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Formally closed solution for a crystal with spatial dispersion

C. Alden Mead
Department of Chemistry, University of Minnesota, 207 Pleasant Street SF, Minneapolis, Minnesota 55455

(Received 14 November 1977)

A formally closed solution is exhibited for a semi-infinite spatially dispersive crystal, with point-dipole
harmonic oscillators located at the crystal sites, and s-polarized incident light, The dipole interactions,
including retardation, are taken into account exactly, and observable quantities may be calculated with

arbitrary accuracy without great computational effort. The method requires the summing of a rapidly
converging series, followed by a contour integral around the unit circle. Some numerical results are
presented, and a comparison made with standard approximate methods. The case of p-polarized light is

postponed to a future publication.

I. INTRODUCTION

Since the original discussion by Pekar' of the
phenomenon of spatia, l dispersion, much of the
theoretical work has centered on the problem of
the so-called additional boundary conditions
(ABC' s), which appear to be required to determine
reflection and transmission coefficients, etc. , of
a spatially dispersive crystal. ' In Pekar's origin-
al work, the additional boundary condition was
chosen in a rather arbitrary way. In recent years,
there have been a number of attempts, notably
through what is known as the dielectric approxi-
mation, ' ' to obtain correct boundary conditions
from a knowledge of the bulk dielectric properties
of the substance, without recourse to additional,
arbitra, ry a,ssumptions. The dielectric approxima-
tion, however, has recently been criticized by
several authors 5-8

In view of this state of affairs, it seems worth-
while and appropriate to adopt a microscopic ap-
proach, in which one attempts to solve the Max-
well equations for the actual crystal, or at least
a more or less realistic model thereof. Qne such
model was proposed some years ago by Deutsche
and the present author, ' but it involved the rather
restrictive assumption that bare exciton eigenfunc-
tions in a, semi-infinite crystal were taken to be
exactly sinusoidal, necessitating in most cases a
distortion of the interactions near the crystal sur-
face. In another model, due to Mahan and Qber-
mair, "one treats the interaction between a crystal
plane and its N nearest neighbors exactly, neglect-
ing the others. This approach has found a number
of applications, notably by Philpott. " In practice,
because of computational difficulties and because
the error committed is in any ease usually not
great, N is usually taken to be zero or one.

More recently, it has been discovered that the
Maxwell equations are exa.ctly soluble if the in-
tera. ction between crysta, l planes is a.ssumed to

fall off exponentially with distance, and this "exp
model" has been studied by several authors. ""

The actual dipolar interaction between crystal
planes is known to fall off with distance as an in-
finite sum of exponentials. "" Thus, one expects
tha, t both the Mahan-Qbermair method with N =1
and the exp model should be at least qualitatively
correct, and indeed this appears to be the case.
However, neither approximation is quantitatively
a,ccurate for all cases, and attempts to improve
them systematically lead to rapidly increa, sing
computational difficulties. For N nearest neigh-
bors, one must solve an (N+1)st-order equation
for N+1 refractive indices. Essentially the same
thing happens if one tries to improve the exp model
by including N exponential. s instead of only one.
Another (usually minor) problem is that, in both
methods the dipolar interactions is normally taken
to be instantaneous, so that retardation is not real-
ly included correctly.

The purpose of the present paper is to point
out that, at least for s polarization, all these dif-
ficulties can be avoided, as there exists a relative-
ly simple, formally closed solution. In order to
avoid misunderstanding, we state here just what
we mean by "formally closed. " Qur model is a
semi-infinite crystal, with the sites occupie'd by
point- dipole harmonic oscillators. The incident
light must be s polarized, but may have any angle
of incidence. The calculation of any desired ob-
servable (reflection coefficient, polarization at
any desired site, electric field at any point) is
then reduced to two steps: first, the evaluation
of a function ot a complex variable defined by a
rapidly converging infinite series; second, doing
a contour integral with this function around the unit
circle. Gne can achieve any desired degree of ac-
curacy simply by accurate series summation and
subsequent integration. Retardation is taken into
account exactly. We will only give the treatment
for a simple cubic cryst;al, but it will be obvious
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that this is not a real limitation.
In our approach, we abandon the attempt to de-

scribe the crystal in terms of refractive indices,
since both the number of different ones oi these
and their numerical values are highly model sen-
sitive. In both the Mahan-Obermair and exp meth-
ods, the number of refractive indices turns out to
be N+1, where N is the number of nearest-neigh-
bor planes, or the number of exponentials, includ-
ed. Moreover, the numerical values of these many
refractive indices are quite different for the two
models, ' so it would seem that they have little real
significance. Instead, we deal directly with ob-
servable properties, with the key observable in our
approach being the polarization as a function of
site location.

The author is confident that similar methods
will be able to deal with the case of p polarization
as well. This case is more complicated, however,
so its consideration will be postponed to a later
paper.

In Sec. II, we set up the problem in a form suit-
able for our approach, and the actual solution is
presented in Sec. III. In Sec. IV, there is some
discussion, notably of the limits of validity of the
one-near-neighbor and exp approximation. A few
numerical results are presented, and compared
with the results of approximate methods.

II. FORMULATION

tion of propagation in the y-z plane, making a,n

angle 8 with the z axis. This is the case of so-
called s polarization. It is normalized so that the
amplitude of the Hertz vector is unity

iodt& &(Sg+qy )
fn 7 (4)

5-=kP e '~'e
n (5)

where n = 1,2, 3, . . . is the z component of 1. For
the field we have

U(r) =Pe '"'e"'g u „(z)e'- (6)

where p is the projection of r in the x-y plane, and
the summation goes over all vectors z belonging to
the reciprocal lattice in the x-y plane, that is, all
two-dimensional vectors whose x and y components
are integer multiples of 2w. Inserting (3), (5), and
(6) into (I), we obtain for the coefficient u-„(z)

with X' denoting a unit vector in the x direction and

s = cu cos 8, q = cu sin 8.

This system possesses a translational symmetry
group in the x-y plane, consisting of all transla-
tions through integer intervals in the x and y direc-
tions and combinations of these. The solution
therefore must belong to an irreducible represen-
tation of this group, and that representation is de-
termined by the translational symmetry of the in-
coming wave. Accordingly, we have

Much of the content of this section is equivalent
to work which is to be found in Refs; 11, 13, and
14. It is nevertheless recapitulated here for com-
pleteness and to obta, in it in a form suitable for our
purposes.

We consider a semi-infinite, simple cubic crys-
tal with the unit of length chosen equal to the dis-
tance between neighboring sites. Point-dipole har-
monic oscillators are loca, ted at all sites with

x,y =0, +1, +2, . . . , and z =1,2, 3, . . . . We use the
symbol l to denote the vector location of an occu-
pied site. The unit of time is chosen such that the
velocity of light c =1.

The electromagnetic field will be described by
the Hertz vector U satisfying the equation

~ ~

U —V'U = 4w$, (I)

-up+ [(q+ k)' —uP]uw = 4w g P„6(z —n), (7)

i
21ri

s (8)

where

(q+ z)' -=w', + (q+ w, )'.
The nature of the solution to (7) depends on

whether the quantity [(q+ z)' —id'] is positive or
negative. If

oP cos'8+4@m sin8&4m',

it will be negative only for ~=0. We will assume
that this is the case, but it will be clear that this
is not an essential restriction. With this assump-
tion, the retarded solution of (7) for v=o is

with the electric field E being given by

E = -U+ V(V U),

and the polarization 5 by

(2)

(3j

For all other K, the solution which is well behaved
at infinity is

2' ~Q

u~(z) = ~+ ~(~il g-nl
'Y(z)

where

The incident field is taken to be polarized in the
x direction, with angular frequency ~, and direc-

P(z) = (q+ w)' —uP. (10)

To find the electric field, we use (2), (4), (6), (8),
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and (9) to obtain

K(r) P="8'("'i (i:)+a,( )+Jr„(c)e+')

TABLE I. The function & (~,q} defined in Eq. I,'15) for
various values of its arguments (q = sin0).

sl 0.0 0.2 0 4 0.6 0.8

(e) ~2e $88, (12)

where the sum goes over all nonzero values of IT. ,
and

0.00
0.06
0.12
0.18
0.24

4.517 0.079
0.080
0.085
0.092
0.103

-10.904
-10.885
-10.829
-10.735
-10.604

-19.826
-19.664
-19.172
-18,338
-17.057

-0,823
1.354
9.150

29.801
167.988

& (&)
— Pussle-nl.

2wg, (d
(13)

e (e) ~ x P w(a)lg-nl2n (uP —8)
y(xq

(14)
are summarized in Table I.

The equation of motion for the dipole at site l
is

These results are equivalent, of course, to what
one would obtain by applying the methods of Nij-
boer, de Wette, and Schacher"'" to our problem.

Up to now, we have taken it for granted that all
the vectors P and U are in the x direction. From
(2}, (6), (9), and (10), we now see that this assum-
ption is self-consistent: the contributions to both
other components from reciprocal lattice vectors
differing in the sign of z, cancel.

We will now use Eqs. (11)-(14)for integer e to
get the fields acting on the dipoles making up the
crystal. As we shall see, this leads to a soluble
equation for I'„. The contribution of n=a, however,
requires special attention. This is the field ex-
erted on a dipole in the plane at z by other dipoles
in the same plane. We see that the contribution
of (13) to this is finite and pure imaginary. It in-
cludes the self-damping term for the dipole, plus
the out-of-phase component of the field due to the
other dipoles in the same plane. The contribution
of (14) is real, but diverges when summed over

The reason for this is that it contains the infin-
ite self-force due to the interaction of the dipole
with-its own field. This must be subtracted off,
but it is inconvenient to do so in this representa-
tion. Instead, we evaluate separately the real
part of the field seen by each dipole due to other
dipoles in the same plane, and use (14) only for
the contributions of other planes. The real part
of the field felt by a dipole in the nth plane due
to other dipoles in the same plane is easily seen
from (1) and (2) to be

E(1)=P„e '"'e"'~f(&u q)

with

where the sum goes over all lattice points in the
x-y plane except the origin. The function F(m, q)
can be evaluated by techniques similar to those
of Refs. 13 a,nd 14. We have done this for a few
representative values of v and q, and the results

(16)

where g is a coupling constant, and v is the natural
frequency of the oscillator. Using Eqs. (5) and
(ll)-(16) we obtain

~2e ssll+ ~ e cs Ill 71 l
2'1TZ QP

s n' =1

( x) -yl&ln-n'I

7c& n'0 n
rf =1

In Sec. III, we solve Eq (11) formally for P„

III. SOLUTION

A. The function S(w)

We seek a solution of (17) such that P„does not
become infinite in the limit of large n, and on
physical grounds it is clear that such a solution
exists. Now let m be a complex number, and de-
fine

S(w) =w ' QP„w".
II~1

(19)

(20)

where the contour is the unit circle, or if S(w)
possesses poles on the unit circle, a circle with
radius very slightly less than unity. Having eval-

From the above-mentioned property of I'„, it is
evident that (19) defines a function analytic inside
the unit circle (and perhaps inside a larger circle).
Elsewhere, S(w) may be defined by analytic con-
tinuation.

It is clear that a knowledge of S{ze) is tanta-
mount to a complete solution of the problem. For
example, we clearly have

S(e sd )e -i(n-1 jc dy
1 S(w}dw 1

2' w" 2v
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ft = e "S(e")2mi

S
(21)

uated P„ from (20), the field at any point can be
evaluated using Eqs. (11)-(14). In particula, r, the
reflection coefficient, which is essentially the
amplitude up for negative z, is easily seen, with
the aid of (8), to be

and similarly

w ( g wnp e y„In n'I

n'~n
n'=]

yaS(e yn ) w+w-'-2e ~~

& -w w +w ' —2 coshy
—S(w)

(27)

To get a little further insight into S(w), consider
the case where there is a solution expressible in
terms of a finite or infinite number of refractive
indices

I „=QP,.e'"(", (22)

with refractive indices

/Z —(4)- (g2 + q2)1/2

If P„ is given by (22), then we immediately find
for S(w)

S(w) = g (23)

Thus, the "refractive indices" are essentially de-
termined by the poles of S(w).

In the next subsection, we recast (17) into an
equation for S(w), and solve it formally.

B. Formal evaluation

We note that there can be more than one ~
in (17), with the same value of y(x~. It can clear-
ly be written in the form

yIp (dne(sn+iy g p, e( I"-" I

n'=1

+Pa g e y~ln n'I

f)f n.' = j.
n'wn

(24)

(d
y)S(w) = (, —w

+ ikpQp+ gran Q~, (25)

where

tn n

n, n =i
oo n' -j. „ , ,„)=w ~n

n =1 n~l n=n'

po -fs n' -fsn' nwe -w e w

1-we " -we"

e "S(e"} 2i sins
fs +—w w +w —2 coss-1 (w), (26)

where now all the y are different, and the co-
efficients A.„A. , are, of course, defined in such
a way that (24) is equivalent to (1'I).

We now multiply both sides of (24) by w" ', (with

Iw) (1) and sum over n, obtaining

Equations (25)-(27), with some rearrangement,
can be written as

r(w)S(w) = 9(w),

with

(28)

2Xp sins
w +w —2 coss

+ A.~
w+w ' —2e &a

(2g)
w +w —2 coshy~

(d' ia (((e")e" a e»S(e yn)

e "-w e'-w e &~-w

(30)

Temporarily, for bookkeeping purposes, we
assume that the sum over n in (29) and (30) is cut
off after N terms. The passage to the limit N-~
will cause no difficulty. With this proviso, we
see that the function 5'(w) has 2(N+1) poles, lo-
cated at

'y y (n=1, 2, , N),

where by deflnltlon yo=e f' y. =er
(((. = 1, 2, . . . , N) Thus, th.e y's are all outside
the unit circle, the y

' inside. [Remember that s
must be given a small positive imaginary part in
order to carry out the summation in obtaining
(25). ) For convenience, we assume that the index
z has been arranged in order of increasing y

j(w} is also seen to have 2(N+I) zeros, also
in reciprocal pairs, which we again order ac-
cording to increasing absolute value of the larger
members of the pairs, and call

-1 -1
Xpy Xp p X~ p Xa( ~

Again, the convention is that the x's are outside
the unit circle, the x ' inside.

The function 9(w) has poles at y„y, ', y
'

(u =1, 2, . . . , N). It has N+1 zeros.
Referring to (28), and remembering that S(w)

is analytic inside the unit circle, we conclude
that each zero of V(w) within the unit circle is
also a zero of 9(w). However, since S(w) has
(N+1) such zeros, and the total number of zeros
of 9(w} is also (N+1), we conclude that these are
the only zeros of 9(w). We also see from (29) and
(30) that both 7 and 9 are rational functions, with
9 falling off as w ' for large w, while 7 approaches
a finite limit. Accordingly, the two functions can
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be written as

9(w) = ——-'

with

pp I) —Xp 8) —X
ln 6'(w) = In —+ ln + Q ln

2 m-y

'~i, (w -y )(w)-y ') '

where G, and Fo are constants. From (28), (31),
(32), we obtain for S(go)

lV

+ ln zv —x'

+=i '~ —&e

We now make use of the easily verifiable result

(36)

s, Qw-y s,
$0 —Pp ~ 0 MI —X~ ZU —Xp ~ ibV —X~

where S,=G,/E, . Equation (33) gives S(w) in terms
of the zeros and poles of 6:(w), if we can determine
the constant Sp. This is easily done by noting that,
according to (30), the residue of 9 at au =y, is
-w', while according to (28), it is the residue of
9 at the same point multiplied by S(yo). Setting
these two equal, it is a simple matter to obtain

S(w) =
'ts $p xo (yo —x~ )(B) —$~ ) (34)

27fpo 10 —xp ~ g (yp —$~)(K —x~)

Equation (34) gives the function S(w) in terms of
the poles and zeros of 6:(w). For N = I, it is the
same as Eq. (57) of Ref. 7, where~ however, , the

definition of the function. R differs from our S by
a multiplicative constant, and only normal incid-
ence is considered. The passage to the limit R-~
in (34) causes no difficulties, as the infinite product
clearly converges. If desired, the poles of S (zeros
of 6 outside the unit circle) may be interpreted in

terms of refractive indices with the aid of (23).
One sees that our function F(w) is an obvious gen-
er3lization of the function whose zeros determined
the refractive indices in Ref. 7 for the case N= 1.

our task is not yet complete, however, since di-
rect use of (34) requires a knowledge of the location
of all the zeros of F, and the task of finding these
becomes prohibitively laborious as N becomes
large. In Sec. IIIC, we see how we can bypass the

problem of finding the roots of 6: (w) =0.
Q. Bypassing the roots

Define the function

5 (zo) = Xo sins+ 2 (1E+ w —2 coss)
N u+m ' —2e 'n

& 'g+
26+ ZU —2 coshy

Fo
( )( -y) TT (20 —x )(w —x )

2au && (zg y )(gg y )

if the contour encloses all three points a, b, m. Us-
ing (36) and (37), we find

0 W —X
In%(s) - = ln —'

(u) —x,) IT27ri 2

(38)

where the contour is the unit circle, either raised
or lowered slightly in the imaginary direction ac-
cording as sin s is positive or negative (so as to
enclose x,' but not x„ if these are on the unit cir-
cle), plus a small circle about w if I is not al-
ready contained in the original contour. The re-
sult follows from the fact that the contributions of
the poles and zeros in.side the contour are all
zero by (37), leaving just the ones outside. Note
that on.e can always pair off zeros and poles and
run a branch line from each zero to its associated
pole in such a way that none of these branch lines
cross the contour of integration. Comparing (38)
with (34); we see immediately that

0

(39)

where the contour now also encloses yp. Equation
(39), together with (35), is the promised "formally
closed" solution. To use it, one must sum the ser-
ies (35) to obtain the function F(w), and then per-
form the contour integration defined by (39). Un-
like the situation with the M3han-Obermair or
exp methods, one can do both of these steps as ac-
curately as one wishes without great increase in
computational effort.

D. The reAection coefficient

The case of greatest practical interest is that of
the reflection. coefficient 8, which, according to
(21) and (39) is given by

(40)

with
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U= . / in%(g) „—,—, d g. (41
1 1 1

2vi f —e" f —e"

V(s) =z II(c+ &
' x, r, '), (42)

where x,. has absolute value greater than unity or,
if the absolute value is equal to unity, has an im-
aginary part with the same sign as that of e ". The
logarithm is given by

(43)

We now insert (43) into (40), (41), use (37), and
note that the contour includes the x ' but not the
x's themselves. The result is easily seen to be

We note that F(f) is really a function only of cosQ
=,'- (f+ g '). In the Mahan-Obermair approach, this
function is approximated by a polynomial, which we
can take to be written in factored form

quite easy to verify that one also recovers the exp
model result by keep ing only one te rm in the sum
over a in (29).

Returning to the exact expression (41), we see
that the integrand has two types of singularities on
the unit circle: poles at (=e" and e ", and logar-
ithmic singularities at the zeros, if any, of F(s)
on the unit circle. Such zeros clearly always ap-
pear in complex conjugate (reciprocai) pairs.
There can never be more than three such pairs,
and the author does not know of any actual cases
where there are more than two. In any case, it is
convenient, though not absolutely necessary, to
separate out the contributions of the various sing-
ularities. Accordingly, let $ = cosQ =,' (P+ P '),
and let the zeros of F(() for -1 ( ( (1 be at $
= coso„with j taking on at most three values. We
then write

(45)

(44)

which is also the Mahan-Qbermair result. It is
Taking the logarithm of (45) and inserting it into

(41), we see that in!7(coss) and in(coss —coso,.)

TABLE II, The reflection coefficients, for u/2x =0.8, sino -0.24, as a function of q
=-(s/2~~~sins) p, calculated by various methods, viz: (a) Exactly using Eq. (47). (b) With the
exp. model, replacing the sum in Eq. (29) by the single term with the smallest value of p. In
this case, this was the term with K„=-0, &„———2&, p- 0.7126. (c) With the Mahan-Obermair
method, &= 1. Range for which I~ I-. 1: (a) —5. 33 &0 (3.06, (h) —5. 3G &~(3.09, (c) —4, 07
(g (G. 33.

(Re R)x 10~

b

(Im R)x 10~

b

—10

—1

0
1

2

4
5
6
7

8
9

10

-4.706
—5.922
-7.800

—11,0c
—18.05
-88.62
—1:3.23

4().75
76.16
95 55
99 5
86.84
52.83

—32.04
—1.873
—1.790
—1.721
—1.664
—1.6 18
—1.581
—1.555

-4.738
5 964

-7.860
—11.14
—18.23
—86.62
—12.28

41.11
76.25
95 54
99.54
87.05
53.53

—27 76
-1.880
—1.796
—1.726
—1.66 9
—1.622
-1.585
—1.557

—,'3.8.'38

—4.6 56
-5.821

4 715
-4 ~ 135
—.'3.857

—94.28
—26.6,'3

24.68
6 1.99
86.49
98.6 1
98.15
84.20
54.88

—6.624
—67.92

—5 547
—9.292
-6.04 5
—4.275

4.921
c5 '30 5
r 617
5.4 93
2,550

46.33
99.12
91.32
64.8()

29.4 9
—9.838

-49.58
—84.90
-94.73
-2.755
—2.631
—2.528
-2.443
-2.:374
—2..'319
—2.279

4.889
5.258
5,540
5 337
1.993

4 9.98
99.24
91~ &6

64.70
29.54
—9.6 16

—49.21.
—84.47
—96.07
-2.7:39
—2.6'31
—2.515
-2.431
-2.363
-2.:309
—2.269

2.947
2.7() 5
1.733
9.666 x 10

-8.476 x 1.0
;3.067 x 1~)

,'33.3,'3
'.)6.39
96.91
78.47
5().20
16.6()

—19.15
—53.95
—83.6()
—99,78
—73.40
-2.7&) 1x 10
—1.44 5
-4.757
—4.986
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contribute nothing to the integral, while the other
factors involving the 0,. contribute a factor similar
to (44). We thus have for R

(48)

with

1 1 1
() in@ — „——;—, d&

2m' „f—e" g —e"

i sins I' In4(cosg)dg
v o cos ljk —coss (47)

IV. DISCUSSION

It is hoped that the approach developed here will
provide a useful basis for practical calculations,
as well as providing theoretical insight. For the-
oretical purposes, the study of the analytic struc-
ture of the function S(zv) would appear to provide
a fruitful field, while practical calculations using
(48) and (47) are quite easy to do with as much ac-
curacy as one wishes. The main defect at this
point is the limitation to s polarization. The au-

The function, C is positive everywhere in the range
of integration, and its logarithm is zero at cosP
= coss, so the integrand in (47) possesses no sing-
ularities, and the integral is easily evaluated by
numerical means. Equations (48) and (47) appear
to afford the best basis for practical calculations
of the reflection coefficient.

In Table II, we show some results for the reflec-
tion coefficient, calculated as a function of g, for
~/2v=0. 8, sin8=0. 24. (Of course, if g is small,
g can vary over a wide range with only negligible
chang'e in ~). For comparison, results of the exp
model, and of the Mahan-Obermair method with
N=1, are also listed. In this case, the error com-
mitted by using the exp model is not great„while
that incurred with the Mahan-Obermair method is
considerable. This is not always true, however.
This case was deliberately chosen to be a partic-
ularly bad one for the Mahan-Qbermair method,
and one could equally well choose cases where the
exp model fails badly and the Mahan-Obermair ap-
proach does well.

thor hopes to remove this limitation in a future
article.

It is perhaps worthwhile to say something about
the limits of validity of the Mahan-Qbermair and
exp models. The Mahan-Obermair approach with
small N is a good approximation if the falloff of
the interaction is sufficiently fast, i.e. , if all the
y(v) defined by Eq. (10) are sufficiently large. It
will fail completely if one or more of them is
small. The smallest y is evidently obtained for
v, =-2n, I(„=0, for which

y' = 4m' —v' cos'8 —4wco sin8. (48)
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If »m, this can. be made a,s small as one wishes,
even. negative. Just such a case was deliberately
chosen in arriving at the results shown in Table
II.

As for the exp model, it will be at its best if one
of the y is much smaller than the others. It will
fail badly if the two smallest y's are nearly, but
not quite, equal, as will always be the case for
small, but nonvanishing, angle of incidence.

The Mahan-Obermair method is completely in-
appropriate for studying the analytic structure of
the function S(w) since, as shown in Ref. 7, nearly
all its poles for large N are clustered around the
circle with radius e'o, where y, is the smallest of
the y's defined by Eq. (10), and bear no relation to
poles of the exact S(w). This fact, however, has
little bearing on the practical utility of the Mahan-
Obermair method. The N+ 1 poles given by the
exp method with N exponentials included, on the
other hand, are located close to (N+1) of the in-
finite number of actual poles of S(M).

Finally, there is the question of what happens if
some of the y' defined by Eq. (10) are negative.
The answer is quite simole: one simply handles
these terms in the same way as the term with ~

=0, obtaining solutions similar to (8) instead of
(9). There will then be more than one reflected
wave, corresponding to the usual diffraction situ-
ation.
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