
PHYSICAL REVIEW 8 VOI, UME 17, NUMBER 12 15 JUNE 1978

R. G. Munro
Institute for Materials Research, Rational Bureau of Standards, Washington, D. C. 20234

(Received 30 January 1978)

The variation of electron exchange integrals in solids subjected to hydrostatic pressures P is considered by
examining a prototype exchange integral J. The quantity (1/J)(dJ/dP) is determined within the context of
a theory of solids under hydrostatic pressures in which the application of pressure is represented in terms of
the crystal compressibility and two parameters which are associated with electronic screening and wave-

function-distortion effects. Pressure variations of magnetic-phase boundaries, exchange-enhanced
susceptibilities, and exchange interactions of pairs of Cr'+ ions in ruby are considered as examples of the
applications of the results.

I. INIODUCTION

The development of the diamond anvil celV' and
the ruby pressure scale' 4 has made the attain-
ment of measurements at large hydrostatic pres-
sures (-100 kbar) a routine operation As .a con-
sequence, the investigation of the variation of
properties of solids as a, function of pressure has
become an increasingly employed experimental
research technique. To obtain the full utility of
the method, one should understand what effects
are produced microscopically in the solid due to
the applied pressure.

It is clear that the volume of the unit cell, or the
internuclear distance, should change with in-
creasing pressure, but is this a sufficient repre-
sentation of pressure P It appea. rs"" ' that other
features must be significant, the most important
of which ought to be electron-screening effects
and wave-function distortions. Such features can
be expected to be significant in the production of
frequency shifts in optical spectra and in the pro-
duction of bandwidth and gap variations in band
structures.

Qne example which clearly emphasizes the in-
adequacy of a compressibility-only pressure
theory is given by the behavior of the ruby R lines.
The interparticle distances can be varied. by ap-
plying pressure at constant temperature or by
increasing the temperature at constant applied
pressure. The former approach decreases the
interparticle distances, while the latter increases
them. In both cases, the frequency shifts of the
R lines are in the same direction. '"'" Therrnal-
frequency shifts are well understood'P theoretical-
ly, while the pressure shift is in the wrong direc-
tion if only compressibility is considered in a
point-charge model in crystal-field theory.

To obtain a physical picture of other effects that
can occul when pressul e ls applied„ lmaglne a
single ion surrounded by a crystal lattice. The

application of pressure causes the lattice to press
in on the ion, and as a result, the electron cloud
of the ion can be expected to shrink or distort in
response. This suggests that there can be two
charge related effects: (i) The wave function of the
ion of interest is subject to distortion; and (ii)
the electron cloud distribution giving rise to a
crystal field can also be disturbed, so the crystal
field strength can be correspondingly perturbed.

In a previous work, "a theoretical treatment of
the frequency shifts of five transitions of the single
Cr" ion spectra of ruby has been presented with
satisfactory results. In this theory, two pararn-
eters t A (P) and Q(P'), are introduced ln addition
to the crystal compressibility to represent the
effects of pressure as an effective change in in-
teraction strengths (scaling hypothesis). To see
how this comes about, consider the following.
Before a pressure is applied, the system is char-
acterized by a Hamiltonian H„a state space on
which H, acts, and subsidiary conditions such as
boundary conditions and the requirement of ther-
mal equilibrium. After pressure is applied, a
new Hamiltonian H(P) =H,'+ V(P) can be used where
Hp ls the sarne as Hp except that equilibrium pa-
rameters in Hp are replaced by their new values
at pressure P. The pressure potential V(P) con-
tains any explicit pressure dependence, and V(0)
=0

If the pressure potential is set equal to zero
for all I', the resulting approximation is the one
in which only a volume effect, or a change of in-
terparticle distances, occurs. Hence, V(P)c 0
must account for the charge related pressure
effects. Suppose now that the system described by
H(P) is allowed to be formed as a condensation of
loose atoms. In this "equivalent pressure free"
system, it is clear that the interparticle interac-
tion strengths must be modified from those of the
initial system. These two thoughts are combined
if one postulates a scaling of the charge related
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coupling constants which can be written in the
forms e'-A(P}e2 and Z-Q(P}ZIA(P}. The quan-
tity e' is the square of an electronic charge and
Z is the effective charge number of the nuclear
unit (which may include closed electron shells).
This mapping is equivalent to saying that V(P) is
a sum of pairwise Coulombic potentials V,&(P)

~,(P)~,(P)/~, „with (~,/e)' =1 —A(J ) and

(&,/8)(&„/Z„e) =Q(P) —1. The result is an energy-
level scheme at pressure P&0 that is simply iso-
morphic to the I' =0 scheme.

Although A(P) and Q(P) are introduced as for-
mal mapping parameters, their physical inter-
pretations are the desired screening and dis-
tortion features noted above. A(P) is associated
with electronic screening since the ion-crystal
field interaction is scaled by the mapping O' A
&& (P)e'. Q(P) is associated with wave-function
spread or distortion. For example, following
Ref. 12, one finds, for ruby, (1/(r))d(y)/dP
= —dQ/dP, so that variation" of the radial extent
of the electron cloud is determined by Q(P). Thus,
A(P), Q(P), and the crystal compressibility,
v =- (1/V)dV/dP, provide a representation of the
more important features of the application of
pressure.

In this paper, an attempt is made to use this
scaling theory to estimate the effect of hydro-
static pressure on electron exchange integrals
and to determine, in particula'r, the extent to
which exchange is affected by the screening and
distortion parameters A and Q.

An understanding of the variation of exchange
integrals is relevant to numerous physical proper-
ties since exchange is an inherent part of many-
electron systems. For example, in the theory of
magnetism, magnetic phase boundaries are often
discussed in terms of bilinear electron (Heisen-
berg) exchange and sometimes biquadratic elec-
tron exchange. It has been assumed that the de-
tails of these boundaries in the exchange param-
eter space for any particular magnetic sample are
rather academic since the exchange integrals are
constants. However, under the application of
large hydrostatic pressures, small variations of
exchange integrals can be produced. Consequently,
it is possible that small regions of the exchange
parameter space can be explored if the variation
of the exchange integrals can be distinguished
from other pressure effects.

Closely related to the study of magnetic phase
boundaries is the occurrence of exchange-en-
hanced Van Vleck susceptibilities that have been
noted' in some singlet-ground-state rare-earth
compounds. In these systems, the Van Vleck
susceptibility provides information on the crystal-
field splitting of the ground state and the first ex-

cited state. If the susceptibility is exchange en-
hanced, the variation of the exchange parameter
with pressure must be known before the variation
of this splitting can be fully analyzed.

Interatomic exchange interactions also occur
directly in the study of optical spectra. Especial-
ly interesting is the study of the spectra of ini-
purity ions in a solid host. At low concentrations
of the impurity, the spectra of. a single ion in the
crystal field of the host is observed. Increasing
the concentration eventually leads to interacting
pairs of impurity ions in which case an exchange
interaction can be involved.

Each of the foregoing situations is considered
in Sec. III on the basis of the results for the pres-
sure variation of exchange determined within the
context of the scaling theory of solids under hydro-
static pressures. The latter analysis is given in.

Sec. II. In Sec. III, the variation of a magnetic
phase boundary is discussed as a change in the
mean-f ield-theory Curie temperature. Second,
exchange enhancement of susceptibilities is con-
sidered in the form' ll =X/(1 —Xy). Third, a,

specific application to optical spectra is presented
for interacting pairs of Cr" ions in ruby.

Consider an exchange integral defined at zero
pressure to be

1 8$
=y(~, A, Q), (2a)

The wave function $,.(r) = $(r —r, ) is a one-electron
state at sites, and x» =

( r, —r, [. We seek the
pressure dependence of expression (1) in the form
(1/J)dJ/dP which is to be approximately determined
as a function of A, Q, and the compressibility N;.

The ratio of J and its pressure derivative is used
so that we do not become involved with the detailed
difficulties of evaluating expression (1}. One might
expect the dependence of the ratio on the com-
pressibility and the scaling parameters to be more
accurately obtained from roughly approximated
wave functions than could be J itself since (1/J)
x dJ/dP = d(lnJ)/dP, and the logarithm varies slow-
ly. Use of the ratio also preserves for J its usual
role as a phenomenological parameter at I'=0. .

For the moment, let us assume that the one
electron states $ and Q have been determined by,
e.g. , a Hartree-Pock self-consistent-field theory.
We make the reasonable assumption that the frac-
tional variations of these functions can be written
as functions of x, A, and Q, i.e. ,
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1 9(It)——=g(~, A, n) .BI (2b)

x [ r,. VP*(r, —r~)+ rq ~ Vy(r, —rq)] .

Equation (4) gives the basic approximation of
the pressure variation of the exchange parameter
J'. The functions f and g depend on the initial states
$ and Q and, consequently, depend on both the
electronic configuration (quantum numbers nf) and
the spacial configuration of the neighbors which
give rise to the local crystal field. Numerical
evaluations of f, g, and the last quantity in Eq.
(4) could be obtained for specific cases if a per-
turbRtlon RpproRch w'ele used with R model CRl-

culation; e.g. , a point charge model could be used
for the crystal field. Bather than follow this pro-
cedure here, we take a simpler approach which
permits us to obtain an estimate of expression (4)
in a useful analytical form.

Several approximations are used. Firstly, it is
assumed that the major contribution to the wave-
function distortion occurs due to the radial part
of the wave function, R(x), so that (I/$)(B$/BP)
=(1/R)(BR/BP) This is app.ropriate for cases in
which the site symmetry is unchanged or negligi-
bly changed, as, e.g. , in ruby. "-"

The second approximation is to select a radial
wave function indicRtive of the exchanging elec-
trons. For simplicity of presentation, a discussion
appropriate for the ruby example is given. here and
generalized somewhat at the end. For Cr", a
3d-type function is needed. We obtain an approxi-
rnation by considering a hydrogenlike function. '8

With the scaling parameters, the 3d radial function
can be written

R(x) =07~'e ~~~~'6"R (P =0),
R (P=0) =[9(30)'~'] "(Z/a )'~'p'8»'

(5)

(6)

Next, note that the number ~» in definition (1)
contains an implicit dependence on the distance
between the interacting ions and, hence, the com-
pressibility. This dependence could be shown ex-
plicitly if the integration variables were chosen
such that r, =0 at site i and r, =0 at site j. Then,
~„=((r, .—r,)+ (r, —r J) [, and we have

(I/~„,) 'd(1/~„)/dP=-', ~ .
Allowing for screening, the pressure variation of

J' is produced by differentiating Eq. (1) with respect
to I'. Taking r,. =0,

1 dJ dP
J dI' 3
——= —+2f(v A fI)+2g(v A 0)+-

dP

—=-,'(V —pQ)Q '1 88 ~ „~dQ
(Va)

It would be quite natural to employ the approxima-
tion p=. (p& in Eq. (Va). However, in forming an
Bpproxlmation, it is advantageous to use our
knowledge of how the approximated quantity is to
be utilized in subsequent calculations so that as
much numerical accuracy as possible is retained
while greatly simplifying the analysis. Since we
are interested in electron exchange, consider the
average radial extent &x& of a 3d electron:

r 'd~R+(~)rR(r) .

It follows easily from relations (5) and (6), that:

&~&-'d(~) (p'), dn
&p)

Since we also have

d&r&
dI'

(Vb)

a reasonable approximation is to set

(1/R)BR, (p'& dn
BP (p) dP

The difference between (Vd) and (Va) is that (p'&/
(p& is used instead of (p&. The achievement is
a somewhat better numerical accuracy in the
measure of the radial extent of an electron cloud
which is a significant consideration for exchange
problems.

For sufficiently well separated ions, let us con-
tinue with the emphasis on the radial contribu-
tions to Eq. (4). In particular, consider next the
approximation

/~8' p eg
8g 9p

(6)

where p, =2Zc/3a„and c is the distance between
the ions. With Eqs. (5) and (6), Eq. (6) can be
written Rpproximately as

, ~ ve =(2&p./p& ——.
' p.fl)R .

where p =2Zx/3ao, Z is the effective nuclear charge
number, a, is the Bohr radius, and we have written
Q =1+CA.

'
Equation (5) holds specifically when the zero

pressure function is given by Eq. (6). We rely on
Eq. (6) to provide a guide to the selection of ap-
proximations, but the final results are stated in a
form that does not depend on the explicit function
(6). Assuming the 0 dependence in Eq. (5) is then
somewhat better than a strictly hydrogenlike ap-
proxlm Rtlon.

From Eq. (5), we find
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Setting f=g and using relations (7c) and (9) in
expression (4) yields

1 dJ 1 p~1+p —4JdP 3 '
p

(p') dQ dA

p dP dP (10)

Equation (10) estimates the variation of the ex-
change parameter J for 3d electrons. To the
same approximation, this relation can be deter-
mined as easily for the configurations n/ =1s, 2P,
3d, 4f, . . . ; i.e. , f =n —1. For these electrons,

1 dJ' 1 p1+p, —, 4 ~
J dp 3 ''

p

(p) dQ dA
+ 2 2 Ivl + 1

dP
+

dP 7

where now we must use

p, =2Zc/na, . (12)

The average values in Eq. (11) are computed, of
course, as expectation values in the state nl.

Equation (11) involves both a magnitude and an
algebraic sign for the relative shift of an exchange
integral. The approximations involved to obtain
this result are rather rough, but they have been
selected in a manner which attempts to preserve
the order of magnitude of the most important con-
tributing factors. Hence, the order of magnitude
predicted by Eq. (11) should be correct. The
terms of Eq. (11) represent the contributions of
three different effects. Since each term is subject
to the same approximations, a necessary condition
for the preservation of the relative contribution of
each term to the shift, and hence the algebraic
sign of the shift, is met. It is seen in the follow'-

ing sections that the separate contributions of the
terms are qualitatively reasonable also.

III. APPLICATIONS

In this section, the application of the results of
Sec. II is considered for each of the three cases
noted in Sec. I. A very simple example is the
direct application to the variation of a magnetic,
phase boundary which can be discussed as a change
in the critical temperature T,. In mean-fieM theo-
ries of magnetic systems with Heisenberg ex-
change, it is well known that the Curie tempera-
ture is directly proportional, to an exchange inte-
gral. One thus finds immediately that

1 dT 1 dJ
T, dP J'dP

Even in the case of nonordering, singlet ground
state systems, exchange interactions can occur,

yielding an observably"' enhanced Van Vleck sus-
ceptibility. One general representation" of an
enhanced susceptibility is given by the relation

x =x/(1-&x), (14)

where x, ~„and ~ are P =0 crystal-field param-
eters whose values for PrSb are' x =- 0.966, A, /&
=5.25. For the praseodymium ion, p, -6 and
(1/p) - —,'. With XX„=0.2 and x =1.96 x 10 ' kbar ',
Eq. (15) gives

(1/X )dX, , dA 3.6dQ

The observed value is 7 x 10 kbar '. Taking -dA/
dP-dQ/dP) 0, we estimate dQ/dP-2 x 10-'
kbar '.

As a third example, the occurrence of exchange
variation in the optical spectra of Al,O, :Cr" is
considered for which case sufficient experimental
information is already available so that theoretical
numerical results can be obtained. Evaluation of
the numbers dA/dP and dQ/dP has been ac-
complished previously" for ruby by considering
the single ion optical spectra of the Cr" ions in
Al, O, . Consequently, the order of magnitude of
the pressure variations of the exchange interac-
tions of pairs of Cr" ions can be estimated using

where X is the unenhanced susceptibility and & is
a constant proportional to J. In Hef. 6, an en-
hancement of 25% (XX-5) has been noted at P =0,
for cases of Van Vleck susceptibility, so enhance-
ment can be quite significant. From Eq. (14), it
is seen that the enhanced susceptibility has a
pressure variation given by

1 dy„ 1 dx 1 dJ———"=(1+XX ) ——+xX (15)
dP XdP J dP

The first term on the right-hand side in Eq. (15)
gives the contribution due to a change in the un-
enhanced susceptibility which can be found in
terms of crystal field parameters, the compres-
sibility, and the scaling parameters. A discussion
of this term has been given for a special ease in
Ref. 9. The second term in Eq. (15) is the con-
tribution due to exchange, and this term is given
by Eq. (11).

The special case discussed in Ref. 9 is ap-
plicable to the enhanced Van Vleck susceptibility
of PrSb. Insofar as the available data permits,
consider the pressure dependence for this problem
according to Eq. (15). The pressure variation of
the unenhanced susceptibility can be written'

(1/X)dX [5+2(1+~)A./A] ~

dP 3 dP

[3+2(1+x)n,,/A]dn
dP



TAB3 E I. Estimated pressure variations of the ex-
change interactions between first through fourth-near-
est-neighbor Cr ions iQ rub+, c is the iQterionic
distance and J' is the exchange parameter at zero pres-
sure, both of which are taken from Hef. ]9. dJ. /'dP is
estimated using Eq. (10) with &=3.9 & 10 4 kbar '"~

(g,efs. 15—].7, 2I. , 2&) dAjd& =4.5x10" 5 kbar" ~, and
dO//dI' =1.5x10" ~ kbar" ~ (Ref. 12).

First
Second
Third
Fourth

(cm" ~)

240
84
12
—7

relation (10) for 3d electrons. It is assumed,
here, that the scxeening experienced by the ex-
change coupled ion pair can be taken. to be the
same Rs that found for the interaction of an ion
with the crystal field.

Note that a distance dependence is contained in
Eq. (10) via the P =0 value of J; as well as in p, .
Hence, 1f exchRng6 parameters Rl6 known fol'
nearest neighbors, next nearest. neighbors,
and so forth, estimates of the pressure dependence
fox' 6Rch cRse can be mRde.

For nearest-neighbor Cr" ions in ruby, g =3
and c/a, =5.4, so p, = ll. Powell and DiBartolo"
have tabulated the neighbor distances and ex- .

change parameters through fourth-nearest neigh-
bors. Their values are used with Eq. (10) to con-
struct Table I. For this estimate, the expectation
values in Eq (10) are. taken from Ref. 18 for hydro-
genlike ions.

At the present time, there are no published
reports on dJ/dP values for ruby. However, the
author is informed" that an expex'iment which
should provide this information is expected to be
completed sometime in the not too distant future.

According to Table I, exchange variations in
ruby are expected to be observable with the qua, li-
tative result that the exchange magnitude in-
creases. This is R reasonable result since one
expects exchange to increase as the amount of
overlap increases. Under hydrostatic pressure,
the lons ax'6 moved together. However, lt was
noted in Sec. I that the ionic electron cloud is con-
tracted which tends to decrease the overlap. If
we consider the ratio (x&/a, where a is a cell
dimension or the ion-to-point charge distance, we
find, for ruby, (a/(r&)d((r&/a)dP = —dn/dP+ 'sv-
&0. Hence, the Cr" electron cloud occupies R

larger portion of the unit cell produeln~ a larger
overlap, a result consistent with Table I.

IV, CONCLUSION

A prototype exchange integral is used in Sec. II
for the purpose of estimating the effect of hydro-
static pressure on exchange parameters. The
pressux'6 dependence ls deterD1lned Rccol ding to
a representation of the application of hydrostatic
pressure in which the compressibility tc and two
scaling parameters A (associated with electronic
screening) and 0 (associated with wave-function
distortion), are used.

The most significant feature of the present work
is that it provides, by Eq. (11), an estimate of the
relative contributions of I(,", A, and 0 to the hydro-
static pressure dependence of exchange for elec-
trons in the ~, E =~ —1 configurations. A second
feature, seen in Sec. III, is that the present theory
shows expllcltly that electronic screening Rnd

wave-function distortion tend to compete against
the variations due to the compressibility of the
solid. Qualitatively, we find, quite reasonably,
that moving the ions closer together enhances ex-
change while contracting the electron clouds' on
the ions reduces the exchange.

Section III illustrates the application of the pres-
ent, work by considering the variations of magnetic
critical temperatures, exchange enhanced sus-
ceptibility, Rnd, in greater detail, the exchange
interactions of pairs of Cr" ions in ruby. The
reason for using the ruby example is twofold.
First, a successful analysis of the pressure de-
pendence of the single-ion Cr" spectra has been
performed previously" using the scaling theory.
Second, the prospects'0 of the availability of mea-
sured dJ/dP values in the near-future are good.

The estimated values of dJ/dP for ruby, given
in Table I a.re sufficiently large that they should
be observable at low temperatures and high pres-
sures. Qualitatively, any changes in the ruby ex-
change parameters are expected to be in the direc-
tion of increasing magnitude with increasing pres-
sux'6 .

It should also be noted that ruby is a relatively
stiff substance. Materials with larger compres-
sibilities may have more readily observable ex-
change variations than those of ruby, depending
on the competition between the effects of compres-
sibility and the changes of the wave function.

A virtue of the scaling hypothesis is that it can
easily be incorporated into whatever formalism is
being used. The present work, on exchange, plus
the results of beefs. 9 and 3.2, concerned with
crystal-field theory, can be used to provide a
common parametrlzation of the px'essule vRx'lR-

tions of a, variety of phenomena; e.g. , the pair
lines in ruby must experience a shift under pres-
sure that is due to the combined effects of changes
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in both the crystal-field parameters and the ex-
change parameters.

Qf course, the final judgment of the utility of the
scaling hypothesis must be determined by how vrell
it agrees with experimental observations. Section
ID discusses several applications. 'The results of
that section can be considered as providing addi-

tlonal means by which the theory f0110%'ing from
the scaling hypothesis can be examined.
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