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The thallium group of halides have certain characteristic properties compared to the other alkali-halide

crystals. The peculiarities are manifest in connection with the static lat'tice structure, the consistent description
of the dielectric properties and the phonon dispersion relation, and the unified study of the lattice statics and

dynamics. In this report we present a coherent account of the diverse properties of the T18r crystal from a
single model, namely, the deformable shell model with a single set of model parameters. Apart from this we

present for the first time the theoretical calculation of the phonon dispersion relation for the NaCl-phase T18r
crystal. This prediction, we feel, will be helpful to the experimentalist in identifying the modes of polarization,
the continuity of a particular branch in the overlapping regions and the like, if not quantitatively the
frequencies themselves. Moreover, the present investigation tries to indicate the relative importance of the
different interatomic interactions in relation to the typicalities. Finally it is seen that an overall description of
the lattice mechanical properties of the T18r crystal in both phases is obtained in the present model. Some of
the shortcomings and possible means of improving the present calculation are also pointed out.

I. INTRODUCTION

Studies of the lattice dynamics of ionic solids
have become legion. In recent years several re-
views'~ have appeared emphasizing the different
aspects of the problem. While it is gradually be-
coming clear that the lattice dynamics of solids
cannot be studied in isolation, little attention has
been paid to study the same in conjunction with
other properties, like the relative stability of
structure, the cohesive energy, the anharmonic
properties, etc. Several models' ' which have
been so far developed mainly discuss the lattice
dynamics of ionic crystals. They are to be suit-
ably modified to study other properties. "'" On
the other hand the deformable-shell model" "is
free from the limitations mentioned above and has
already been successfully applied to calculate si-
multaneously the lattice statics and dynamics of a
few alkali-halide crystals. "'7 A first-principles
calculation of the lattice dynamics of ionic crystals
is beset with many difficulties. Although recently
several attempts" ~ at constructing microscopic
theories have made some progress, they are still
far from being completely satisfactory. Hence
comprehensive calculations of the properties of a
solid based on sensible models remain useful as
a guide to both theoretical and experimental phys-
icists. In the present work we propose to do a
calculation of the lattice statics and dynamics of
the T1Br crystal in both phases, from a single
model, namely, the deformable shell model with

a single set of model paramenters. We have se-
lected this crysta1. because of the following pecu-
liarities. Firstly the three Tl halide crystals have
a time old problem regarding the stability of their
static lattice structure. It is now well known that
no reasonable two-body central interaction can ex-
plain their structure. Secondly, in this group of
crystals a consistent description of the high- and
low-frequency dielectric constants "nd the phonon
frequencies has not been obtained in the calcula-
tions done so far. Cowley et al."obtained a rea-
sonable fit for the dispersion of phonons in a 14-
parameter shell model which altered the static
and high frequency dielectric constants by about
9 /o anol 15 /o respectively. The 11-parameter
variable-charge shell-model calculation by Srini-
vasan et al. '4 improves the agreement with respect
to the high-frequency dielectric constant, but the
discrepancy in the case of static dielectric con-
stant is about 18%%ug. Both calculations are, how-
ever, unable to take account of the cohesive ener-
gy, the relative stability, ete. Moreover, the
physical significance of some of the parameters in
the model is not clear. Thirdly, the pronounced
violation of the Cauchy relation is another interest-
ing feature of the group. Another theoretically at-
tractive feature of the T1Br crystal is that it has a
NaCl phase other than the normal CsC1 phase for
which some measurements are available. In Sec.
II we give a brief description of the deformable-
shell model and the method of determination of the
parameters.
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II. DEFORMABLE-SHELL MODEL AND THE

DETERMINATION OF THE MODEL PARAMETERS

The details of the deformable-shell model de-
veloped by Basu and Sengupta are given in Refs.
12, 13, and 15. In order to write down the energy
expression in the above model, "let us divide ev-
ery ion into'a core of charge Z;+ Y, and a shell of
charge —Y, If R, and R', represent the position of
the core and the shell, respectively, then the di-
pole moment and the self-energy of each ion are

given by

p, = Y;-(R'; —R;)

,'Z, (R—;—R;)'= p, /2o. ;, (2)

where o. ;= Y&'/K, , K,. being the core-shell spring
constant. Assuming the overlap interaction to act
through the shells only, the total energy expres-
sion in the deformable-shell model is

' '+
2 Qbexp(-R„. /p)+-Q —," (+ —Q —," + —QQA(K)exp—

1 I Z-Z ~ 1 R)~+8]
R3$ gg 2

g g y
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(3)

the dipole moment p, being determined by the
ionic coordinates through the equation

where the first term represents the Coulomb in-
teraction between the ions, the second one the
short-range repulsive interaction (b, p being the
range and hardness parameters), the third and
fourth the dipole-dipole and the dipole-quadrupole
van der Waals interactions, respectively, the fifth-
the short-range three-body interaction arising out
of the isotropic deformation of the charge cloud
round each ion [A(K) being the deformability para-
meter characteristic of the K ton] and the last four
terms represent the energy expression corres-
ponding to the both-ion-polarizable shell model"
(1"'s and K's being the appropriate shell charges
and the core-shell spring constants).

Qf the terms present in the energy expression
the first four terms have a sound quantum-mechan-
ical basis. The last four terms, namely those re-
presenting the shell model, have been justified in
the works of Tolpygo and Sinha and more recently
by Basu and Sengupta, but the specific forms that
are in use are still questioned. This point we shall
discuss in Sec. V. The justification for the fifth
term stems from the works of Lowdin and Lund-
qvist who have demonstrated the importance of the
many-body interaction in the case of ionic solids.
Recently Ghosh and Basu" haV'e given a derivation
of this term on the basis of the Thomas-Fermi-
Dirac statistical model. Hence we find that the
different interactions that are being considered in
the present model have some at least qualitative
plausibility justif ication.

In order to reduce the number of parameters we

have made some simplifying assumptions. As we
intend to obtain a rough overall description of the
lattice mechanics of the TlBr crystal inboth phases
with a single set of parameters rather than to ob-
tain an exact fit for any particular property, these
assumptions, we believe, will notbe unjustified.
The assumptions are the second-neighbor overlap
is neglected, the many-body interaction is con-
fined to the case where one of the particles is a
common nearest neighbor of the other two, and
while the Van der Waals interaction is retained for
all neighbors in the expression for the cohesive
energy and the elastic constants, it is neglected
beyond nearest neighbor in the phonon frequency
calculation; lastly, the ionic charge is fixed to
unity.

Now, using Eqs. (3) and (4) all the lattice me-
chanical properties can be calculated. In this mod-
el we have altogether eight parameters, namely,
b, p, A(l), A(2), Y(1), Y(2), K(1), and K(2) which
are determined from the following equations. Using
Eq. (3) we write the energy per unit cell for the
CsCl-structure lattice

2
CsC1 + 8Q e r/P+ 28~ e-2r/P

Cs Cl

CsC1 CsC1
6

where o.c,c, is the Madelung constant for CsCl
structure and 7 the harmonic nearest-neighbor
distance.

From Eq. (3), Sarkar and Sengupta" using the
homogeneous deformation theory have obtained the
expression for the elastic constants. Using these
equations we get for the harmonic compressibility
P
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Using the harmonic values of the compressibility,
the lattice constant, and the cohesive energy the
three potential parameters b, p, A are obtained
from Eqs. (5)-(7). The parameter A. (2) is deter-
mined from the LA frequency for q=—(0.5, 0, 0) by
the following equation:

e~ 64A(2)e 2"~'
Ao+ ~ C(l)+ 2

—= (mr, +)(@2~„2x' p

where

(8)

8 1 2 „„/R, = — ———be" '
3 p pt'

6 14,„iP 30C, 56d, '

(8)

where P=be " ', A=A(l)+A(2), and the C's and
D's are the coefficients of the Van der Waals terms
for the elastic constant including the lattice sums. ~6

The equilibrium of the static lattice structure is
obtained from the following equation:

where C, , d, are the van der Waals interaction
constants between the positive and negative ions."
C(1) is the Coulomb coupling coefficient.

The remaining four parameters, the shell
charges and the core-shell spring constants are
evaluated from the values of the dielectric con-
stants and the LO and TO frequencies for q
=—(0, 0, 0). The relevant equations are given by
Woods et a/. " Thus all eight parameters are ob-
tained and given in Table I together with the input
data. An idea about the uncertainties of the values
of the parameters is obtained from the accuracy of
the different input data. The harmonic values of
the cohesive energy, the compressibility, and the
lattice constant have accuracies of the order of 2%,
1%, and 0.1%, respectively. The uncertainties in
the measured values of &, and E„and the phonon
frequencies are about 0.1%, 0.05%, and 2%. All
the input data used are kept within these
limits.

Further, we consider the parameters of the
model to.be independent of structure. This is true
of the four potential parameters, b, p, A(1), and

A(2), but may not be quite correct concerning the
shell model parameters, i.e. , the shell charges
and the core-shell spring constants. But even if
they are different for the NaCl phase of the
crystal, the difference is certainly negligible, as
is borne out by the results of the calculations
that follow. With the set of parameter's thus

TABLE I. Input data and values of the parameters. The quoted cohesive energy and bulk
modulus refer to the harmonic values. The exact experimental values are given in parentheses
when they differ from the input data.

Property Input values Parameters Values

Cohesive energy
(kcal/mol)

Bulk modulus "
(1O" dyn cm-')

Nearest neighbor
distance (10 cm) '

Dielectric constant

LA frequency'
(10 Hz tq=—(0.5, 0, 0)]

U {y') 166.0061
(169.1)

0.2633

3.4044
3.4207 (100 'K)

33.50(100 K)
5.54(100 K)

1.92

b

{10 erg)
P
(iO 8 cm)
X(i)
(10 6 erg)

~(2)
(10 erg)

V(i)
I (2)

z(1)
(10 dyn/cm)
Z(2)
(1O4 dyn/cm)

0.3615

0.3610

1.3034

-0.4277

8.5600
3.1592

440.0

44.0

Long-wavelength optical v~o
frequencies (10' Hz) v&o
f,q-=(o, o, o)]

3.37
1.39

~Reference 28.
Reference 29.

~ Reference 29.

Reference 30.
~ Reference 23.
Reference 23.
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TABLE II. Relative stability of static lattice structure for the TlBr crystal.

Harmonic
nn

distance
Structure (10 cm)

Contribution to cohesive energy by
different interaction (kcal/mol)

Coulomb Repulsive van der Waals Many body

Cohesive
energy

(kcal/mol)
Total

Phase
transition
pressure

(kbar)

Phase
transition

volume
(10-'4 cm')

Nacl
phase

Cscl
phase

3.3303 .

(3.28) '
3.4044

-174.3168 + 30.8667

-172.0000 + 33.3652

-23.0589

—29.6371

1.8466

2.2658

-164.6625

—166.0061

-7.1073 13.1273

Refer to the experimental nearest-neighbor (nn) distance for the NaCl phase, Ref. 31.

determined we calculate some of the principal
lattice properties of the 71Br crystal.

III. LATTICE STATICS

1 1
N aC1 NaC1

8'V

where C' and D' are the appropriate Van der Waals
constants for the new structure. The equilibrium
nearest-neighbor distance for the new structure is
determined by solving numerically the following
equation:

dANaCl 0
d'v

(10b)

The obtained harmonic nearest-neighbor distance

In this section we consider first of all the rela-
tive stability of the static lattice structure. It is
well known, as has been mentioned earlier, that
no two-body central interaction can account for the
structure of this crystal. In order to calculate the
structure in the present model we write down the
energy per unit cell corresponding to the NaC1
structure,

e~
NaCl + 6ge-~/P'+ gee-2~/&

NaCl

is found to compare satisfactori1y with the experi-
mental value for the NaCl phase. " The phase-tran-
sition pressure at T = 0 is obtained, by neglecting
the zero-point anharmonicity effect, from the
Gibbs free energy for the two phases by the follow-
ing equation:

P ( PNaC1 QCSC1)/(5 V ) &

where, v and v' are the volumes per unit cell. for
the CsCl and NaC1 phases, respectively. The cal-
culated values are collected in Table II. The ob-
served CsCl structure turns out to be stable. The
contributions of the individual interactions are also
given in Table II. The negative phase-transition
pressure indicates that the NaCl phase is possibly
stable only at high temperature or low pressure,
which also agrees with observations made so far.

Next we calculate the harmonic second-order
elastic constants for both phases, and these are
collected in Table III. The presence of many-body
intera, ction lifts the Cauchy relation in both
cases. The agreement with experiment is also
found to be quite satisfactory. For the NaCl phase,
however, there is no measurement available for
comparison. Treusch" has made an independent
estimate of the bulk modulus of TlBr in the NaC1-
phase from energy-band measurements and has

TABLE III. Second-order harmonic elastic constants.

Property

CsCl phase NaCl phase
Present Calculated by Calculated by Present

Expt. a calculation Cowley and Okazaki" Srinivasan et aE. calculation

10 Cij

10-12(

0.4500

0.1700

0.1 11510-j2C

f 0 (C j2 —$44) 0.0585

0.4372

0.1764

0.1 179

0.0585 -0.002 0 ~ 045

0.5300

0.094 30

0.041 96

aReference 29.
Reference 23 (refers to room-temperature values).
Reference 24 (refers to room-temperature values) ~
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FIG. 1. Solid lines repre-
sent the deformable-shell
model calculations for
TlBr (Cscl phase) at 100 K.
Experimental points are
from Ref. 23.

0.2 OA OA 02 0 0

R EDUCE 0 NAVE V ECTOR

0.2 0.4I

found a change in bulk modulus similar to that ob-
tained in the present investigation. This decrease
in the value of the bulk modulus implies an increase
in the repulsive energy as well as a decrease in
the va, u der Waals energy (see Table II).

Thus the value of the cohesive energy which
wouM otherwise be higher for the NaC1 phase actu-
ally turns out to be lower. This also agrees with
experiment, since the Cs| 1-phase Tl halides are the
normally stable phases. Another important con-
sequence of this ls the 10wering of the longitudinal
phonon frequency and the increase in transverse
optical frequency. This point will be discussed in
the section on lattice dynamics.

IV. LATTICE DYNAMICS AND DIELECTRIC CONSTANTS

In order- to calculate the dynamics, the dyna, m-
ical equations are obtained by expanding H, in Eqs.
(3) and (4) about, , the equilibrium configuration (see
Sarkar and Sengupta") as follows.

(&+D,+ ZCZ) U+ (R+ D, —ZCI') W= &o'm U,
(12)

(It'+&,'- &CZ) U+(Z+It+D, + I CI ) W=o,

where Z, F, m are 6 x 6 diagonal matrices for the
ionic charge, the shell charges, and the ionic
mass; U= (U„U,) and W= (W„W,) are the amplitude
vectors for the core-displacement and the shell-
core separation vectors; 8, C, K are the total
overlap interaction (including Van der Waals inter-
action), the Coulomb interaction, and the core-
shell spring interaction; and Dp is the real 6X 6
dynami;cal matrix corresponding to the three-body
interaction [fifth term in Eq. (3)]

M~(33)

0 M'(44)

The explicit expressions for M~(33) and M~(44) are
given by Basu and Sengupta" and Roy et a/."for
the NaCl structure and the CsCl structure, respec-
tively. The Eqs. (12) are solved for the symmetry
directions for both structures to get the eigenfre-
quencies shown in Figs. j. and 2. Figure 1 shows
that the frequencies (in the CsC1 phase) compare
quite favorably with the measured ones in all three
directions. The corresponding frequencies in the
NaCl phase are shown in Fig. 2. In calculating

& l00) & IIO)

FIG. 2. Dispersion curve
of TlBr in NaCl phase at
room temperature.

0 Qg 0.4 0.8 OA3 I.O 1.0 0.8 0.'6 OA 0.2 0 0 O.I 0.2
NAV E VECTOR
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TABLE IV. Static and high-frequency dielectric constants.

Property

CsCl phase NaC1 phase
Present Calculated by Calculated by Present Estimated

Expt. calculation Cowley and Okazaki" Srinivasan ef al . calculation by Treusch

Dielectric eo 33.50
constant

33.59

5.54

30.50

4.74

39.40'

5.60

9.30

4.02

-i0.00

4.50

~Reference 30.
Reference 23.

'Reference 24.
da, eference 31.

Using the Lyddane-Sachs-Teller relation and their calculated e„arz, cuz.

these frequencies we have used the lattice constant
as determined experimentally. " All the character-
istic features of the NaC1 structure'4 are found to
be present in the dispersion curves. The only
other observation made in this connection by
Treusch" from completely separate considerations,
that the ratio urz/&ur should range between 1.4 and
1.8 for the NaC1 phase, is found to agree with the
result of the present calcul. ation, which is 1.52.
However, for any conclusive decision one must
wait for a complete experimental determination of
the dispersion relation in this phase.

Next we calculate the high-frequency and the
static dielectric constants in the NaCl phase with
the same set of parameters. The relevant, equa-
tions. used are the same as those of the both-ion-
polarizabl. e shell model of Woods et a/."with the
modifications necessary to incorporate the effect
of three-body and van der Waals interactions. The
results are shown in Table IV together with the
empirical values of the same esti.mated with the
linear combination of atomic orbitals energy-band
model by Treusch. " It is interesting to note the
closeness of the results obtained by two entirely
different approaches.

V. DISCUSSION

The present investigation shows that the deform-
able-shell model with a single set of only eight pa-
rameters besides taking into account the peculiar-
ities of the T1Br crystal provides an overall de-
scription of the lattice mechanics of the same with-
out producing any significant discrepancy anywhere.
It may be generally observed from the present cal-
culation that the interatomic interactions affect the
various lattice mechanical properties in different
ways. Firstly, the significance of the van der
Waals interaction which has so far been neglected
is clearly demonstrated. Its contribution to the
cohesive energy is &15k. The effect of this inter-
action on the elastic properties is quite small,

while the effect on the dielectric constant as well
as on the phonon frequencies is not at all negligible.
While the contribution of the three-body interaction
to the cohesive energy 'is quite negligible (-1.5%),
this is decisive in stabilizing the static lattice
structure. Again, this interaction is alone respon-'
sible for the breakdown of the Cauchy relation. In
addition this interaction has quite considerable ef-
fect on the zone-boundary phonon frequencies, par-
ticularly in the Lo branches in all directions.

Next we consider the calculations on the NaCl
phase. The agreement in the case of the lattice
constant and the dielectric constants gives us some
confidence about the results for the phonon fre-
quencies in this phase. A comparison of the de-
tailed behavior of the dispersion of phonons deter-
mined experimentally for the NaC1 structure al-
kali halides shows some definite trends' in the
[100]LO, [100] LA, and [111]LO branches ai or
near the zone boundaries. In the [100] LO branch
there is a slope or a local minimum near the zone
boundary, while there is a pronounced minimum in
the [100]LA and [111]LO branches just at the zone
boundary. This is particularly valid for chlorides,
bromides, and iodides. The present calculation
fits in well with this observation. Apart from this
the present calculation will provide the structure
factors for the one-phonon coherent scattering
which are essential in performing thermal-neutron
scattering experiments to determine the phonon
frequencies.

To conclude we discuss some of the limitations
of the present calculations. Although the overall
agreement for the phonon frequencies in the CsC1
phase is impressive and superior to that of exist-
ing calculations there are still some small local. -
ized discrepancies: the LA branch near the [111]
direction zone boundary is slightly above the ex-
perimental points (-5%}; the TA branch and the TO
branch in the [110]direction are slightly lower and
higher than the experimental ones at the zone
boundary, respectively; the LO branch in the [100]
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direction is about 3% higher than the experimental
one at the zone boundary. It is difficult to conclude
whether any adjustment in the values of the para-
meters can remove the discrepancies while keep-
ing the agreement with respect to other properties
intact. Bather, it appears that the effect of the
quadrupolar deformation of the electron charge
cloud may be a. plausible means for further refine-
ment. Another unsatisfactory feature of the present
model is the rather wide variation of the value of
the shell parameters (F's and K's) for a small
change in input data. This very fact indicates that

these parameters are to some extent artificial.
The calculation of the pressure and temperature
derivatives of the dielectric constants with the
same set of parameters may throw some light in
this direction. We hope to investigate this point
in the near future.
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