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An ab initio approach to determining the appropriate potential in which to embed a cluster in order to
simulate a large system is proposed. For ionic and covalent systems, simple approximations are presented as
obtained by systematic simplifications of the more general theory. It is also seen that for metallic systems
such a reduction is not obtained. The results obtained using the current approach for LiF simulated by a
Li6F cluster are contrasted to those obtained using a more conventional %'atson-sphere environment and also
free-space boundary conditions.

I. INTRODUCTION

In the past several years, considerable empha-
sis has been placed on the study of solid surfaces
and on the interaction of absorbates with such
surfaces. This interest has arisen for a num-
ber of reasons, primarily that surface prob-
lems are of considerable scientific and tech-
nical interest of themselves. Many of the studies
have been implemented by simulating the solid
surface by a finite cluster of atoms or ions. Simi-
lar work is also being done on bulk systems. An

example of a problem of considerable scientific
as well as technological interest which is amen-
able to cluster study would be the relative change
in position of energy levels in a semiconductor
due to an impurity as a function of whether that
impurity is substitutional, interstitial, in the bulk
or at a surface. Techniques have evolved to
the extent that answering such questions is feasi-
ble. A second example which is also of scientific
and technological interest concerns the influence
of surface defects on chemisorption. In this
manuscript we will concentrate upon a subset of
the theoretical techniques used for cluster studies.
This subset is the proper choice of external poten-
tial in which to place the cluster so as to sixnulate
the effect of the remainder of the system.

In this context, a cluster will be defined as a
collection of orle or more atoms, ions, or mole-
cules with appropriate boundaries which are stud-
ied in some detailed sense for one or more physi-
cal properties and is considered by virtue of its
boundary conditions to represent this physical
property for a larger system such as that of an
infinite-solid or a semi-infinite-surface problem.
This definition has been problematic in that the
nature of the imposed boundaries and the cluster
size has been left to the discretion of the person
studying the problem. In this manuscript we shall

briefly consider some of the formal aspects of
these questions.

The cluster by virtue of its finite physical size
is from the outset clearly unsuited to describe
any physical phenomenon for which the spatial ex-
tent of that phenomenon is greater than the physi-
cal extent of the cluster in any significant way.
Therefore, a study of phenomena involving, say,
electrical conductivity or the energy bands of a
metal could require a cluster so large as to be
impractical from a computational standpoint.
Such long range phenomena are better studied
using the techniques of energy-band theory. There
are phenomena in which the significant physical
size of such phenomena are smaller than the spa-
tial extent of the cluster that may be ideal subjects
for a cluster simulation. Likely examples of
such phenomena include: localized excitations in
solids (a tightly bound exciton is a prime exam-
ple); the formation of self-trapped quasiparticies
in a solid (the self-trapped hole or V, center in an
alkali halide is one such system); various prop-
erties of point defects or impurities in solids (the
E center or electron trapped at a halogen vacancy
in an alkali halide is the usual textbook example
for such a system'); studies related to the form-
ation and breaking of the chemical bond (chemi-
sorption forming our most important example of
this). '

It is worth stating that due to the inherent size
limitations in a cluster simulation, and always
assuming, of course, that an accurate model is
used to solve for the physical properties, ques-
tions of a. chemical nature such as bond strength,
bond length, and geometrical data in general
should be most aeeurately given by a cluster
model. Physical properties such as absorption
spectra, photoemission data may be very poorly
given unless the optical absorption is a local ex-
citation or in the case of photoemission the final-
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state hole remains localized spatially. This
should mostly apply to narrow-band materials.
In this respect, the proper test of whether or not
a cluster model is valid for describing nonlocal-
ized electronic states is not whether the cluster
has a set of eigenvalues which bear some resem-
blence to some measured spectrum, but whether
or not the cluster electronic structure accurately
reproduces the same electronic states calculated
using the techniques of energy-band theory assum-
ing, as is necessary, that the same model is used
to describe the cluster and the energy-band prob-
lem.

It is fortunate that there are at least two avail-
able models today for which one has obtained
solutions in the band theor'y limit and in the clus-
ter limit. These are the Hartree- Fock model

(HF) and the scattered-wave Xo (SW-If'o)model, ~

The discussion in this paper is given for the
HF model but this treatment may be trivially ex-
tended to the Xn model with identical results.

II. INTERACTION OF CLUSTER AND ENVIRONMENT

Recently, Marshall, Blint, and Kunz' have pro-
posed the use of the unrestricted-Hartree-Pock
(UHF) model for solid state cluster simulations.
We shall in this paper further develop this applica-
tion of the UHF technique. It is understood from
the outset that the development applies equally
well to any other theory which uses an energy
functional based on the first-order density ma-
trix or its trace formed from one-particle orbit-
als. Thus, this derivation is valid for the Xn
model or the restricted-Hartree-Fock (RHF)
model which most authors term the Hartree-Fock
model. In this model the many electron Hamilton-
1an +» 18

n @2 ~N 82g ~ e2,

Here upper-case letters refer to nuclear proper-
ties, Z being the atomic number of the Ith nucle-
us at site A, , lower case letters refer to electron
properties r, . being the location of the i th electron
and m its mass. The Born-Oppenheimer approxi-
rnation has been made to eliminate nuclear kinetic
energy. In the UHF model the n, -electron wave

function is approximated as

e(x, , ~ ~ ~, x„)= (n!) 'I' A. v, [y, (x,)]. (2)

%here A 18 the antlsymmetrizer, and Q 1s a one-
electron orbital, and x, includes space variation
r& as well as spin variation g, . In the UHF model
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FIG. 1. A schematic of the partitioning of a system
into a cluster termed A and the remainder termed the
environment of A is given.

one fol ces»

4i (xi) = A (r&) +
p

In this a is an eigenfunction of spin up and P for
spin down. The form of P, (r&) is otherwise uncon-
strained. If P, is varied to minimize the expecta-
tion value of II, the y, are determined by solving

p =
Qg x {j)g x

(4)e'Z» f.p(x', x') dx'2m, tr - R~( f tr r'~-
—e' p(x, x')

(
r —r'( 'P(x', x) .

In this formula, P (x.', x) is the operator which ex-
changes coordinate x with x'. It is this equation
which we would like to solve for the solid as a
whole.

Solution of Eqs. (4) for an entire system is often
impossible, ' therefore, we would like to simulate
the entire system by a finite cluster. %e can see
this schematically in Fig. I. Here the "+" signs
refer to nuclear positions and we draw a dotted
surface to enclose those nuclei belonging to the
cluster. This region is termed A here and the re-
mainder of the system is termed the environment
of A. The issue at hand is how to partition the
system rigorously and what potential or boundary
condition to place on A in order to do this rigor-
ously. To effectively carry this out we have re-
course to the method of local orbitals of Adams-
Gilbert-Kunz e-8

The question of boundary conditions on clusters
in general is quite difficult and is not yet com-
pletely solved; in fact, we find no general condi-
tion at all for metallic systems. The problem
arises entirely because a cluster is usually chosen
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to represent a system which is actually larger in
size than the cluster itself. Since clusters are
normally smaller than the system represented one
should determine, somehow, which conditions to
place on the cluster. As a first try, one might
try free-space conditions, however for reasons
which are quite obvious, this is likely to require
R very large cluster to achieve RccurRcy for either
ametalor an ionic solid (the first is due to the dif-
fuse valence orbitals and the second is due to
long-range ionic potentials). In the case of a, co-
valent solid, artifacts such as dangling surface
bonds may distort results unless a large cluster
is used. Therefore, one may expect that a use of
free-space boundary conditions is best left to
cases where very large clusters may be studied
or for studies of molecular crystals, where clus-
ters may be chosen such that neither appreciable
covalency, nor long-range potentials occur across
the cluster-environment boundary. The appropri-
ate boundary condition to use on a metal is not
we1l defined and often one must use large clusters
or be satisfied with qualitative rather than quanta-
tive answers. The cases of molecular-bonded
systems, ionic systems, or a covalent system are
subject to mathematical derivation.

I et us obtain a formal derivation by cons jdering
the local-orbital formalism of Adams and Gilbert.
Let us use F to represent either the Fock operator
for the entire system or a local-density operator.
Let A be the region which our cluster occupies,
and let E be the remainder (environment of A).
Then assign rn electrons to A (this is chosen to
be physically reasonable for the appropriate case,
such as the number of electrons on the ions in-
side A if one has an ionic system). I et

E„being that part of I which includes kinetic en-
ergy, nuclear attraction of the electrons Rnd nu-
clei inside A.„and the electron-electron potential
including Coulomb and exchange parts for electrons
assigned to A. . Let S" be an arbitrary Hermitian
operator. We would like to solve,

P= Z
& =occ

but since we wish to study only part of the system,
let us solve instead

(&~+ && - pIVp) 4; = v; 0; .

This is the Adams-Gilbert equation. As they have
shown, provided a common W is used for all elec-
trons, one can find

P= g lt;4~ -=g A4;,
f =oce

k = occ

and the P's are orthonormal.
First consider an ionic or molecular crystal

situation. Let us divide U„ into two parts, V„ is
an ionic (Madelung) contribution and is long range,
and V~ is the remainder and is short range. Of
course for the molecular system V"=0. Let W
= V~. Therefore one solves (using closure) for
the occupied orbitals

(F„+V„")g; = v; P; —Vq g,. + p V„g, .
Now we are only concerned with the m orbitals of
Eq. (23) which lie in A. Provided the appropriate
number of electrons is assigned to A, the solu-
tions found for these electrons should only weakly
penetrate E.6' Note that V~ doesn't penetrate A
appreciably and since in the limit of self-consis-
tency V~~/,. is cancelled by pV~~$,. on the average
(true since the eigenvalues of p for an occupied
orbital is I). If, for these orbitals, one finds
as is reasonable for ionic cases that they don' t
appreciably penetrate E, the appropriate ap-
proximate equation including interaction. with the
remainder of the system is then

(Eg+ Ug) P; = v; P; .

From these solution one may calculate the approx-
imate potential-energy surface for an entity wholly
in A. by evaluating the energy of system A. as if it
were an isolated system A in a potential field V~~.

One sees that for a molecular bonded system
(e.g. , Ar) the approximate equation is just the free-
space cluster, and for an ionic system the equa-
tion includes R Madelung field. In most muffin-tin
calculations no such field is used and since at best
the Watson sphere potential can simulate the cor-
rect Madelung potential at either a cation or an
anion, but not both, the information about relative
separation of one electron energy levels on differ-
ing sites is suspect.

This treatment extends directly to a covalent
system. Just as before we envision the system as
being composed of ions or molecules here we en-
vision the system as being composed of electrons
in bond pairs and ions. Thus for diamond we have
a, system of C ' and two electron bonds, and on
the average, two two-electron bonds per C4' ion.
This then proceeds as for the previous case ex-
cept now we assume the boundary between A. Rnd

& passes through n two-electron bonds. Since to
achieve localization in the Adams-Gilbert sense,
we cannot break these bonds, therefore, we must
include n more (fewer) electrons in A than a sim-
ple atomic view of the system would require and
thus U„has a long range part due to n more (few-
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er) protons than the atomic view would require
and these long range parts are concentrated near
the A-Z interface. From here one solves Eq. (8)
for the n more (fewer) electrons, or approximate-
ly Eq. (9) for this system using a Vf due to the n
more (fewer) protons at the boundary. One may
recognize here the common expedient of using H

atoms to tie off the dangling bonds in a covalent
cluster simulation. From this point the other con-
siderations discussed for the ionic situation apply.

This transformation cannot be done in general
for metals since the bond behavior of them is such
that one cannot simply rotate into a localized re-
presentation in a one particle theory. ' Of course,
if the phenomena studied are local in nature de-
spite the metallic host then one is free to proceed.
The forming of local bonds to a metal or local
magnetism are examples of such phenomena.

The eigenvalues w, of Eq. (8) or the approximate
Eq. (9) represent the Koopmans' theorem eigen-
values of the infinite solid e, of Eq. (4) only in the
limit that the orbital g in question is localized in
A so that in fact pf and tIF)f are identical. Alter-
nately, here the eigenvalues 7t, may also corre-

spond to an e, in the case where the energy band
of which ef is a part has infinitesimal width as is
the case for a core level. For levels ef which
have finite width, at best the eigenvalues pf repre-
sent some state in that band most often near the
center of gravity of the band. This property can
be easily deduced by using the gf corresponding
to the ef to generate a Bloch basis set for use in a
LCAO band model. Clearly here the one site mat-
rix element of I" is pf and using the invariance
of the trace of the I' matrix under diagonalization,
if the overlap of $f into E is small as we assumed,
z,. must lie near the center of gravity of the band
containing qf .

Similar considerations may be performed to see
that chemical data can be realized for atoms in-
cluded in A. Consider the total energy expression.
We will partition p into two parts, those pf in A
and those in E', or

pI. , '&=/», I-.&AI-'& P&, c'»t&'&. I»o

Here g", is orbitals in A and+&s are for orbitals
in E. II can be broken apart as

From here one may proceed in the manner origi-
nally derived by Lowdin for ionic solids cohesive
energy calculations, to obtain an expression for
E, the total energy, for our wave function. Here,
however, all our orbitals are orthogonal because
of our solving a common Hermitian equation and
therefore Lowdin's 8-energy will be absent. " The
total energy E schematically is

E = EA+ E~+I~. (12)

E„ is the energy of the system of orbitals in A
with respect to that part of Eq. (11) which refers
only to A, E~ is the energy of the system of orbit-
als in Z with respect to that part of Eq. (11) which
refers only to E, and I~ is the interaction energy
of orbitals in A with those in E. We assume that
only nuclei in A change position and that A is large
enough so that the orbitals in E are unchanged by
this, or alternatively a Koopmans' like approxi-
mation for orbitals in E is made and the orbitals
in E are frozen as atoms move in A. Thus the
term E is constant throughout and for convenience
since only energy changes are necessary, we ne-
glect E~ hereafter. E„ is simply given and is

Thus EA is the energy of the pseudomolecules in
A in the usual Hartree-Fock approximation. Thus
only I» need be evaluated or approximated. It is
this term which is evaluated as a cohesive energy
by Lowdin, and we may use his results, and any
approximation derived therefrom. Then we have,

4A

+g
f

(14)
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In principal one should evaluate (14) exactly. How-
ever, one may greatly simplify this if one as-
sumes orbitals in F. weakly penetrate into A. and
vice versa. In the extreme limit of no overlap
this reduces to a very simple result. Let there
be G, electrons associated with the J th nucleus.
Then the ionicity, I» is

~» = Z»+ J».
Then approximately, (14) becomes

TABLE I. The one-electron eigenvalues computed for
the (LieF)5+ cluster are given. The calculations are per-
formed using the ab initio external potential discussed in
the text and shown in column I; the Watson Sphere poten-
tial which yields charge neutrality and shown in column
II; and the free space boundary which is shown in column
III. Also shown are the differ ences in energy between
each pair of eigenvalue. Results are in eV.

.IEA

A-Z
»

ZiZre g g GrZre
IItr —ItrI r

This immediately reduces to

(18)

&(F 1s)
&(F 2s)
&(F 2p)
~(Li is)
&(Li 1s) —&(F 1s)
~(Li 1s)- ~(F 2p)
~(Li 1s) —~(F 2P)

Ie(F is) —~(F 2s)I
I~(F 1s) -~(»P) I

I&(&») —&(F 2p) I

-712.6993
-39.9698
-15.7505
-63.6852
649.0141
23.7154
47.9347

672.7295
696.9488
24.2193

-718.3818
-45.6561
-21.4378
-68.0178
650.3640
22.3617
46.5800

672.7257
696.9440
24.2183

-743.0681
-70.3407
-46.1225
-92.8108
650.2573
22.4701
46.6883

672.7274
696.9456
24.2182

Thus in the lowest approximation the total energy
charge for moving a nucleus about in A. is given
by the energy of a pseudo molecule in A plus a
"Madelung" contribution of the atoms in A with
those in F. Qf course, if more precision is needed
Eq. (14) may be used or higher order approxima-
tion to Eq. (14) may be developed.

III. EXAMPLE OF Lip

In order to test some of these ideas, a calcula-
tion to simulate the electronic energies of I.iF
solid has been performed. LiF is an ionic solid
in a fcc structure. The degree of ionicity is about
unity and the system is essentially a collection of
F and Li'. Here we chose a cluster of six Li ions
and one F ion in the center. The Li are octahe-
drally coordinated with the F ion and thus the
cluster is (Li,F)". Here we solve Eq. (9) for this
system. As a comparison, two other studies are
performed. The first is to surround the cluster
with a Watson sphere of charge -5e to effect
charge neutrality as is often done in SW Xn calcu-
lations, ' and the third is to employ simple free-
space conditions for the cluster. In forming the
Watson sphere, we use a radius of 5.5095 a.u. as
is found by having a Watson sphere tangent to the
outer surface of a sphere of radius 1.703 a.u.
about a Li ion as suggested by a Huggins-Mayer
calculation. In any case results are relatively
insensitive with small changes in variation of
change or radius of the Watson sphere.

The results of this calculation for the one elec-
tron eigenvalues and their differences are seen in
Table I. There are three salient points to be made
from this table. First, the eigenvalues differ
greatly from calculation to calculations as one ex-

pects due to differing imposed potential. Second,
the difference of eigenvalues on a given ion,
e.g. , e(F Is}-e(F 2s} is very insensitive to
boundary condition, and finally the difference in
eigenvalues on two different ions, e.g. , e(Li' ls)
—e(F 2s) is greatly effected by external potential.
In the case of two eigenvalues on the same ion the
greatest difference between two calculations is
about 0.005 eV, whereas for two eigenvalues on
different ions the deviation is always greater than
1 eV between the current theory and the other two
methods.

We now argue that this difference is to be expec-
ted. A simple argument appropriate for ionic sys-
tem is as follows. In the limit of the infinite solid
the energy of a core level is just that of the free
ion plus the Madelung contribution at that ion site
to a good approximation. Let V„be the actual
size of the Madelung well. Then for a negative
ion the energy eigenvalues e, is just c, ,„,—V„,
and for a positive ion, e,' is just c,',„,+V+. Hence
to first order, energy differences on the same ion are

c&& and c -e = (E:
& c&&, and

are unaffected by the external potential. Hence the
second remark is clearly understood as it relates
to Table I. Consider next energy levels on differ-
ent ions.

Here e,' —e& is q,'»„, —e&,„,+ 2V~. Therefore one
must have an external potential reflective of V„
on both types of ion site if this is to be given prop-
erly. Clearly the potential used in either Eqs. (8)
or (9) satisfies this criterion. However, in the
case of the Watson sphere or the free-space
boundary condition„ this is not so. Since the po-
tential due to a Watson sphere is constant inside
it, the difference in ionic potential at a positive-
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ion site inside to that of a negative-ion site may
be rapidly computed for a (A,B)'r type cubic clus-
ter, where J is the ionicity of 8 as defined pre-
viously. This difference is the same here as for
the free-space condition and should be ideally
equal to 2V„as previously seen. If a is the length
of a cube edge and the system is fcc one finds, if
~is the ionic potential difference between positive
and negative sites, a~ = l99.82I/a, for a Watson
sphere case, whereas the correct Madelung val-
ue is w„= 190.22I/a. Here we assure a fcc sys-
tem, I the ionicity and a is the cube edge in a.u.
(1 a.u. = 0.529 A) and the energy is in eV. Thus for
the (Li,F)" case, b,„is 25.13 eV and h~ is 28.28
eV. Thus we predict that the results of the pre-
sent theory for LiF should differ by 1.25 e7 for
differences of eigenvalues on positive to negative
ion composed to either the Watson sphere case or
the free-space case. The difference found in
Table I actually range from 1.35 to 1.25 eV and
agreement with the simple theory is excellent.

One may conclude that if one wishes accurate
values for energy differences for orbitals on dif-
ferent ions as simple Watson sphere is inade-

quate for ionic system and the error is propor-
tional to the degree of ionicity as seen. Hence for
a doubly ionized solid such as TiO or NiO say, the
relative error of levels on the anion compared to
the cation may be of order 3 eV if a Watson
sphere or free space boundary conditions are
used. " " In fact this effect may account for the
qualitative differences found in the electronic
structure of TiO with respect to the relative posi-
tion of the O 2p orbitals and the Ti 3d orbitals as
seen in the SW-Xo. cluster calculation using a
%atson sphere" and the band results where a,

proper Madelung field is provided. " We conclude
that in many cases the proper environment poten-
tial is simple to include and has non-negligible ef
fects on one electron eigenvalues and should be in-
cluded.
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