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The attenuation of collective excitations (phasons) corresponding to phase modulation of a charge-density
wave (COW) caused by electron-phason interaction is studied. Phason attenuation is a nonlocal effect and
must be treated microscopically because the pertinent length scale is determined by the CDW wave vector Q
rather than the phason wave vector t). In three-dimensional jellium, phasons with g parallel to Q are
predominantly attenuated by scattering electrons (in. k space) near the CD% energy gaps, and the
attenuation rate is independent of temperature. The phason attenuation rate is y=(1/E)dE/dt, for a
phason with energy E We fi.nd y —q cos S, where 8 is the angle between g and Q. For g parallel to Q, y
is approximately 0.3 times the phason frequency; i.e., phasons are underdamped. Phasons with g
perpendicular to Q are not attenuated. If heterodyne gapa (caused by potentials of periodicity Q+ 2w5) cut
the Fermi surface, the attenuation is increased by a factor of 3.

I. INTRODUCTION

u(L) = A sin(Q L+ q) . (2)

Because Q is incommensurate with the lattice,
the energy of the system must be independent of
the spatial position of the CDW as determined by
the phase p. It then follows that there will be low-
frequency collective excitations corresponding to
y varying slowly in space and time. These ele-
mentary excitations are called phasons' and have
important consequences for experiments which
try to detect a CDW with Bragg diffraction of x

In three-dimensional metals exchange inter-
actions and electron-electron correlations can give
rise to a charge-density wave (CDW) instability'
which breaks the translation symmetry of the crys-
tal. In the presence of a CDW the spatial density of
conduction electrons is of the form

p= p, [1+pcos(Q'r+ q)],
where P is the fractional amplitude of the elec-
tron-density modulation, po is the mean electron
density, Q is the CDW wave vector, and y is the
CDW phase. . This new periodicity arises in addition
to the normal periodicity of the crystal lattice; and
since Q is nearly equal to the diameter 2k~ of the
Fermi surface, the CDW periodicity is, in general,
incommensurate with that of the lattice. The
resulting structure is multiply periodic, and the
crystal no longer has a translation group since no
two ions are equivalent.

A CDW instability can occur only if the electronic
charge density is locally neutralized by an accom-
panying lattice distortion. ' Each positive ion will
be displaced from its equilibrium lattice site
L by

rays, neutrons, or electrons or through Knight-
shift or hyperfine-field effects. '

Because phasons have important experimental
consequences, it is of interest to determine
their rate of attenuation. Our purpose in this
paper is to study the attenuation of phasons caused
by electron-phason interaction.

We demonstrate below that the length scale of
the electron-phason interaction is determined by
the CDW wave vector Q and not the phason wave
vector q. Because the wavelength of the inter-
action is the order of a lattice spacing, the elec-
tron mean free path will always be long compared
to the wavelength of the interaction. Thus, phason
attenuation is a nonlocal effect and is correctly
described by "Golden Rule" quantum mechanics.

It is certainly incorrect to use Ohm's law or
a transport equation with relaxation to a local equi-
librium distribution in calculating the phason
attenuation rate. Herein lies a major difference
between the attenuation of phasons and the attenu-
ation of long-wavelength acoustical phonons, i.e. ,
ultrasonic attenuation. This difference is made
manifest in the following argument. Consider a
longitudinal acoustical phonon with wavelength
2ti/q equal to, say, 1000 lattice constants and
amplitude A. Let us take a length of 100 l.attice
constants to define a macroscopic chunk of sample.
The ion displacements are u=A. sinq r. The
mean displacement of an ion in a typical "chunk"
will be -A since the displaceme. nts are all, in

general, in phase. Equivalently, there is a macro-
scopic motion of the charge density. Now' con-
sider a phason with wavelength 2ti/q equal to 1000
lattice constants. As shown below the displace-
ments of the ions are u-& sin[(Q+q) r]. Thatis,
the periodicity of the ion displacements is deter-
mined by Q»q and is the order of one lattice cons-
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tant. Since 2v/Q is much smaBer than the length
of the 100-lattice-constant chunk, the mean dis-
placement of an ion in the chunk is 0. Thus a
long-wavelength phason (unlike a phonon) is not ac-
companied by a macroscopic motion of the charge
density.

McMillan' has dealt briefly with the problem of
phason attenuation within the context of time-
dependent Landau theory. The relation of his work
to that in this paper is disucssed in the Appendix.

II. PHASONS AND ELECTRON-PHASON INTERACTION

In this section we review some of the properties
of phasons assuming negligible damping. A more
detR116d dlscusslon cRQ be found 1n R px'ev1ous
work by one of the a.uthors. ' We also derive the
electron-phason interaction.

Consider a single incommensurate CD%' as
described by Eqs. {1)and {2). Since the energy
of the CBW is independent of phase p, it follows
that there will be low-frequency collective ex-
citatlons corx'68poQd1Qg to p val+ing slowly 1Q

space and time. We express y(L, t) as an ex-
pRnsion in running wRves,

y(L, f) = g p.„sin(q L —&u;f).

This approach is analogous to treating lattice dy-
namics in the continuum approximation.

The phason wave vectors gj are assumed small
compared to the Brillouin zone. le~] and (y~(
Rx'6 the fx'equenc168 Rnd amplitudes of the nol mal
modes, respectively,

For simplicity consider only a single phason
mode to be excited. The atomic displacements
relative to the crystal lattice sites are

u(L, f)=Asin[Q L+y; sin(q L-(ot)]. (4)

For the present study we take the amplitude A of
the atomic displacements to be parallel to Q.

For sma, ll p- we ea,n express u approximately

u(L, f) =AsinQ ' L+& Ap~ sin[(Q+q) L —&ut]

-4 Aq; sin[(Q -q) L+ ~f ] . (5)

If q is perpendicular to Q, the local direction of
the CDW wave vector is slightly rotated. If q is
parallel to Q, the local magnitude of the CD%'
wave vector is periods. cally modulated. Equation
(5) also shows the relation between phasons and
the phonon modes of the undistorted lattice. The
last: two terms, which repxesent phason devia-
tions from the equilibrium CDW state, constitute
a coherent superposition of phonon modes with
wave vectors Q+ q and Q - q.

The energy density of R phason can be written'

where n is the number of ions per unit volume and

M is the ion mass.
It is expected that (d vs q will be highly aniso-

tropic because a local, rotation of Q requires
lesk energy than a change in its magnitude. Con-
sequently the surfaces of constant phason energy
will be very flat (pancake-shaped) ellipsoids. The
anisotropy could be as high as 100 to 1, especially
if the Fermi surface is nearly spherical as is the
case for the isotropic metals of primary interest
in this work. Denoting components of q parallel
(longitudinal) and perpendicular (transverse) to
Q Rs gii Rnd g~ y

we cRQ w'I'lte Q)q~ Rs

(7)

where c~ and c„are the eox'responding compo-
nents of phason velocity and c„/c, may be as great
as 100. The phason frequency spectrum is plotted
schematicaBy in Fig. 1. Note that the phason
spectrum ls R contlQUoUs function of the Rngle be--

tween q Rnd Q. The tel ms longltud111Rl Rnd
"transverse" are used here merely for convenience
in specifying the ~secial cases of q parallel and
perpendicula, r to Q and do not have the same
meaning as when they are applied to phonons.

For the electron density to be modulated as in
Eq. (1) requires that the total self-consistent
potential in the one-electron Schrodinger equation
be of the form1

V(r) =G cos(Q. r+ p). (

Taking a single phason mode q to be excited, we
have for small p,

V(r) = G cos[Q ~ r+ p;sin(q r —et) ]
= G cos Q r + ~ pg G cos [(Q+ q) ' r - ur f ]

-~ y~ G cos [(Q - q) ~ r + et ] . (

The term leos Q r is the CD% potential in the
absence of pha. sons. The second and third terms

FIG. 1. Schematic illus-
tration of the vibrational
modes in R.metal having R
CD% structure. The fre-
quency of the phason branch
goes to zero Rt Q ~ the lo
cation of the CD% satellite
reflection in k space. Such
a diagram has only an
approximate meaning pince
an incommensurate CD&
structure does not hRve R

Brillouin zone.
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give the electron-phason interaction,

V,„=2 qr; G cos[(Q+ q) r —~f ]
-2 y; Gcos[(Q-q) r+urf]. (10)

Note that the wavelengths of the periodic po-
tentials are determined by the CDW wave vector Q
which is much larger than the phason wave vectorq.
Thus, phason attenuation is a nonlocal effect as
discussed in Sec. I.

III. SCATTERING OF "BELLY"ELECTRONS

-Q/2
I

(
W

Q/2

FIG. 2. One-electron
energy spectrum and Fermi
surface of a metal with a
CDW of wave vector Q.
Energy gap caused by the
CDW periodic potential is
G, Distortion of the Fermi
surface at the conical point
P is exaggerated. Electron
wave functions most sev-
erely deformed are those
between the conical point
P and the plane zy. Elec-
trons which contribute to
phason attenuation are those
labeled B near the belly and
C near the conical point.

The one-electron Schrodinger equation which
incorporates the CDW potential is

K= p'/2m + G cos Q r,
where y has been chosen equal to zero without loss
of generality. This potential deforms the elec-
tron wave functions by mixing the plane wave state
k with k+Q and leads to the modulated electron
density of Eq. (1). The electron energy spectrum
is also altered. As shown in Fig. 2, the CDW po-
tential leads to energy gaps of magnitude G at k
= +~ Q. Figure 2 also shows the lemon-shaped
Fermi surface which results for the case of
critical contact, i.e. , when the Fermi surface
touches the energy gaps at a point.

We shall show that there are two regions in k
space where electrons are scattered by phasons:
electrons near the "belly" of the lemon and "con-
ical point" electrons near the energy gap. For
simplicity we begin by considering the "belly"
electrons.

Far away from the energy gaps, the electron
states which diagonalize the Hamiltonian (11) are
easily found using first-order perturbation theory.
A state 0„- below the energy gap is

4-„=e'"' + [G/2(ek —&-„.g) ]e"
[G/2(& & )]el(f+Q& (12)

where &~
=—k'k'/2m. It is sufficiently accurate to

take the energy of 4k to be the free-electron en-
ergy E„. We will be considering only the zero-
temperature limit so that only states below the
gap are needed for the Fermi surface of Fig. 2.
We assume hv, «G, i.e. , phasons do not cause
inter band trans itions.

Phasons are attenuated by scattering electrons
from states 4"k below the Fermi surface to states
4» above the Fermi surface. We now can write
down the golden rule transition rate. Confining
the region of interest temporarily to "belly"
states, we find the transition rate using Eq. (10)
for the electron-phason interaction,

~r-x.a
= (»/~}('v'e G}'

I
~ I'~(e;-; - &1 -@~;)

where

I
~ I'= (-' G)'[I/(e-. —e'-.- }—I/(e;. ; —e1-a.;)

-I/(»-„- «-„,;}+1/(»-„,; —e-„,o,;)] .

The Fermi-occupation probabilities fg and f„;
weight the transition rate by the probability that the
initial state is filled and the final state is empty.

The phason loses energy to the electrons at the
rate

dE
„, = a;P, -„.;.

k

Conservation of energy required by the & function
makes &„,;:=&~+Su. In the q-0 limit it follows
that the scattered electrons are those with velocity
v such that the component of v along q is equal to
the phason velocity. This condition is the same
as that for ultrasonic attenuation. For longitudinal
phasons the energy conserving transitions satisfy
cos8„-, = c~!nr- 10 '. The scattered electrons lie
on a ring at the belly of the lemon as indicated in
Fig. 2. For these electrons f~(1 fp+~}-

~h& 6(Eg -E~) in the zero-temperature limit.
E~ is the Fermi energy.

Further mor e,

ImI =(4 Gq„/a@) (16)

plus higher-order terms in q„/Q. Since the matrix
element for the transition depends on q„, trans-
verse phasons, for which q 'Q = 0, are not attenu-
ated. The matrix element for electron-phason
scattering depends on the difference of plane-wave
coefficients for CDW electrons separated by q in k
space. Since these coefficients are functions only
of the component of k parallel to Q, the difference
must be zero for q perpendicular to Q.

Changing the sum over k in (15) to an integral
and performing the integration gives
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dE;/df = -(q) G'm'~'/32vg'q)
I

3)I I'

The energy attenuation coefficient is y~
= (—I-/E~)

&&dE;/dt. Combining Eqs. (6) and (17) obtains

y; = (6&/ff Q'/MA')(m G/g 'Q')' q cos'&o;, (18)

where eg; is the angle between Q and q, and we
have used the relation &&=kz/3&&'. Note that yg
is independent of temperature.

Our primary interest in this work is the alkali
metals and, in particular, potassium. The CDW
hypothesis has been successful in explaining
quantitatively several of the anomalous properties
of potassium including the anomalous optical.
absorption, ' splitting of the conduction-electron
spin-resonance g factor, and the anisotropic
residual resistivity. ' Moreover, the question of
phasons is of interest in potassium since the
phason Debye-Wailer factor mould likely greatly
reduce the intensity of CDW diffraction satellite
peaks. "' The intensity would not be lost but would
be transferred into a pancake-shaped phason
cIoud about the satellite position. Special tech-
niques that integrate over this diffuse phason pan-
cake may be required to detect the effects of
the CDW in a diffraction experiment.

We, therefore, evaluate y, for the proposed
CDW in potassium Tak.ing G/Ez 0.3, A. —= 0.1 A-,—

Q = 2k~, and longitudinal phasons, for which

~„@= 0, we obtain

y; =—(20 cm/sec) q . (19)

A useful quantity is the phason quality factor
0 —= e~/y~ which gives the number of phason cycles
during the mean lifetime 1/y- of the phason. While
there is no experimental knowledge of the phason
spectrum, a reasonable estimate is that the
longitudinal phason velocity is comparable to the
longitudinal phonon velocity, i.e. , c„-3 x 10' cm/
sec. Note that since both p, and v; depend linearly
on q, g is independent of q. For longitudinal
phasons Z- 1.5 x 10 so that considering only the
"belly" electrons leads to negligible damping. Note
from (7) and (18) that Z is monotonically increasing
as 8@ -, increases from 0 to 2 r. For transverse
phasons y = 0.

@- = e&e r/r(cos) e&&7 r sin~ e«r '4& r)
k

and has energy

E--h '(0'+ —' Q')/2m - r. [(h k Q/m)'+ G']'/'

(20)

(21)

The coefficients cos$ and sin( are defined by

sin2$= G[(h'k Q/m)'+G'] '/'. (22)

The go1den rule transition rate for a phason to
scatter an electron from state 4g below the Fermi
surface to a state 4'„,; above is given by (13) with

&~ replaced by E~ and

I
3)II'= (cos$ sin)' -sin( cosg')'. (23)

Note that% depends on cross terms, i.e., the
coefficient of e'"' is multiplied by the coefficient
of ef(ke-Q)or etc

Energy conservation requires E~, = E» + kv.
For longitudinal phasons the scattered electrons
are found using (21) to be those which satisfy

periodic CDW potential, electrons at k= +p Q have
zero velocity in the Q direction. For the Fermi
surface in Fig. 2, the other velocity components
are also zero for the states at+ ~ Q. It follows that
electrons near the conical points also contribute
to phason attenuation. For each phason only elec-
trons near one of the conical points contribute since
the other electrons move in the wrong direction.

The most severely deformed wave functions and
energies are for states in the conical point regions.
Sufficiently accurate CDW electron wave functions
can be found near the energy gap at p Q by con-
sidering only the plane wave states k and k -Q.
These plane wave states are degenerate at k= p Q
in the absence of the CDW potential. Diagonalizing
the Hamiltonian (11) exactly on this basis leads to
the wave functions and energies of states above
and below the gap. For the present work only
states below the gap need to be considered. It is
convenient to move the origin in k space to ~ Q.
For the remainder of this section k will be mea-
sured from this new origin. A state C„below the
energy gap is

kr ——- [m c„(hQ'/2m G) —1)] —2 q . (24)
IV. SCATTERING OF "CONICAL POINT" ELECTRONS

In the discussion following Eq. (15) we found that
the electrons scattered by a phason in the limit
q-0 are those with velocity v such that the com-
ponent of v along q is equal to the phason velocity.
In addition to the electrons near the belly, dis-
cussed in Sec. III, there exist electrons in k space
near the energy gaps which satisfy this criteria for
energy conserving transitions. This can be seen
from Fig. 2. Owing to Bragg ref 1.ection by the

In the limit q 0 this reduces to the requirement
that the component of electronvelocity along q is
equal to the phason velocity. Near the energy
gaps the electrons behave as if they had effective
mass m(8'Q'/2mG —1) '. If & q is greater than the
first term on the right-hand side in (24), the elec-
tron will be scattered from a state +; on one side
of the conical point to 4-„„-on the other side. For
the Fermi surface in Fig. 2, the electron is scat-
tered from the conical point on the right to that on
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the left. We shall discuss this point in more de-
tail below.

It is straightforward to evaluate (23) and to
perform the integration over k space in (15). The
rate at which the phason loses energy to the elec-
trons is

de/dt = (pg Q KM q/128lT} cos ee (25)

Note that (24) is independent of the CDW energy
gap. SR depends on the difference in the coeffi-
cients of the wave functions describing states sep-
arated by q in k space. Near the energy gaps the
electron effective mass is smaller than the free-
electron mass by a factor of order G/E~. Thus
a small change by q in k space results in a large
change in 3R. Expression (24) is valid for q/Q
&2mG/O'Q'. With G/Ez =0.3 as —proposed for po-
tassium q c 10' cm '. Since dE&/dt depends on
c os 8Q q 7 tran sve rse p has on s are not attenuated
by scattering conical point electrons.

The temperature- independent energy attenuation
coefficient for longitudinal phasons in potassium
1s

y&
-—(1.1x 10' cm/sec)q. (25)

Taking c„-3 x 10' cm/sec gives a phason quality
factor Z-2.7. Since both co- and p- depend linearly
on q, is independent of q. Thus longitudinal
phasons are underdamped but, nevertheless, rather
strongly attenuated. The obtained here depends
on the specific values chosen for A and c, .

This strong scattering by phasons of conical-
point electrons should have important experimental
consequences. The strong attenuation of longitud-
inal phasons should effect their contribution to
the low-temperature specific heat. Due to phason
scattering electrons near a conical point will
have a short lifetime. The high rate of scattering
of electrons from one conical point to the other
may have important consequences for magneto-
transport. The short lifetime of conical point
electrons is also important to the de Haas-
van Alphen effect. For an applied magnetic field
parallel to Q, the important cyclotron orbits for
the de Haas-van Alphen effect are those at the
belly of the 'lemon where phason scattering is neg-
ligible. As the magnetic field is tilted away from
Q, the important cyclotron orbits will intersect
the conical points. An electron on this orbit will
be "killed" before it can complete the orbit, and
the de Haas-van Alphen signal should' disappear.
This loss of signal as the orientation of the crystal'
changes has been observed in certain samples of
potassium' and is difficult to explain on the basis
of free-electron theory.

With a CDW present, the potential in a metal
will have terms with periodicity Q and 2mG, where

)i ~2~5-Q~ ~t~~ J
eterodyne
ap

„r'.:-,

FIG. 3. If 'heterodyne77

gaps caused by potentials
with periodicity 2xG + Q
cut the Fermi surface
as shown, there are two
additional sets of elec-
trons, H~ and H2, which
contribute to attenuation
for a longitudinal phason
with velocity to the right.

G is a reciprocal lattice vector. In addition there
will be "heterodyne" terms with periodicity Q
+ 2mG. ' If Q+ 2mG is less than the diameter of the
Fermi surface, there will be additional "hetero-
dyne" gaps in the electron energy spectrum and
the Fermi surface will be multiply connected as in
Fig. 3. There will now be two additional places
where longitudinal phasons will be strongly attenu-
ated since Eq. (25) is valid as long as q is small
enough as that the scattered electrons are within
the strongly deformed regions of the energy spec-
trum. The quality factor for longitudinal phasons
will be Q-1. In the presence of heterodyne gaps
as in Fig. 3, longitudinal phasons will be (ap-
proximately) critically damped, but transverse
phasons will remain undamped.

We have shown above that phasons with q per-
pendicular to Q are not attenuated in jellium. A

question which arises is: do the ionic potentials
in a real metal lead to finite attenuation of trans-
verse phasons ~ We have investigated this problem
by including the effects of ionic potentials following
the method of pseudopotentials. We have found
that the first-order matrix element for golden
rule transitions is still zero for transverse phas-
ons. However, there is a small but finite attenu-
ation in the next order, i.e. , the transition rate
depends on the fourth power of the pseudopotential.
Thus transverse phasons remain very much un-
derdamped.

V. CONCLUSIONS

We have derived the electron-phason interaction
and have shown that the wavelength of the inter-
action is determined by the CDW wave vector Q
and not the wave vector q of the phason. Phason
attenuation is, therefore, a nonlocal phenomenon
and is correctly treated quantum mechanically.
Because long-wavelength phasons are not ac-
companied by macroscopic motion of the charge
density, the attenuation of phasons cannot be
treated by Ohm's law. Phasons are predominantly
attenuated by scattering electrons near the CDW
energy gaps. The attenuation rate is independent
of temperature. However, transverse phasons are
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not attenuated. The scattering of conical point
electrons leads to phasons which are underdamped;
but for longitudinal phasons the damping is strong,
arid the attenuation rate is -0.3 times the phason
frequency for the pxoposed phasons in potassium.
If hetexodyne gaps cut the Fermi surface, elec-
trons near these gaps also contribute strongly to
phason attenuation (and longitudinal phasons may be
nearly critically damped).

APPENDIX

McMillan has dealt briefly with the problem of
phason attenuation within the context of time-depen-
dent Landau theory. McMillan described the short-
wavelength components of charge density by an
order parameter 4'(r). He treated the long-wave-
length components of the conduction-electron
charge density Rs an incompressible fluid with
velocity field v(r). He then wrote an "Ohm's law"
expx ession for the power dissipation and found
equations of motion for 4' and v which resulted
in overdamped phasons.

From the discussion in 3ec, I of this vrork, it
is clear that McMillan's "Ohm's lave" approach is
not valid. Phasons are not accompanied by a
macroscopic motion of the charge density. The

length scale important to phason attenuation is
determined by the CD% wave vector Q and not the
phason wave vector q. It is incorrect to apply
Ohm's law on a 1-A scale.

McMillan finds that the lifetime of the phason
decreases with increasing conductivity. In other
words, the rate of attenuation increases as the
conductivity increases. This result is analogous
to the (incorrect) result obtained in the theory
of ultl Rsonlc RttenuRtlon %'hen QonlocRl effects
are disregarded. The mechanism for phason at-
tenuation, as we have shown, is scattering of
electrons near the CDW energy gaps and is non-
local. It should also be noted that McMillan's
result for the attenuation rate is temperature
dependent since it is proportional to the (tempera-
ture-dependent) conductivity. This is in direct
contrast to our temperature-independent result.

McMilian finds that the phason lifetime 7'-1/q'
(in contrast to the correct result, I/q). An im-
portant question, then, is why his phasons are not
oscillatory (underdamped) in the q- 0 limit where

The reason is that McMillan's equations do
not allow for oscillatory solutions. The kinetic en-
ergy term containing (S9/ef )' which would lead to
a second-order differential equation for the order
parameter was omitted.
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