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This paper considers several implications of the approximation that the total amplitude for photoemission

from an oriented molecule is the sum of the amplitude of coherent emission from spherically symmetric

regions at the atomic centers. %'e show that this approximation, which is increasingly valid at high energies

(accessible, for example, to synchrotron-radiation sources) is readily calculable using tabulated initial-state

atomic functions and simple solutions of the radial Schrodinger equation. %e illustrate the fact that in

special but important cases (e.g., oriented benzine), one can obtain the angular distribution of photoemission

at Axed final energy without any recourse to atomic-photoemission-amplitude calculations. Finally, we

emphasize that fact that the orthogonalized-plane-wave approach, which is a special case of the independent-

atomic-center approximation, fails in two regards —neglect of atomic phase shifts, and the neglect of initia-
state core-region wave-function behavior, which is crucial at high energies. This latter point is illustrated by
comparing orthogonalized-plane-wave calculations using Slater atomic functions (which emphasize the

bonding-region wave-function behavior), and hydrogenic wave functions, which can have radial nodes and

core-region behavior which can more closely approximate the behavior of the true initial-state wave

functions.

I. INTRODUCTION

Understanding the angular distribution of photo-
electrons emitted from a particular molecular
orbital of an oriented molecule is of great interest
for two fundamental reasons. The first is that a
theory of this process can be used to predict the
angular distribution of photoelectrons from 3n
orbital of a molecule in the vapor phase, and can
be used as a powerful tool for associating photo-
emission peaks at particular binding energies with
molecular orbitals of a given symmetry. Second,
the g,ngular distribution of photoemission from an
orbital of a molecule adsorbed on a suxface con-
tains, in principle, information concerning the
orientation of the molecule on the surface —in-
formation of fundamental importance in surface
chemistry.

'The main idea of this paper is to calculate
oriented- molecule photoemission amplitudes in
a model in which emission from the individual
atomic centers of the molecule occurs iM'ependent-
/y (but coherently). Such an indejendent atomic--
center (IAC) approximation is' rather widely repre-
sented in the literature, for the many papers using
a linear-combination-of-atomic-orbitals (LCAO)
initial state and a plane-wave (PW) or orthogonal-
ized-plane-wave (OPW) final state are of this
class. '"' The great advantage of a model of this
type is that it represents an attractive alternative
to low-energy electron diffraction (LEED) as a tool
for surface-structure determination. ' This paper
will derive several results which, at large photon
energy hv (accessible with synchrotron radiation
or an x-ray photoemission spectrometer) are of a

particularly simple form which can be easily cal-
cul3ted and used as a guide by experimentalists.
This is due to the dominance at large hv of some-
thing similar to a diffraction pattern emitted by
the molecule as its independent emitting centers
coherently interfere. This dominance of geo-
rnetzica/ rather than atomic features at large kv
is one of the central themes of this paper.

%hat is new in this paper occurs in two areas of
major emphasis. One is a rather general formu-
lation of the problem which permits the atomic
photoemission matrix elements (which contribute
to the final molecular-orbital emission amplitude)
to be calculated much more precisely than is done
in the very commonly used OP%' and PW approxi-
mations. These make errors both in the magnitude
of the atomic-emission amplitudes, and in their
phase, which is fixed at large distances by t'he OP%'

and PW phases.
The second area of general emphasis in thi. s

paper is our detailed discussion of the contribu-
tion of two types of factors that arise in the expres-
sion for the total amplitude in IAC approximations.
One type of factor is the angle-resolved amplitude
from individual atomic orbitals, while the second
type is a geometrical factor, alluded to above,
which is much simpler to calculate. ' %'e discuss
the fact that the relative importance of these two
types of factor changes dramatically as one in-
creases the final-state kinetic energy (or the
photon energy hv). In particular, at large hv one
enters a regime where the rather simply calculated
geometrical factors, rather than the atomic factors,
produce the most dramatic (sharpest in angle) struc-
ture in the angle-resolved photoemission intensity.
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In the case of an adsorbed molecule, the angular
distribution of photoemitted intensity has two con-
tributions. Qne is direct emission from the
molecule to the detector, while the second con-
sists of backscattered electrons which are emitted
by the molecule toward the substrate, and then
scatter toward the detector. ' "

The present paper, in calculating the direct
emission from a molecule to a detector ignores
the effect of the substrate on the angular distribu-
tion. However, it provides the first step toward
understanding substrate effects, for it is the emis-
sion from the adsorbed molecule toward the sur-
face which provides the ultimate source of the scat-
tered wave.

We contrast this calculation with several recent
ones, based on I,EED theory, which have been
interested in the limit in which the photoemitting
center itself is very simple (e.g. , an s orbital of
a single adsorbed atom) and all of the angular com-
plexity is due to substrate scattering. ' " We are
treating the opposite limit, one in which'the emit-
ting, adsorbed species is one of complex geometri-
cal structure, with an angular distribution rich in
structure in its direct photoemission amplitude to
the detector ~

Another main feature distinguishes the current
work from some recent calculations. In these the
system of interest is a single atom which is chemi-
sorbed on a surface, forming new bonds (to the
surface) with a particular symmetry dependent on
the adsorption site. Qur calculation assumes weak
chemisorption of covalent molecules, so that the
initial state in the photoemission process is in
zeroth order an unperturbed molecular orbital of
the free molecule. Such an approximation is amply
justified by the close correspondence between
photoemission spectra of vapor phase and ad-
sorbed molecules of a particular speci. es.'4

This correspondence is illustrated for the case
of condensed CH, OH on Pd (Fig. 1) which shows
that the spectral form of the extra emission due
to the adsorbed species is related to that of the
vapor-phase molecule, with energy shifts, how-
ever, due to relaxation-polarization effects and a
bonding shift of the highest-lying orbital. In the
case of oriented, adsorbed molecules, our interest
in this paper is in understanding the dependence of
the extra emission 5I!denoted &N(E) in Fig. 1]
due to the adsorbed molecule as a function of detec-
tor direction R for fixed hv. This is in strong con-
trast to the case where 6I at fixed angle is deter-
mined as a function of hv. ln this case 5I(R, hv

=const) might contain much multiple scattering
(from the substrate) background whose angular
dependence is either not strong or is of a different
symmetry from that due to direct molecular emis-

Pd (EVOPORuTED): CH, OH

hv - 40.8 eV n

/I
H Ckq

(c)

W

C/7

CO
Cti—
W
W

W
(/)

CO

C/)

W

24

CHEMISORBED CkgOH

CONDENSED CkgOH
= 5 x IO Torr, !20 K

I f I

20 f6

!6 )2 8
ELECTRON BINDING

eV

I'~
(c)

Bc&= -0.7ev
I

I ~

I

(d)

!
I P (eV)

!

!
Eqc0

ENERGY (eV)

FIG. l. Subtraction of the photoemission spectrum of
clean Pd {dashed) from that of Pd plus chemisorbed
CH3OH in (a) yields the curve (b) the extra emission due
to the adsorbed molecules. Curve (c) is similarly the
extra emission due to condensed CH2OH, while (d) is that
of the free molecule. @' is the work function, I.p. is the
ionization potential. This figure illustrates a fact dis-
cussed by many authors (e.g. , see Ref. 14)—the emission
spectrum of the adsorbed covalent molecule is nearly
the same as that of the free molecule. [This figure has
been obtained from H. Luth, G. W. Hubloff, and Vf. D.
Grobman, Surf. Sci. 63, 325 (1977)].

sion. Qur neglect of substrate multiple scattering
in that case still permits identification of features
in OI vs R as due to molecular orientation. Another
type of measurement 5I(R = const, kv) is possibly
much more sensitive to substrate backscattering.
That is, even if the angular form of substrate back-
scattering does not complicate the pattern due to
direct molecular emission, the photon-energy-
dependent strength of such scattering may vary
strongly" "with changing hv. For this reason
5I(R = const, kv) is in some way similar' to a
LEED "I-V plot, " arid is not of interest in this
paper.

A recent approa. ch for calculating 6I(R, hv
= const), based on multiple-scattering theory, is
an X transition-state calculation which was used
to obtain the angular distribution of photoemission
from an oriented molecule. " An application of this
method to the case of photoemission from CQ has
recently been described, and offers the advantage
of describing final-state multiple scattering in
some detail, which our present method does not.
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However, especially for organic molecules which
are somewhat larger than CQ, the X method pro-
vides a much poorer description of the initial-
state wave function than does the present method.
Thus, especially for larger molecules, and for
high enough final-state energy that multiple scat-
tering is somewhat weaker than the direct emission
from the individual atomic centers, the approxima-
tion used here may offer significant advantages
compared with the X approach.

The formalism for describing molecular photo-
emission is developed in Sec, II. In order to make
contact with previous papers based on the PW and
GPW methods, and in order to illustrate that these
are examples of an IAC approximation, we first
rederive in Sec. IIA the QP%' and PW expressions
for photoemission from an LCAQ molecular orbi-
tR1. Section II B then derives the IAC approxima-
tion in a formal manner in which we emphasize
particularly that a much more accurate result is
obtained if the atomic matrix elements which ap-
pear are determined in terms of final-state wave
functions which are solutions of the Schrodinger
equation in the atomic potential of the emitting
center, rather than the ad hoc final state used in
the P% and QPW approximations.

Three applications of the IAC method are de-
scribed in Sec. ID. Qne of these is an illustration
of the manner in which, at high final-state ener-
gies, the result one calculates is dominated by
something like a "diffraction pattern" fxom the
x'adiating molecule. This model calculation relies
on QP%' and P%' matrix elements. A second ap-
plication is to the case of m orbitals of benzene,
in which we illustrate the manner in which one can
calculate exact yet totally geometry-dependent re-
sults in particular cases —exact results which do
not even require calculation of the atomic transi-
tion factors, which do not enter the final result if
detector directions, molecular orientation, Rnd

light pol.arization are suitably chosen. A third
application of the method, again a model calcula-
tion based on the GP%' final-state wave function, .

illustrates the application of the IAC method to
the calculation of vapor-phase P factors. Fin"lly,
in Sec. IV, we discuss these results, as well as
presenting several general conclusions.

II. FORMALISM FOR MOLECULAR PHOTOEMISSION

This section will dex"ive the basic equations
which represent molecular photoemission deter-
mined from a sum of emission amplitudes from
separate atomic orbitals. %'e will first rederive
in our notation the orthogonalized-plane-wave
final-state approach as used, for example, in
Hefs. 1-6. The resulting formulas then lead in a

natural way to the basic equations of the general
independent atomic center method we wish to de-
scribe in this paper Further, the OPW (or plane
wave) approach is then seen to be an approximate
version of the IAC method. For this reason QP%
results can be used later in this paper in order to
illuminate some of the general qualitative features
which would be exhibited by the IAC method if a
calculation were performed based on correct final-
state atomic wave functions.

A. Orthogonalized-plane-wave

and simple-plane-wave approaches

The starting point for this calculation is the
representation of the ith occupied molecular
orbital (initial state) wave function g,.( r ) as a
linear combination of atomic orbitals

(2.1)

In Eq. (2.1), y (r —H ) is an atomic orbital cen-
tered on the atom whose ion core is at H, and 0.
represents the principal and angular-momentum
quantum numbers as wel] Rs the atomic center on
which the orbital resides.

At this point we emphasize a fundamental dif-
ference between the use of Eq. (2;1) by previous
authoxs who have used the QP% method' ' and the
present paper. As others have done, we will get
the atomic orbital coefficients C, from a molecu-
lar-orbital calculation (Gaussian-70 for this
paper)'9 which uses the Hartree-Fock-Roothan
Dletllod in which tIle totRl molecular wave function
is a Slater determinant of molecular orbitals of
the form of Eq. (2.1) with the p represented by
Gaussian functions. However, for calculating
photoionization cross sections, we will then re-
place the p, in Eq. (2.1) with atomic orbitals
whose behavior at small r more properly repre-
sents true Hartree-Pock atomic wave-function be-
havior near the core. The main point is that the
form of the y in Eq. (2.1) required for a mo-
lecular-orbital c'alculation should be rather ac-
curate in the bond region, at rather large r, in
order to obtain px'oper values for the C, and the
related molecular chemistry information (density
and bond order matrices, total binding energy,
etc ) Howev. e.r, when one then changes the quan-
tity of interest to photoionization at high photon
energies, which is the thing of interest in this
paper, one must replace the y in Eq. (2.1) by
atomic functions whose form ensures approxi-
mately correct atomic cross sections over a wide
energy range. Such a replacement is a funda-
mental difference beAeeen the present &cork and
premous calculations based on the QI'W' method.



%AH, B, EN D. GH, OBMAN

For the final-state wave function 4@(r ) ln the
OPW approximation, denoted by f"„(r ), we use a
plane wave orthogonalized to the individual atomic
orbitals y „(r —R„)(here E is the final state energy):

(2.2)

where & =-k' and

p (k) == d're 'I' 'y (r),
q (k) =—-iV-P„(k), (2.6)

(es fV fy,. &
=- (m/0')hv (+s fr fp;&. (2.3)

Since in the OPW approximation we replace 4~
by f"„, which is not an exact solution of the Schro-
dinger equation for the final-state wave function,
Eq. (2.3) is not strictly valid. However, in this
case it is not clear whether & f-„fp fg, & or (f-„fr fg,.&,

the "dipole velocity" on the "dipole-length" ma-
trix element is the better approximation. For
convenience we chose the latter, in which case the
photoionization cross section der/dQ is given by""

rather than to the molecular orbital $, , as has been
done previously. These two methods of ortho-
gonalization are not strictly equivalent in the case
where &y fy„)w 0, which is in fact the case in
molecules for y and rp~ on neighboring atoms.
Howevex, in the spirit of the present calculation,
in which photoionization cross sections in the high
photon-energy limit are desired, the y can be
chosen to reproduce large hv atomic cross sec-
tions correctly, but of such a form that overlap
corrections to the QP%' final state are small.

%e now calculate the photoionization transition
matrix &4z fr fP,.&. The use of the position opera-
tor rather than the momentum operator does not
lead to difficulties in the QP% final-state approxi-
mation, as origin-dependent terms exactly cancel,
as we shall show. Also, we remark that strictly
the momentum operator P = —ih should be used
in the transition matrix, and can be replaced by
r via the following equation only when y,. and 4z
are both eigenfunctions of the same Hamiltonian:

p„~=— d'xy, (r)ry8(r) .

In deriving (2.5) individua. terms involving orbitals
of the form rp ( r —R ) were transformed via a
change of variables to terms involving y„(r). In
this process, two terms remain (other than the
factor e'"' R~) which explicitly involve the R„and
they exactly cancel." In Eq. (2.5) 5(R, RB) is the
delta function and explicitly introduces our ap-
proximation of neglecting overlap integrals be-
tween orbitals on different atomic sites. The
plane-wave formalism is obtained from Eq. (2.5)
by simply setting p ~ equal to zero.

We now reiterate our two principal reasons for
rederiving the QP% formalism. Qne reason is
that we can use this approximate IAC method to
illustrate the use of orbitals other than Slater-
type orbitals for the p„ in Eq. (2.5). Thus, we
will explore in Sec. III the use of hydrogenic forms
for the y in which we vary the effective value of
Z to demonstrate the sensitivity of the gas-phase
angular-dependent "P factors" to choice of atomic
wave functions. There we will see that the sensi-
tivity of the P factors to the choice of Z helps ex-
plain the lack of agreement between previous
QPVf-based theoretical models and experiment. "

Second, the OPW method serves to introduce the
more general formulation of the IAC method that
we will now discuss in Sec. IIB. In addition, it
will serve as an approximate calculation which
will nevertheless illustrate general features of
the IAC method such as the manner in which the
nature of the predicted results changes as one
switches between two photon-energy-dependent
regimes.

where e and m are the electron charge () 0) and
mass, c is the speed of light, and A, is the
polarization unit vector of the incident light of
photon energy h v.

Wte now calculate the matrix element of r be-
tween initial and final states defined by Eqs. (2.1)
ancl (2.2), with the following result:

B. Independent-atomicwenter approximation

The general expression for the amplitude of a
photoelectron of final state energy E at a detector
at position B, when the initial wave function is an
atomic orbital y (r) centered at the origin is"

(2.7)

c; e'"' ~~M (e), !2.5)

x q k — P~ k p~6R, Hg

where G, is the propagator for the final state elec-
tron in the atomic potential V( r), e is related to
E by g =2mE/5', and Ao is the nonoscillatory part
of the vector potential (dipole approximation).

We will evaluate Eq. (2.'I) for the case fR f

=R —~, which assumes a detector far from the
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molecule of interest. In this limit a knowledge
of the (spherically symmetric) atomic potential
V(r} is sufficient for computing A, (5), and re-
quires only numerical integration of the radial
SehrMinger equation in the region where V(r}

%e will then generalize the resulting expres-
sion to the case where y is not centered at the
origin. Summing the resulting amplitude over all
atomic orbital components of $,. will then lead to
the general result for the IAC approximation.

If we define U(r) = U( ~r' ~)
= 2m V(r) /ff'; then we

can write a final-state wave function g«(r) (of
energy E„=k'k'/2m) in the form

t)«( r ) = Q f«(r)X, (r), (2.8)

where f „' is determined from

—, +k'-U(r) ,-f&(r)=0.d', l(l+ 1}

G, (R, r) = 2kdk
e —k'+ih

(2.10)

where

G,'(R, r) =2-"kdk f"'( }f'('}.z- k'+id (2.11)

If now the asymptotic form

The Green's function G, (R, r) in Eq. (2.7) is then
given by

5 we define

2v(21+ 1) eos5,

'E Sin~ )

x d' „' y, * A, Pq

(2.15)

then Eq. (2.7) becomes

A„(R, e) = g Y, (R)MP (&) .

The determination of f„'(r) and M, (&) will be dis-
cussed in the Appendix. Also, we note that P in
Eq. (2.15) could be replaced by r as in Eq (2.3).

%'e are now in a position to calculate the IAC
result for photoemission from a molecular orbital
g, (r) given as a sum of atomic orbitals in Eq.
(2.1}. Our approach is to rewrite Eq. (2.16) for
the case where y is centered at H multiply by
C,„[the coefficient of y, (r —R„), in g, (r) in Eq.
(2.1)], and sum over n. When y is centered
at R~, Eq (2.16) simply gains a phase factor
e' '

0 where k =—kR. This result is derived by
realizing that replacing r by r —H, is equivalent
to replacing R by H+ R, andthenexpandingthe re-
sult for ~R+R„~ in powers of R /R and dropping
all higher-order terms.

This procedure results in the final IAC expres-
sion for A«ot(R, E):

f«(R) = [(2l+ I)/2ikR]

x [(—1)~+ e ~ y s«@js~~] (2.12)

g c,.e'~. " x.(k) . (2.17)

ox'

cos6 e'~
x ' e "~ „ f,'(r) (2.13)

'E Sln~ )

ef@R
lim G, ( R, r) = „2v(21 + I)

I eel(f l(r)
S SlQ~g

~ Zy;(R)y, (r), (2.14)

is used. fear

is substituted into (2.11},we find

lim G,'(R, r) =2v(2l+ I)

%e now emphasize the simple structure of this
result, and compare it with the OPW result [Eq.
(2.5)]. The first factor in Eq. (2.17) represents
the damping and oscillation of the spherical wave
emerging from the molecule at large distances,
and 'contains no angular dependence. The sum
over n, which gives the angular dependence, is a
sum over contributions from individual atomic
orbitals. Each contribution is a product of three
amplitudes: (i) the amplitude with which cp is
represented in P, ; (ii) the amplitude (phase factor)
arising from the extra path length to the detector
due to the fact that y is not at the origin; arri
(ii) the amplitude for optical excitation from an
initil, l orbital y to a final continuum wave func-
tion at energy k 'e/2m (the "atomic factor").

Factors (i) and (ii) are also contained in the
OPW result, Eq. (2.5), while factor (iii) is ap-
proximated by M„(a) in Eq. (2.5). If it were not
for the phase factor e+r in M," (a) in Eq. (2.17),
then the atomic factor M, (c) in the OPW result
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could be made to approximate N (e) in Eg. (2.1'I),
the IAC result. This could be done, for example,
by making the y variational functions, and ad-
justing parameters to satisfy some variational
principle or, alternatively, to replace the OPW
final-state wave function by a plane wave plus an
arbitrary combination of y, with variable co-
efficients. However, the factors e@& represent
phase factors arising from the effect of the atomic
potential on the continuum wave functions. These
phase factors are irrevocably lost in the OP%
(or plane-wave) approach In. these latter ap-
proaches, the final-state wave function is an
ansatz, and the phase at large distances is fixed
from the beginning. This is probably one of the
principle reasons for the failure of recent OPW
calculations to obtain agreement" with experi-
mental results for the angular dependence of
photoemission from molecular vapors. " Other
reasons probably include the use of the QPW ap-
proximation near threshold (where contributions
from the bonding region are significant and anIAC
type of approximation fails), and the use of Slater
orbitals for the y, rather than true atomic wave
functions.

Finally, a rather important consequence of
Ecl. (2.17) arises in certain special cases.
Namely, if P, is composed predominately of
orbitals y, which are all of the same type (e.g. ,
C-2P, orbitals forming one of the high-lying m

orbitals of benzene), then N (k) in Eq. (2.17) is
the same for all n and factors out of the sum over
n. In this case, the factor Z C,e'"' "a gives in a
simple way an angle-dependent function which is
usually only slowly modulated by the prefactor
N (k). Further, by proper choice of the molecu-
lar orientation, light polarization, etc. , one can
find experimentally important examples where
N, (k) is a constant, independent of k, for some
path of k in the polar coordinate system. An
example of such a case will be given in Sec. III,
and will provide a demonstration that one can use
the IAC formalism in some special but important
cases in a very simple way, without the need for
calculating the atomic transition matrices M, (e).
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FIG. 2. The final-state electron wavelength is plotted
as a function of its kinetic energy and compared with
several. bond lengths. This comparison graphically
illustrates the separation of photoemission into two
physical regimes as discussed in the text. For energy
2100 e'V one will begin to see a molecular "diffraction
pattern, "while at the low energies accessible to He
resonance lamps, one sees effects due to the atomic
transitions alone.

that the QPW and PW approximant lead to very
different predictions, especially in the low-energy
regime. The implication of this latter fact is that
any proper calculation —whether or not it includes
multiple scattering —should determine the final-
state radial atomic functions f„'(r) by integrating
the Sehr'odinger equation directly. '4 Performing
this rather simple task —straightforward because
it consists of integrating only a one-dimensional
equation —should lead to much more accurate re-
sults for comparison with experiment. However,
for some simple geometries the angular distribu-
tions are totally independent of the f,'(r) (in the
case where multiple scattering is neglected) as
we will demonstrate by a particular example in
See. III B.

We implement the OPW formalism described
in Sec. IIA for the case of COoriented as shown
in Fig. 3(a). The CO molecule lies along the x
axis, and unpolarized light is incident in the z

III. APPLICATIONS
OF THE INDEPENDENT-ATOMIC-CENTER FORMALISM

(b)
h
R

A. OPW and PW angular distributions for oriented CO

The calculation in this section will illustrate two
points. One is the transition between the low-en-
ergy regime, where individual atomic matrix ele-
ments (or angular distributions) dominate, and
the high-energy or "structure-factor" regime
(see Fig. 2). The second point to be made is

~CO
Yy C H6 6

FIG. 3. (a) and (b) illustrate the geometry of emission
from oriented CO and benzene, respectively, illustrated
ln Fig. 4 and 5.
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FIG. 4. Polar distributions of emission from CQ,
oriented as shown in Fig. 3(a), in the plane-wave
(dashed) and OP% (solid) approximations. These results
are shown for three orbitals of CO, and for three final-
state electron energies.

direction. Photoelectrons are collected on a cone
of half-angle 45' with its axis along the z direc-
tion, and the emitted intensity will be plotted as a
function of the azimuthal angle P about this cone.
The calculation for t'he total amplitude is performed
independently for light polarization A, parallel to
x (which excites only o orbitals) and parallel to y
(which excites only v orbitals). In each case the
total amplitude is squared to obtain an intensity,
and then the intensities are added.

For the initial-state molecular orbitals P,( r),
we have obtained atomic orbital coefficients C,
from a Gaussian-70 calculation using a minimal
basis set." For this calculation the resulting
C,' do not sum to 1 (due to the nonorthogonality
of the basis orbitals on neighboring atoms), and
the p in the basis set include the 1s core orbitals
of C and 0, as well as the 2s and 2P orbitals. The
core orbital coefficients are quite small and may
be neglected for the high-lying (valence) molecular
orbitals of interest to us, and the lack of unit
normalization can be ignored, since we will pre-
sent here simply the unnormalized variation of
photoemission intensity as a function of P [Figs.
3(a) a,nd 4].

Once the C,. are determined, we replace the
Gaussian y basis orbitals of the molecular-
orbital calculation by more-realistic atomic
orbitals, as discussed previously. We have used
here hydrogenic atomic orbitals, with effective
core valence Z determined by plater's prescrip-
tion." These functions retain the proper node
structure of the orbitals, which is an advantage
in our calculations, which extend to large values
of hv. However, they do not properly reflect the
changing value of Z as a function of z as do true
Hartree-Fock atomic orbital calculations (see
Appendix). Due to the crudeness of the OPW final

state, hydrogenic orbitals are adequate for our
present purposes.

The results of OPW (solid) and PW (dashed) cal-
culations for intensity I(P) are plotted in polar
form in Fig. 4 for the 5o, 1~, and 4o orbitals of
C0 for hv =40, 150, and 400 eV. To determine
the final- state kinetic energies binding energies
were determined from experiment" for the case
of CQ adsorbed on Ni, rather than those obtained
from the Gaussian-70 molecular- orbital calcula tion.

At A, v =40 eV, in the regime where atomic ma-
trix elements dominate (see Fig. 2), the results
for a given orbital can be qualitatively different
for the OPW and PW cases (e.g. , see the result
for the 4o orbital), and the symmetry of the re-
sulting distributions is different for different
orbitals. As expected, in this regime even the
symmetry of the resulting pattern is sensitive
to both the final-state and initial-state wave func-
tions, and does not represent the geometry of the
molecule itself. One also sees here the interesting
fact that the asymmetry in the pattern along the
C-0 axis is extremely slight although present.
This result is seen at all photon energies and
suggests that measurements of this type may not
easily distinguish which end of a linear molecule
such as this one lies in a particular direction.

The results for hv =400 eV, in the regime where
the molecular structure factor dominates (Fig. 2),
much more universally reflect the molecular ge-
ometry, rather than the details of the initial (e.g. ,
5a vs lv) or final state (OPW vs PW) wave func-
tions. At this high photon energy we see very
strongly angle- dependent distributions reminiscent
of multicenter diffraction patterns. In all cases
(except the 5o-PW case) one sees a sixfold diffrac-
tion pattern, although the orientation of this pattern
depends on the initial-state wave-function sym-
metry through the C, , which act as phase factors
which can rotate the pattern. (The 5o-PW case
has eight lobes, due to the particular matrix ele-
ments which arise in that case. )

Finally, the hv =150-eP distributions are more
similar to the 400 eV than the 40 eV distributions
as far as their universal shape, irrespective of
initial or final wave function, is concerned. This
result implies that as the final-state electron
wavelength becomes comparable to molecular
dimensions (or bond lengths), the diffraction pat-
tern due to the structure factor rather rapidly
begins to become evident in the results.

B. Factorization of the total amplitude into atomic
and geometric parts

The general formula for the angle-dependent part
of the total IAC approximation amplitude, Eg. (2.1V)



is a sum of terms, each one containing a geometri-
cal factor e'' n, and an atomic factor X (k).
Thus, even for hv large, where e'"' ~~ is a strong-
ly varying function of the direction of k, the rela-
tive size of the various N (k) enters into the de-
termination of the final angle-dependent intensity.
A great simplification occurs, however, in many
cases of interest, for example, photoemission
from a particular m orbital P,. of a plana, r hydro-
carbon molecule, in which case C,. 0 0 only for
atomic orbitals y, (r —R,) of exactly the same
chemical and orbital character (in this case C-2p
orbitals oriented perpendicular to the plane of the
molecules. ) In this case the total amplitude be-
eOIDes

1

E=40 eV

)

., 40eV 00eV,.Q 200 eV

IOO eV ~~ 2 400 eV

400 eV

(3 I)

A„„(R,c) ~g C,. e "au . (3.2)

An exa.mple of this kind, which we now calculate,
is the ease of benzene oriented as shown in Fig.
3(b) (wltll 'tile molecular plalle pel'pelldlclllar to tile
z axis) and the polarization vector A, parallel to
z. Again we take the collector direction to lie on
a cone such that its polar anglesare 8=45, P
variable. For this case all m orbitals are com-
posed only of C-2p, atomic orbitals and k is
oriented with respect to these orbitals so that
N ( k ) = constant for all k on the photoelectron
collection core.

We have calculated the total photoemission inten-
sity versus azimuthal angle (t).for this case, using Eq.
(3.2). For the two highest v orbitals, and photon
energies of 40, 100, 200, and 400 eV we plot the
resulting angular distributions vs Q in Fig. 5.
These results show clearly the extent to which the
geometric factors contribute something like a
"diffra. ction pattern" for an oriented molecule.

The sum over n in Ecl. (3.1) is now extremely
simple to compute, and for la, rge hv will complete-
ly dominate the angular position of maxima and
minima in A„„while N (k) will act only as an
"envelope function, " modulating the intensity of
these features. Thus, in this ease the most essen-
tial features of the angular distribution needed for
molecular orientation determination are found
from a simple molecular orbital calculation, which
gives the C, and from the molecular geometry.

A further simplification can be introduced if, in
cases such as have just been discussed, the
molecule, energy analyzer, and light polarization
are chosen appropriately. In this case the factor
N„(k ) can be made independent of k, and the
angular variation in A„, is totally determined by
the geometrical and C,.„-dependent sum

plo. 5. Emission from oriented benzene [see I ig.
3(b)] for the two highest occupied orbitals, at final
state energies of 40, 100, 200, and 400 eV. The top
row shows polar plots of emission intensity from the
highest-lying x orbital (orbital 21) while the next row
shows patterns from the next highest (orbital 20). The
0' origin of each plot is at the top, and corresponds to
molecular orientation as shown in Fig. 3(b). Heferring
to Fig. 3(b), starting with the carbon atom at 0 (on the
+x axis), and going counterclockwise in the x-y plane,
the atomic p orbital coefficients for orbital 21 are
0.27, -0.27, -0.54, -0.27, 0.27, 0.54. Those for
orbital 20 are -0.46, —0.46, 0.0, 0.46, 0.46, 0.0.

Due to the lack of any other angular factors, and
due to the large size of the molecule, angular
variations due to the e" "~ are evident even at
the lowest photon energies, although they become
much more pronounced and dramatic at large kv.

Also, the difference between-the two ~ orbitals
emphasizes that the angular pattern is not due to
a true molecular structure factor of the form
Z e" ' "~, which depends only on molecular geom-
etry. Rather, in Ecl. (3.2) the C, also enter the
sum, so the ultimate angular dependence receives
an important contribution from the atomic orbital
coefficients C, composing the molecular orbital
of interest.

C. P factors for vapor phase CO

We have calculated the angle-dependent factors
for photoemission from vapor-phase CO for both
plane-wave and QPW final states, and for various
values of the ionic oharge Z appea. ring in the
hydrogenic atomic orbitals. The orbital coeffi-
cients C,. were obtained as in Sec. IHA, but
binding energies were adjusted in this case to
vapor-phase values.

The quantity of interest here is the factor P
appearing in the following formula:
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FEG. 6. P(hp) for vapor-phase CQ with an QPW final
state, hydrogenic orbitals, and effective g's obtained by
Slater's prescription (Bef. 26). The p values for the
3g, 4g, lx, and 5g, orbitals are represented by the
dotted, dot-dashed, solid, and dashed curves, res-
pectively.
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FIG. 7. P (kv) for CG for a plane-wave final state,
hydrogenic orbitals, and Slater &'s. P for the 3g, 4g,
lm, and 5o. orbitals is represented by the dashed, dot-
dashed, solid, and dotted curves, respectively.

ft.t(~X .f) I+@' 2«(»~X, I)
which gives the- total emitted intensity as a function
of the angle between the emitted electron wave
vector k and the light polarization A, . It is well
known that the only functional form for E„,(8„~~)
is the one given here, with P (hv) the parametoer
uniquely determining the angular distribution of
photoemitted electrons from a vapor of a particu-
lar chemical species at a particular photon en-
ergy.

In Fig. 6 we plot P(hv) for four molecular orbi-
tals of CO calcujated using the OP% final-state

FIG. 8. P (hv) for CQ for an GP% final state with hy-
drogenlc initial state orbltals» as in Fig. 6s but with
effective Z's for the hydrogenic wave functions which
are 0.7 times the Slater values. As for Fig. 6, p for
the 3g, 4g, lm, and 5g orbitals is represented by the
dotted, dot-dashed, solid, and da, shed curves, res-
pectively.

wave function, and 81ater's values for Z and C
and 0 for the hydrogenie atomic orbitals. Figure
7 presents the same quantities using a PW final
state, "while p(hv) in Fig. 8 used an OPW final
state, but the Slater values fox S were scaled
down by a factor of 0.8.

The results presented here first of all show the diffi-
culty of calculating hv = 21.2 eV P factors which agree .

with experiment. While Refs. 1-6have attempted
such calculations, we see that the results at 21.2
eP are extremely sensitive to the approximations
one makes, due to the rapid variation of P(hv) in
this energy range. This point was also realized
by the authors of Hefs. 1-6. Additionally, atomic
resonances of various types appear here, "near
threshold, further complicating the physical
phenomena determining the P factors. We feel,
based on these results, that it is possible that in
eases where atomic resonances are not important,
proper application of the IAC may be capable of

- correctly yielding P factors at hv =21.2 e7. How-
ever, this possibility remains to be demonstrated.
It may be necessary in this regime to include in-
tramolecular multiple scattering to some order,
since in this energy range one expects rather
large values for the atomic t matrix at. large
angles. We emphasize that our intent in this
paper is to consider the IAC approximation as
one which is valid in a high-energy limit, and
attempts to extend it to low energies may fail.

At high photon energies, Figs. 6-8 illustrate a
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large variety of structure in P(hv). This structure
comes both from the nodes in the cp which we
have made qualitatively correct by using hydro-
genic wave functions, and from spherical Bessel
functions in the ensemble average of Eq. (2.5),
which describe interference between atomic
centers. These geometry- based interference
terms are thus evident in vapor phase P(hv) at
large hv for the same reasons they are seen in
Figs. 4 and 5 at large hv, but in the vapor-phase
case their manifestation is seen in a different
measured quantity.

Finally, we learn from Figs. 6-8 that even at
large values of hv, the dependence of P on. photon
energy is very different for the QPW and PW
case." This is in contrast to the large hv oriented-
molecule angular distributions (Fig. 5), which at
large hv tend to show a px'edominately geometry-
dependent "diffraction pattern" for the molecule.
This contrast is due to the fact that for large hv

the atomic factors tend to modulate lobe intensities
in the oriented-molecule emission patterns, but
do not usually change the angular position of maxi-
ma and minima. However, P(hv) is apparently very
sensitive to such modulation. For this reason,
comparison of calculated values for P(hv) with ex-
perimental values over a wide energy range using
synchrotron radiation will constitute a strong test
of the theoretical calculation. The converse im-
plication is that even an approximate IAC-based
theory may be adequate for calculating angular
distributions from oriented molecules at a fixed
photon energy.

1V. DISCUSSION

The present section reemphasizes three major
features of the IAC approximation which were
developed in the preceding sections. These are
listed here and then will be discussed individually:

(i) At large hv, when multiple scattering is not
dominant, ""geometrical and atomic angular
factors contribute to the total angle-dependent
intensity in different ways, which can be sepa-
rated.

(ii) The present development of the IAC shows
how one may improve greatly on the QPW and PW
approximations, and may permit vapor-phase P
factors to be calculated well enough to permit
their use in the interpretation of vapor-phase
photoemission spectra.

(iii) The IAC approximation provides a starting
point for the calculation of multiple scattering, as
it provides a simple form for the initial state
needed at the start of any multiple-scattering cal-
culation.

The first feature listed above has been discussed
in detail already. We emphasize that the use of

geometrical information can be extracted from
large kv molecular angular distributions in two
ways. In the general ease, the simplest approach
is to use the position (angula. r separation) of sharp
lobes in the angular distribution to identify the
geometrical information in Eq. (2.17). That is,
one can ignore the modulation of lobe intensity
(and possible rotation of the pattern by atomic fac-
tor phases) and simply use the sharp structure as
a guide. With more effort, one can integrate the
Schrodinger equation for the final-state atomic
functions —a procedure which is relatively simple
due to the spherical potential and availability of
analytic approximations to the initial atomic states
and charge densities, " Such a calculation then
yields the atomic factors in Eq. (2.17) so that a
more detailed comparison of theory and experi-
ment can be made. We also showed that by judi-
ciously choosing detector and light-polarization
directions, the atomic factors can be made to
disappear completely from the problem for many
important cases involving symmetric hydrocarbon
moleeules. In such a case it is a ~igo~ous feature
of the IAC formulas that the atomic factors can be
completely ignored, and only the simple "geo-
metrical" factor calculated (see Sec. IIIB). It was
also shown in Sec. IDB that for such molecules,
even in the more general case where the atomic
factors do not disappear completely, they become
one simple prefactor in front of the "geometrical"
sum, so that they do not change the position of
geometry- induced lobe positions.

Yhe second major feature of our paper is that it
shows that the IAC formula (2.17) is of the same
form as the often used OPW result t Eq. (2.5)] .
Since the IAC result also provides a well-defined
prescription for calculating the atomic transition
amplitudes, it provides a natural extension of the
previous models based on the QPW approximation.
In particular, Eq. (2.17) shows that the phase shift
accrued by the final-state electron as it leaves an
atomic potential properly enters the IAC formula,
while the phase at large distances is simply fixed
in an ad hoc way in the QPW formulation. This
phase problem, as well as improper atomic am-
plitudes, may be one of the reasons for the failure
of the OPW approach to properly predict vapor-
phase P factors, and the LAC method might improve
on the calculation of such factors. IIowever, we
feel that such a program will have most success if
P factors are measured at large values of hv~100
eV (e.g. , using synchrotron radiation). For the
many measurements available at: kv =21.2 eP
using He discharge light sources, intramolecular
multiple scattering is likely to contribute strongly.

Finally, the IAC results we present here provide
a starting point for an intramolecular as well as a
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substrate multiple-scattering calculation. As the
wave leaving the molecule in the IAC approxima-
tion is a sum of independent (but coherent) spheri-
cal waves, each such wave can be used as the in-
cident wave in a calculation of multiple scattering
from the substrate based on one of the many
LEED-type calculations now available. Intramo-
lecular scattering (and substrate scattering as
well, as an alternative to a LEED-based calcula-
tion) can also proceed via a sum over real space
propagations between scattering centers, similar
to some calculations of EXAFS 's " There are
indications in the literature (e.g. , Ref. 28-31) that
terminating such a calculation after including scat-
tering only to a rather low order may be justified
in the particular case treated here. The important
point is that the initial wave here is spherical,
not a plane wave as in the LEED case, and Lee" "
has shown that in this case multiple scattering need
not necessarily be carried out to the high order
required for LEED. Also, we are not interested
in calculating intensity versus hv (as was done,
for example, by Leibsh'), but rather intensity
versus detector angle at fixed hv. This important
difference also may contribute to the success of a
calculation based on multiple scattering only to a
low order (one or two scattering event terms}, for
after many scatterings (which may still contribute
to the angle integrated intensity), sharp angular
structure, due for example to the symmetry of the
adsorption site, probably disappears from the re-
sult.
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APPENDIX

The main point of this Appendix is to show that
the most central problem in calculating the angle-
dependent photoemission from molecules —namely,
the accurate determination of the final-state wave
function —is made tractable in the IAC approxima-
tion. The most intractable part of the problem of
finding the final- state wave function, the multi-
center nature of the molecule, is eliminated in the
IAC approximation by the decomposition of the
total transition matrix into a sum of individual
terms each of which contains a matrix element
[see Eqs. (2.15) and (2.16}]between an atomic
eigenfunction |I() and a solution of the Schr'odinger

x6 5&ct,B~ R 8,R~ & (A1)

where the 6 functions imply that charge density on

equation, f,'(r)y, (r), in an atomic potential at
final state energy E, =h'h'/2m. Once the atomic
potential U(r) of Eq. (2.9) is determined, one can
numerically integrate (2.9) to determine f,'(r) up
to a multiplicative normalization factor, which is
then determined by matching the solution of Eq.
(2.9) to the asymptotic form of f,' given in (2.12).

The two most physically significant questions
that arise in implementing this procedure are the
following: (i) Since f „(r) is needed near the atomic
core for calculating photoemission transition am-
plitudes at large hv, how does one easily get the
correct multielectron atomic potential U(r) for
r-0'? (ii) As the final molecular state is an
ionized one, what is the charge state of the
molecule used to obtain U(r)'?

The first question emphasizes the fact that os-
cillations in f,'(r) near r = 0 contribute strongly to
A„,(Jf) at large final energy, so that a U(r) ob-
tained for example from a proper multielectron
calculation of the atom is needed in Eq. (2.9)
rather than a U(r) based simply on occupied
Slater-type orbitals, which have the correct form
in the bond region, but not in the atomic core
region.

Concerning the charge state of the molecule, one
procedure of value would be to perform calcula-
tions of U(r) for individual atomic centers in both
the neutral and ionized molecules, and compare
the results. For large molecules in the vapor
phase, ionization of the molecule typically re-
moves only a small fraction of an electron charge
from any particular atomic center, so that the
result should not be very sensitive to the charge
state of the molecule. For the case of molecules
on a solid surface, the charge removed from the
molecule could be replaced by charge flow from
the solid in a time comparable to the photoexcita-
tion time scale, so that the neutral molecule-
charge distribution is probably the most sensible
one to choose.

In light of the above discussion, we feel that a
well-defined reasonable procedure for finding
U„(r) on atom A located at position R„ is the fol-
lowing. One first determines the C,„of Eq. (2.1)
for all occupied molecular orbitals g, using a
standard molecular calculation (Gaussian-70),
CNDO-2, etc. ) based on Slater-type orbitals,
Gaussian orbitals, etc. , for the y (r —R„). Then
the charge density on atom A p„(r) is determined
from
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atom A receives no contribution from neighboring
atoms. This assumption neglects bond charge con-
tributions Rnd leaves that part of the charge on an
atom near the core region, which contributes most
strongly in the region of interest for high-energy
photoemission (i.e. , in the region in which p„(1) is
approximately spherically symmetric about R„).

While tile C; 111 E»l. (Al) a1'e determined fl'0111 a
molecular orbital calculation, the y used in that
calculation must be replced by a good representa-
tion of HRrtlee-Pock wRve funct1ons Rs emphasized
previously. This problem is rather straightforward
to solve, for there now exist excellent representa-
tions of Hartree-Pock atomic orbitals in terms of
a finite sum of simple functions. Por example,
Clementi and Hoetti" have tabulated representa-
tions of the atomic orbitals y as a finite sum of
functions of the form r e "y, "(»'). This simple

representation of the y can then be used to deter-
mine U„(r) from p„(r) in terms of a sum of a
Coulomb potential [obtained from P„(r) using
Poisson's equation] and an effective (one-elec-
tron) exchange potential [proportional to [p„(r)] '~'j.

The combination of easily used molecular orbital
calculations for finding C,. and simple forms for
Hartree-Pock atomic functions y thus makes sim-
ple the determination of a rather accurate form
for U„(») near the atomic core in a molecule, so
that direct numerical integration of Etl. (2.9) can
be easily carried out. Thus, in a straightforward
and simple way the IA, C approximation permits a
much moxe accurate calculation of photoionization
oscillator strengths and angular distributions far
Rbove threshold than CRn be carried out us1ng the
rather crude plane-wave or OP%' final-state ap-
proximations�.
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