~)is calculated
rom optical constants modeled with a dispersive

&&(&u). Qualitatively the result of such a calculation
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is that for dispersions of the magnitude found in
practice &&,,»(df)- I is a few percent greater than
if dispersion is neglected. Further, e, ,~e(d)) cal-
ClllRted fl'0111 fief)„and I4fg iS R1WRys SonleWIIR't

smaller than that calculated fro m tfeff ls-I and +«fls.
The reason is that ff(~} is appreciable at lower val-
ues of &o than Im[g '(rg} j and consequently samples
a somewhat smaller value of g„(fo).

V. n (u) FOR METALLIC ALUMINUM

As an example of the finite-energy f-sum rules
values of Ileff(&u) from the infrared to well beyond
the K-shell excitation energy for metaBic alumi=
num are shown in Fig. 5. The optical constants
used are those suggested by Shiles and Smith's'
analysis of currently available experimental dat@
for aluminum (see Sec. VI). The gross features
of these functions are representative of f4ff(fio) for
third-pex iod elements: the optical properties in
the infrared, visible, and ultraviolet are primarily
determined by 3s and 3P valence-electron excita-
tions; the L-shell excitations lie in the range from
30 to 250 eV and &-shell excitations occur between
1 and 3 keV." The oscillator strength of the three
valence electrons of the 3+'3$ configuration in alu-
minum is almost exhausted above the valence-elec-
tron plasma frequency at approximately 15 eV.
Above this the various values of fleff(co) Rll level off
forming three distinct but parallel plateaus, which
rise slowly from 20 eV to the I edge at 72.65 eV.
In this region the three values differ because of
the shielding effects of 1s, 2&, and 2P ion core
levels. Just below the I edge, ffeff(fd)js sR'tul'ates
at approximately 3.2 8/at. As discussed above,
this corxesponds to the conventional oscillator
strength. The fact that the valence-electron
strength exceeds 3 by some V% is a consequence
of the Pauli principle redistribution' "of oscil-
lator strength from core transitions which are
weakened by a corresponding amount. Above the
L II„IIedge the values of fleff(~) rise abruptly as the
eight ~ electrons contribute to direct optical pro-
cesses. The values of fleff(a&) draw together and by
several hundred eV they are indistinguishable to
within computational accuracy. In this range the
yolarizable background is that of the 1s core lev-
els only, and from the I edge to well beyond 700
eV the background dielectric function exceeds unity
by less than 10 s. The f sums again reach a pla-
teau as the L-shell oscillator strength is exhausted
only to rise again, at the & edge and saturn'„te at 13
8/at. in the high-frequency limit.

Over the range from 30 to V2.65 eV the ratios of
fleff(fsf)ls, ffsff(fed)l. , and ffsff(fsf)ls I Rl'8 CollstRQt to
within the aeeuracy of the calculation. Since there
are no data in the very far infrared, && is best
evaluated with Eq. (23). The results range from

1.044 at 30 eV to 1.03, at 72.5 eV.
An independent estimate of &&(&o) may be made

from a Kramers-Kronig transformation of &,(~)
omitting all absorytion below the L edge. This
yields a static dielectric constant of 1.03. There
is R slllR11 disP81'sioll lll &e(fd), bll't it I'8111Rllls RP-
proximately 1.03 up to 35 eV rising to 1.04 at 50
eV. The agreement between this and the values
given by Eq. (23) is well within the accuracy of
the calculation and is in accord with the model
proposed in See. GI.

The finite f-sum rules for the valence electrons
provide a useful test of the optical constants below
the onset of core excitations. As such they may be
employed to check the self-consistency of com-
posite data and Kramers-Kronig transforms. The
graph of eff in Fig. 5 employs optical constants
for aluminum, which were derived by a self-con-
sistent analysis of a variety of optical data, , in
which particular care was taken to treat the infra-
xed and x-ray regions as accurately as available
data would allow. However, the literature abounds
in data for which the infrared and x-ray spectra.
are neglected or inadequately treated, and in cases
for which the various valence oscillator-strength
sums are constrained to saturate to t e number of
valence electrons.

From the considerations of this paper it is
clear that neglect of the x-xay spectra leads to
equality of all values of fleff(&d) in the high-energy
limit, but on the average causes errors of the
order of &,- I, ~(&I, -I), and 2(cf, -1) in &(cd), II(~),
and & '(~), respectively. In our example of alumi-
num this can amount to 3% to 10%errors for e '(&o).

The relative importance of the infrared region
of the spectrum to the various f sums for a metal
can be seen from Figs. 2(a), 2(b), and 5. For alu-
lxllnums fleff{(d)) receives a major contribution from
below 0.1 eV, while N«f(~)l„and II ff(~)ls-I are In-
sensitive to the optical properties there. Conse-
quently, errors in the infrared x'egion will be re-
flected primarily in n,«(fd) ~,. In particular, neglect
or underestimation of the infrared absorption causes
flsff(&u)j« to be too small and to fall below II«f(fed)[„and
jeff(co)g-I Rt lllgh fl'eqllellcles ~ Tllls ls R conllnoll
feature of a number of published compilations"
and suggests incorrect or inadequate extrapolation
in the infrared. .
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