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The number of electrons effective in optical processes up to an energy o, ng{w), may be defined in three
distinct ways, a situation which had led to considerable confusion. This is a consequence of the fact that
oscillator-strength sums may be constructed from the imaginary part of the dielectric function €,(w), the
extinction coefficient (o), or the energy-loss function Im[e~!(w)]. Here these quantities are investigated for
an electronic system embedded in a polarizable medium of dielectric constant €,. This model closely
approximates valence electrons moving in the background of polarizable ion cores in a condensed phase. The
oscillator-strength sums are found to differ significantly and are not simply related at energies for which the
embedded system’s oscillator strength is not exhausted. In the limit in which exhaustion occurs, the sums
differ only because of the shielding effects of the polarizable medium. The f sum for €,(w) then yields the
system’s conventional oscillator strength while the f sums for k(w) and Im[e~!(w)] yield effective “strengths”
that are reduced from the conventional value by factors of €;!/? and €;2, respectively. Similar results hold
for the three definitions of n(w). The analysis of a system in terms of partial f sums is shown to provide a
check on the self-consistency of optical data as well as a means of determining core polarizabilities. These
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effects are illustrated for metallic aluminum.

1. INTRODUCTION

The Thomas-Reiche-Kuhn f-sum rule! has proved

to be one of the principal guides to the analysis of
optical spectra.? The rule may be expressed in a
number of equivalent forms,® but in all cases the
exact result involves knowledge of a function de-
scribing dissipative processes over all frequen-
cies.

In the present paper we consider a class of finite
f sums for a system embedded in a medium with
constant polarizability, a situation closely realized
in condensed phases by valence electrons moving
in the “medium” of the polarizable ion cores.,* It

is shown that partial f sums for the dielectric func-
tion, the extinction coefficient, and the energy-loss

function differ because of the polarization of the
inner core levels, The results are then employed

to discuss the separation of valence-electron oscil-

lator strength from the effects of core polariza-
tion. The application of partial f sums as a self-
consistency check on optical data is demonstrated
for metallic aluminum,

IL. PARTIAL f SUMS AND 7, (w)

The f sum rule may be written in three formally
distinct forms for the analysis of optical spectra.
These involve the imaginary part of the dielectric
function €,(w), the imaginary part of the refractive
index #(w), and the energy-loss function Imfe™!(w)].
The three forms are?

0
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where w, is the plasma frequency [47Ne?/m]V2, N
denoting the electron density, While formally dis-
tinct, these rules have a common basis in causal-
ity and the equations of motion.®

In analogy with these Jf-sum rules it has become
common practice to define the effective number
density of electrons contributing to the optical
properties up to an energy w by the partial f sums?
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w
Nesi(w)) | 1= —ﬁngl‘e*z' j; w’ Im[€'1(w')] dw’, (6)

Here the subscripts €, «, and €”! are used to dis-
tinguish the partial f sums involving €,(w), K(w),
and Im[e"1(w)], respectively. For reference, ex-
amples of these partial f sums for a model insu-
lator and a model metal in free space are given in
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FIG. 1. Values of n.; (w) for a single Lorentz os-
cillator model of an insulator (a) in free space (b)
embedded in a dielectric medium with dielectyic con-
stant €, =1.05. Curves marked €, k, and Im(1/€) are
for the integrands we,(w), wk(w), and w Im[e 1 (w)],
respectively. The Lorentz oscillator parameters used
are w, =w, and 'y=faw0 (for definitions see Ref. 6).

Figs. 1(a) and 2(a), respectively.

The reason for the difference in these definitions
of neit(w) is that the integrands describe different
properties of matter: €,(w) is a measure of the
rate of energy dissipation from an electromagnetic
wave, k(w) measures the decrease in amplitude of
the wave, and Imle~!(w)] is related to the energy
lost by a fast charged particle.

The differences may be explicitly demonstrated
by writing the integrals in terms of common func-
tions, say, the real and imaginary parts of the re-
fractive index, 7(w) and k(w), respectively, This
yields for Eqs. (4) and (6)

Rei(w)]e = ;;ne_é_ fw w'n (w’)K(w')‘dw' 7N
and
m Y ’ n(w') ' ’
Rett(W)le-1 = — /0- ©' BE) 1 2 (@) E k(w')dw',
®)

Comparison with Eq. (5) shows that from w =0 to
the point w,, where 7(w) first passes through unity
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FIG. 2. Values of n (w) for a Drude metal (a) in
free space and (b) embedded in a dielectric medium with
dielectric constant €, =1.05. The notation is the same
as in Fig. 1 with parameters w;=0 and y=Fw,.

neff(w)‘e > neff(w)lx > neff(w)le"l s 0<w< O)l s (9)

since #(w)>1 in this range. Moreover, from w,
the highest finite value of w for which #(w) is unity,
to infinity #(w)<1 so that the same equality must
hold, since

Peft(® Ve =Pete( )| =Mefe(*0 )|e-1 =N (10)
and .

dertle) _ dOru) _ d(terde)
dw dw dw ’

w,,<w<°°. (11)

In a simple system such as a Drude metal® or the
single Lorentz oscillator model of an insulator®
n(w) crosses unity at only one finite value of w,
Consequently in these systems w, =w, and the or-
dering of Eq. (9) holds for all w as is evident in
Figs. 1(a) and 2(a). In more complex systems in
which there can be multiple crossings of unity by
n(w) there does not appear to be a simple argu-
ment to establish the ordering of the values of
Refe(w) for w, > w>w,, However, recent studies of
aluminum and silicon by Shiles and Smith®° and
polystyrene by Inagaki et all° suggest that the or-
dering of Eq. (9) is often maintained in real ma-
terials,
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III. FINITE-ENERGY f SUMS

In general the three forms of 7teti(w) bear no sim-
ple relation to one another. However, in the ide-
alized case in which the absorptions of a material
may be divided into widely separated groups such
as valence-electron and core-electron absorptions,
a useful relation obtains. At energies less than
those for core excitations the valence or conduc-
tion electrons of such a system may be regarded
as moving in a transparent medium consisting of
the ion cores with a real dielectric function €,(w).
Then for energy @ large compared with the ab-
sorption of the valence electrons, but below those
for core excitations, the dielectric function is real
and may be expanded®

lim €(w) =€,(w) - W% ,/W? 4 o0, (12)-
wsw

where w,,, is the plasma frequency of the valence
or conduction electrons. In the limit of core exci-
tations lying at frequencies very high compared
with those for valence electrons, €(w) may be
taken as a constant, €,, and the limits of the opti-
cal constants are

hn’} G((._U) =€ — w’,',,/wz oo (13)
ws
. Y w?
U];B‘l‘al,n(w)_eb 2~§a§wvz‘_+.." (14)
and » '
lim €71(@) =651+ @y /€Wt suee | (15)
wew

Finite f-sum rules may then be derived using stan-
dard methods employing a Cauchy-theorem inte-
gration about a semicircular path of radius @ in
the upper half plane.!' The results are

o T
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These are exact in the limit of @ - (this may be
shown using superconvergence methods* with w, a
constant at all frequencies). For finite ® they are
accurate'? to within terms of the order of w?,,,(v/
@), where v is a damping constant equal to the
width at half maximum of the valence-electron
plasmon resonance in Imle™!(w)].

Comparing these three finite-energy rules with
the definitions of #er(w) yields

nete(@)]c =nere(@)]e/€ 2 (19)

and

n"ff(a)le' 1 =n°ff(a )le/ €§ . (2 0)
That is,
Tege(D)|e : Hest(D W2 eri(@®)]e-1::1:€ ;vl/z 62, 21)

Note that these ratios are in accord with the in-
equalities of Eq. (9) even though 7 (w) could cross
unity at many points below @,

The convergence of the finite-energy sum rules
is illustrated in Figs. 1(b) and 2(b) for the same
Lorentz insulator and Drude metal as in Figs, 1(a)
and 2(a), but now assuming them embedded in a
medium with a typical background dielectric con-
stant €,=1.05, The three functions have the same
general shapes as the €, =1 curves of Figs. 1(a)
and 2(a); that is, they all rise monotonically from
w =0 reaching gradually rising plateaus beyond the
plasma frequency as the oscillator strength of the
embedded valence electrons is exhausted. How-
ever, in the present case the plateaus do not coin-
cide, but have heights in the ratios of 1:6;’/2;e;2 .

In this high-frequency limit the density of valence
electrons

N, =(m/41e?)w3,, (22)

is directly given by %eu(®)| regardless of €, where-
as Ne(®)|, and 7err(d)|e-1 depend on €,. Thus, it is
consistent to identify 2e(®)| as the number of elec-
trons effective in real processes up to energy w,
On the other hand, 7ett(®)|, and etr(Q)le-1 both in-
volve €, and measure not only real processes below
@, but also virtual core-state processes above @,
This point has practical consequences in the
analysis of electron energy-loss experiments
where Im(€™!) is often incorrectly normalized by
applying the f-sum rule in the form of Eq. (18),
but without accounting for the € factor in the de-
nominator,

IV. EFFECTS OF FINITE ¢ AND DISPERSION IN €, (w)

The results of Sec, III allow the determination of
€, from the valence-electron spectrum provided @
is taken to a sufficiently high frequency that the
oscillator strength of the valence electrons is ex-
hausted. In practice, oscillator-strength exhaus-
tion is only approximately achieved before an x-
ray edge is encountered. Moreover, at higher en-
ergies dispersion in the background dielectric
function €(w) may become significant, invalidating
the approximation of a constant ¢, made in Eq. (12).
Itis therefore of interest to consider howe ,as de-
termined from values of n,(w) differsfrom the
actual e, for f sums taken to a frequency & that is
only a small multipleof w, .

The values of €, calculated from Eqs. (19) and
(20) using values of 7ei(®) from the model calcu-
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FIG. 3. Apparent values of the background dielectric
constant calculated from Egs. (19), (20), and (23) as a
function of the upper limit of the finite f sums fora
model insulator. Values of . (w) shown in Fig. 1(b)
for the single Lorentz oscillator model with €, =1.05
were employed. The curve labeled k, € was calculated
via Eq. (19) from 7 (0)], and neg(®)|., similarly €71,
€ denotes the calculation based on Eq. (20) and k, €™
the calculation using Eq. (23). At@=3w; €, ,,; &)
differs from ¢, by less than 0.001 for all calculations.

lations of Figs. 1(b) and 2(b) for € =1,05 are given
in Figs, 3 and 4 as a function of ®, These appar-
ent values are denoted by €,,,,p(@). Curves labeled
k,€ (dashed curve) and €”!, € (solid curve) are the
values for [Retr(w)|e/Meti(w)c [2 and [#est(w)]e/
neff(w)lg'l]l/z, respectively. In the case of the Drude
metal (Fig. 4) sets of curves for two different val-
ues of the parameter® w,/y are given. The value
w,/v=20 is representative of metallic aluminum

LI

T
! €5, app () FOR A DRUDE METAL
(R[e) ! e
H A
.09} | I
i
= i _
<3 o8t '\ 1 €= 1.05
§ L
& .07+ \\
w L
\,
106 Y =wp/20\
.05 —
104 L s !
o | 2 3 ) 4

W/ Wp
FIG. 4. Apparent values of the background dielectric
constant calculated from Egs. (19), (20), and (23) as a
function of the upper limit of the finite f sums for a
model metal. Values of % . (w) for the Drude metal
with €, =1.05, similar to those shown in Fig. 2(b) were
used; the only chailge was to use vy values of %wp and

%“*’p rather than {5w,. They =%wp values pass between

the curves shown.
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FIG. 5. Values of .y (@) for metallic aluminum after
Shiles and Smith, Ref. 7. Position of the three L edges
and the K edge are shown by arrows. Note that ngdw)l .
exceeds 3 below the L edge because of redistribution
of oscillator strength from the core electrons. The
core-electron oscillator strength is reduced by a cor-
responding amount so that the f sum rule is satisfied
by the atom as a whole.

near the plasma frequency.

In general the calculated values of €,(®) are
greater than the actual background value, How-
ever, at frequencies greater than 2w,,, the cal-
culated values approach the actual value rather
closely, and for representative values of the elec-
tron damping, €,.(w)—1 is within better than 5%
of € —1by ®=3w,,,. Thus it appears that values
of €, can be reliably estimated from #es(®) pro-
vided the upper limit of the f sum is chosen to be
several times the valence-electron plasma fre-
quency, i.e., for frequencies at which values of
neri(w) have reached the slowly rising but parallel
plateaus.

An alternative means of calculating €, is to elim-
inate 7er(w)| from Eqs. (19) and (20) to obtain

& =[ete(@)]c /Metr(®)|e-1122 . ©3)

In practice, this form is more useful than Egs.
(19) and (20) in the case of metals where optical
data in the far infrared is unreliable or lacking.
The reason is that the infrared portion of the spec-
trum makes a larger contribution to Zes(w)| than
to either 7ef(w)|, or 7er(w)le-1 [see Figs. 2(a), 2(b),
and 5]. Consequently, calculation of €, from Eq.
(23) is less sensitive to uncertainties in the infra-
red. The dependence of €, , (&) on & as calcu-
lated from Eq. (23) is similar to that for values
calculated from 7er(®)|e and 7ett(®)|-1 via Eq. (20).
This is shown for the model examples by the dotted
curve labeled k,€7! in Figs. 3 and 4. ‘
The qualitative effects of dispersion may be seen

by a similar model calculation in which the appar-
ent values of the background €, ,,,(®) is calculated
from optical constants modeled with a dispersive
€(w). Qualitatively the result of such a calculation
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is that for dispersions of the magnitude found in
practice €, sp(®@) -1 is a few percent greater than
if dispersion is neglected. Further, €, .(®) cal-
culated from et and %erle is always somewhat
smaller than that calculated from #.ss -1 and Perde.
The reason is that «(w) is appreciable at lower val-
ues of w than Im[e™(w)] and consequently samples

a somewhat smaller value of eb(w).
V. n_;.(w) FOR METALLIC ALUMINUM

As an example of the finite-energy f-sum rules
values of Zef(w) from the infrared to well beyond
the K-shell excitation energy for metallic alumi-
num are shown in Fig. 5. The optical constants
used are those suggested by Shiles and Smith’s®
analysis of currently available experimental data
for aluminum (see Sec. VI). The gross features
of these functions are representative of #er(w) for
third-period elements: the optical properties in
the infrared, visible, and ultraviolet are primarily
determined by 3s and 3p valence-electron excita-
tions; the L-shell excitations lie in the range from
30 to 250 eV and K-shell excitations occur between
1 and 3 keV.'* The oscillator strength of the three
valence electrons of the 3s23p configuration in alu-
minum is almost exhausted above the valence-elec-
tron plasma frequency at approximately 15 eV,
Above this the various values of %err(w) all level off
forming three distinct but parallel plateaus, which
rise slowly from 20 eV to the L edge at 72.65 eV.
In this region the three values differ because of
the shielding effects of 1s, 2s, and 2p ion core
levels. Just below the L edge, nete(w)e saturates
at approximately 3.2 e¢/at, As discussed above,
this corresponds to the conventional oscillator
strength. The fact that the valence-electron
strength exceeds 3 by some 7% is a consequence
of the Pauli principle redistribution®'* of oscil-
lator strength from core transitions which are
weakened by a corresponding amount. Above the
Lyy, 111 edge the values of 7eir(w) rise abruptly as the
eight"L electrons contribute to direct optical pro-
cesses. The values of #terr(w) draw together and by
several hundred eV they are indistinguishable to
within computational accuracy. In this range the
polarizable background is that of the 1s core lev-
els only, and from the L edge to well beyond 700
eV the background dielectric function exceeds unity
by less than 107%, The f sums again reach a pla-
teau as the L-shell oscillator strength is exhausted
only to rise again at the K edge and saturate at 13
e/at. in the high-frequency limit,

Over the range from 30 to 72.65 eV the ratios of
Aer(w)le, Mesr(w)lc, and Best(w)|e-1 are constant to
within the accuracy of the calculation. Since there
are no data in the very far infrared, ¢, is best
evaluated with Eq. (23). The results range from

1.04, at 30 eV to 1.03; at 72,5 eV,

An independent estimate of €,(w) may be made
from a Kramers-Kronig transformation of €,(w)
omitting all absorption below the L edge. This
yields a static dielectric constant of 1.03. There
is a small dispersion in €(w), but it remains ap-
proximately 1.03 up to 35 eV rising to 1,04 at 50
eV. The agreement between this and the values
given by Eq. (23) is well within the accuracy of
the calculation and is in accord with the model
proposed in Sec, III,

VI. SELF-CONSISTENCY TESTS

The finite f-sum rules for the valence electrons
provide a useful test of the optical constants below
the onset of core excitations. As such they may be
employed to check the self-consistency of com-
posite data and Kramers-Kronig transforms. The
graph of % in Fig. 5 employs optical constants
for aluminum, which were derived by a self-con-
sistent analysis of a variety of optical data, in
which particular care was taken to treat the infra-
red and x-ray regions as accurately as available
data would allow. However, the literature abounds
in data for which the infrared and x-ray spectra
are neglected or inadequately treated, and in cases
for which the various valence oscillator-strength
sums are constrained to saturate to the number of
valence electrons.

From the considerations of this paper it is
clear that neglect of the x-ray spectra leads to
equality of all values of Zeff(w) in the high-energy
limit, but on the average causes errors of the
order of €,—1, 3(¢—1), and 2(¢,—1) in € (), #(w),
and €”'(w), respectively. In our example of alumi-
num this can amount to 8% to 10% errors for € *(w).

The relative importance of the infrared region
of the spectrum to the various f sums for a metal
can be seen from Figs. 2(a), 2(b), and 5. For alu-
minum, %ee(w)| receives a major contribution from
below 0.1 eV, while %Zetr(w)|, and Besr(w)l-1 are in-
sensitive to the optical properties there. Conse-
quently, errors in the infrared region will be re-
flected primarily in n,4,(w)|.. Inparticular, neglect
or underestimation of the infrared absorption causes
Rer(w)le to be too small and to fall below 7eft(w)l and
ﬂefi(w)le“l at high frequencies. This is a common
feature of a number of published compilations!®
and suggests incorrect or inadequate extrapolation
in the infrared.
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