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ac conductivity of a one-dimensional site-disordered lattice

R. C. Albcrs and J. E. Gubcrnatis
Theoretical Division, Los Alarnos Scientific Laboratory, Los A1amos, ¹wMexico 87545

(Received 17 January 1978)

We report the results of a numerical study of the ac conductivity for the Anderson model of a one-

dimensional, site-disordered system of 400 atoms. For different degrees of disorder, we directly diagonalized
the Anderson Harniltonian, used the Kubo-Greenwood formula to evaluate the conductivity, and then

averaged the conductivity over 12 configurations. We found that the dominant frequency dependence of the

conductivity consisted of a single peak which shifted to higher frequency and decreased in overall magnitude
as the disorder was increased. The joint density of states and the eigenstate localization were also computed
and are discussed in connection with our results.

I. INTRODUCTION

In. recent years, much attention. has been focused
on understanding the properties of strongly disor-
dered systems, pr inc ip ally the dens ity of states
and eigenstate localization. ' ' In contrast„ less
effort has been devoted to understanding transport
properties. With respect to electrical transport,
most of the work has been directed towards calcu-
lating the dc conductivity, ' often within the coher-
ent-potential and other single- site approximation.
schemes. '

In this paper we presen. t results of a computer
experiment designed to study the ac conductivity
of disordered metals and thereby provide cali-
bration. standards for approximate theories. We
did not attempt to describe any realistic system,
but in. stead chose a model restricted to one di-
mension and to noninteracting electrons, whose
dynam ics are described by the site- disordered
Anderson HBmiltonian. We chose the Anderson.
Hamiltonian. because of its widespread use in mo-
delling disordered systems and one dimension be-
cause of inherent simplifications to the numerical
an.alys is.

In. principle, this model. was solved exactly by
Halperin, ' who developed a formalism for the en-
semble-averaged ac conductivity, related to
Schmidt's formalism' for the integrated density
of states. In. practice, Halperin. 's equations await
solution, a though steps in this direction have been
taken by Hirsch and Eggarter. '

In. our approach we examined the zero-temper-
ature ac conductivity of many noninteracting elec-
trons in a partially filled band for several different
values of the chemical potential. . We exp'. icitly
diagonalized the Hamiltonian to find the exact
eigenvalues and eigenstates for a given. random
configuration and calculated the ac conductivity
by using these eigenvalues and eigenstates in the
Kubo-Greenwood formula. ' We then averaged over

12 configurations to obtain an average conductivity
(~(~)).

This approach is similar to one used by Penchina
and Mitchell' who studied a single electron in. a
lattice of randomly positioned 5-function potentials.
They concluded that the conductivity was not a
well-defined quantity since it varied drastically
from configuration to configuration. Using a dif-
ferent model and different numerical techn. iques,
we found the conductivity was well defined with
less drastic, but stil. l significant, variations whose
source appears to be the matrix elements of the
position operator.

II. ac CONDUCTIVITY

In this section. we define our model, write the

general linear response expression for the ac con.-
ductivity of a one-dimensional, system, and dis-
cuss a number of points relevant to the application
of this expression to our model.

This model is described by the Anderson Ham-
iltonian for N atoms with fixed boundary conditions,

H= pe, li)(i I+ V g (Ii+ &)(i )+ Ii)(i+1I). (g)
a= 1 i= 1

The nearest-neighbor hopping matrix element V

is eon. stant, the disorder is in. the site energies
q,. which are randomly and uniformly distributed
between ——,

' t&'and +2W, and the states Ii) are or-
thonormal and localized at the ith lattice site.

If we assume that linear response theory is val-
id, then the real part of the ac conductivity of a
one-dimensional system can be expressed as
either'

X Q(@R+ g g&)
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(2b)x g(hca+ E —E,),
where E and In) are the eigenvalues and eigen-
states of JJ,

ffln&=E In);

f is the Fermi function

f„=[1+exp(E, —a)(ksT J ',

(i lH lj) = &,r „.+ v(a, ,„+f,.„,.), (4)

which is particularly convenient for numerical an-
alysis.

When found, the eigenstates of (4) are linear
combinations of the li&, namely,

In)= g Ii&&iln& —= Qa,.(E ) li&.

p. is the chemical potential; L is the length of the
system; x is the position operator; and v = x
= (ik) '[x, 8] is the velocity operator.

From (1) and (2), the path of analysis appears
straightforward: find the eigenvalues and eigen-
states of (1), determine 1&n lx IP& I' (or I &n lv IP& I'),
perform the summations indicated in (2), and then

average a(ca) over a number of configurations.
The eigenvalues and eigenstates are easily found

by diagonalizing H in the site representation, i.e. ,
in a space spanned by the li&. In this represen-
tation for a one-dimensional system, &i IH lj) is a
tridiagonal matrix

x 8 V-E. —~ V-E&

x 6(h.ca y E E,)
2

x a~) Egia, E

where the Fermi functions are replaced by the
unit step function [8(x) = 1 for x &0 and zero other-
wise].

If we next attempt to perform the summations
in (6), we see that for a finite system a(ca) is a
sum of 6 functions, the weight of each determined
by an. appropriate squared matrix element. This
discreteness imposes some difficulties in averag-
ing cr(ca) and in obtaining a result representative
of an infinite system: since the frequencies in the
arguments of the 5 functions are just differences
in the eigenvalues for a given configuration and
since different configurations have different dis
tributions of these differences, an average of the
conductivity would be a sum of 5 functions, all with
dif fer ent ar gum ents.

To overcome this difficulty we perform a
smoothing operation, which we call frequen. cy av-
eraging, that allows us to define for a given. con-
figuration a a(ca) at a regularly spaced frequency
interval 4~, i.e. , for a given configuration we de-
fine a frequency-averaged conductivity as

Consequently, the evaluation of the matrix ele-
ments in (2) occurs most naturally in the site re-
pre sentat ion as one wr ites, for examp le,

&n I x I p& = P &n I i) &i I x Ij& &j I p&

= Q a",:(E )a, (E,) &i Ixlj),

and reduces the problem to finding &i lx Ij). To de-
termine (i lx Ij), we first note that in the site re-
presentation the only positions are lattice sites so
x makes sense only if its action on li& produces the
lattice position of i. Accordingly, we 4efi~e x as

where a is the lattice spacing and as a result

Using Eq. (5), we can rewrite the ac conduc-
tivity, Eq. (2a), at zero temperature as

(a(Incd)&„„„,„,„= a(ca) dca.
(I"1 )b, co

Our &a(ca)& is the average of the above over a num-
ber of configurations.

The results of the frequency averaging depend
on Ace. On one hand, if Ac@ is chosen too small, for in-
stance, smaller than the average spacing between
eigenvalues, a very large and impractical number
of configurations are needed for &a(ca)& to converge
to a well-defined value. On the other hand, if 4~
is chosen too large, meaningful structure in the
real &a(ca)& is lost. Our choice of lcd is discussed
in Sec. III.

To assess further the effects of a finite system,
we examined the exact analytical solution for a(ca)
in the perfectly ordered case (see the Appendix).
This examination indicated that for a finite system
a(ca) has a frequency dependence dominated by a
strong peak at a frequency of the order of the band-
width divided by N and for an infinite system the
conductivity is proportional to 5(~). Thus, other
than th discreteness in a(ca), the boundary effects
are relatively insignificant for an ordered system
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of moderate size even. though the eigenstates are
very extended and expected to be sensitive to the
boundary. For the disordered case we expect the
boundary effects to become negligible as the disor-
der is increased and the eigenstates become more
localized (see Sec. III).

II'I. RESULTS

The ac conductivity was directly calculated from
Eq. (2) by explicitly diagonalizing the N x N sym-
metric tridiagonal Hamiltonian, Eq. (4), to find
the exact eigenvalues and eigenstates for a given
configuration of random diagonal elements in the
Hamiltonian. The final results were obtained by
an average over 12 different configurations.

The eigenvalues were generated through the QR
algorithm" with implicit shift for. symmetric tri-
diagonal matrices. Once the eigenvalues were
determined, the eigenstates were then determined
by the inverse iteration. technique. "" For a 400-
atom chain, those calculations together took about
one minute of computing time on a CDC 6600 com-
puter. The subsequent evaluation of Eq. (2) took
about 2 min of computing time on the same machine
for the chemical potential set in the middle of the
band. The accuracy of the eigenvalues, eigen-
states, and the degree to which orthonormality
and the boundary conditions were satisfied was at
least to six significant figures and often to machine
accuracy (14 significant figures).

As we discussed in Sec. II, it was necessary to
average the conductivity over a small frequency
interval 4~ to eliminate effects of the finite size
of the system and to average sensibly over differ-
ent configurations. The frequency averaging has
several important effects: one, the averaging
smooths out any rapid variations of a(u) as a func-
tion of frequency. A larger 4~ of course leads to
greater smoothing. Two, as we in.crease the size
of 4~, we need fewer configurations to obtain a
true ensemble average of the frequency-averaged
(a(14&v)),„„„„,„, since we will improve the statis-
tics on the number of transitions contributing to
(o(IA~)),„„„„,„, i.e. , more 6 functions 5(A~+ E
—E8) will fall in the range z, ——,

' nz ~~ &&u, + —,
'

Au).

The n~ we used is 55~ = 3B/N, where B, the
theoretical bandwidth, is W+ 4 V. This choice ap-
peared large enough to give reasonable confidence
that the statistics are sufficiently good, that is,
the averaging over 12 ensembles is approaching
the true ensemble average, while at the same time
not changing the qualitative shape of (a(&u)).

We found that the fluctuations in 0(~) from con-
figuration to configuration result from fluctuations
in the effective- energy- dependent matr ix element
of the position operator. To explain what we mean

by this, we rewrite our equation for a(~) [Eq.
(2a)] in the form

2Tre
a(~)= ~ ' dE[f(E) —f(E+h&u)]L

where

&& R(E, E+ O'M),

B(E,E ) -=Q I(o Ix IP&I't(E. E)a(E, E )

M(E, E')—D(E, E'),
and D(E, E'), joint density of states per atom
squared, is def ined to be

D(E, E') =- —
2 Q ~(E, —E)&(Eg- E').1

e, g

If we could neglect the energy dependence of the
matrix elements (n lx I P), then at zero temperature
the ac conductivity would be proportional to D(~),
where

D((u) -= dE D(E, E+ h&u),

energies are measured from the bottom of the
band, and p, is the chemical potential. By dividing
a(a) by D(~), we can therefore determine the ef-
fect of the matrix elements, a factor which we call
M*(~):

a((u) =- (2ve'/L) ~M*(~)D(u)). (12)

In Fig. 1 we show D(e) for a 400 atom chain, W/
V= 10, the chemical potential p, placed in the mid-
dle of the conduction band. This result was ob-
tained by diagonalizing the Hamiltonian, using Eq.
(11), and then averaging D(u) over 12 different
configurations. We compared this result with a
more exact calculation obtained by applying the neg-
ative factor counting method"'" to a, 10000-atom
lattice and found virtually exact agreement between
the results obtained by these two different methods.
The triangular shape of the joint density of state
D(u) is a consequence of the approximately rec-
tangular density of s tate s.

From a comparison of D(&u) in Fig. 1 and a(&u) in

Pigs. 2-5, it is clear the "noise" in the spectrum
of a(u) is not a consequence of the availability of
states permitting transitions (the joint density of
states), but rather is a consequence of M*(u).

The (a(u)) shown in Figs. 2 —5 are for several
different values of W/V. In these plots (a(u)) is in

dimensionless units and should be multiplied by
2ve'a/h to be converted to cgs units. The results
are averaged over a frequency width A~= 3P/N,
and all frequencies are measur'ed in units of B.

For the ordered case (W=0), only the low fre
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FIG. 1. Average joint density of states per number of
atoms squared. The chemical potential is in the middle
of the band (W/U =10), and frequency is in units of the
bandwidth.

FIG. 3. Average ac conductivity when W/ V=1. The
units are the same as those in Fig. 2. Note the change
in scale. The apparent nonzero conductivity near cu = 0 is
a consequence of our frequency averaging procedure.
Au =B/3Ã.
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FIG. 2. ac conductivity for an ordered lattice of 400
atoms with fixed boundary conditions. The conductivity
is measured in units of 2~e2u/h; frequency, in units of
the bandwidth. A~ =B/W.

FIG. 4. Average ac conductivity when W/V=4. The
units are the same as those in Fig. 2. Note the change
in scale ~=B/3+
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FIG. 5. Average ae conductivity when W/V=10. The
units are the same as those in Fig. 2. Note the change in
scale ~= B/3¹

quency part of o(co) is significant enough to be plot-
ted. These results shown in Fig. 2 suggest a 5

function near ~ =0. In the Appen. dix we give an ex-
act expression for o(co) for W= 0 and show that this
conclusion is borne out in. the limit N- ~. For fin-
ite N in a lattice with fixed boundary conditions,
the 6 function becomes broadened as shown in Fig.
2.

In Figs. 3-5 we show the effect of introducing
stronger and stronger disorder into the system.
As 8" increases from 0 to 10, the peak at the or-
igin. shifts to higher and higher frequencies,
broadens and decreases in overall magnitude. The
ac conductivity appears to vanish as x-0. How-
ever, our resolution. and statistics are at their
worst for ~-0, and we ean make no definitive
statement in this regard.

We also studied effects associated with changing
i.e. , filling, up the band to —,

' or 4 of its width.
For W/V=1, the results were essentially indis-
tinguishable from the half-filled band, even though
the eigenstates in the region E -

p, were slightly
more localized than for p, = —, (see Fig. 6).

Because of the nature of our numerical proced-
ure, it was possible to calculate eigenvalues and
eigenstates in a select limited region. of the band.
So we. concentrated all computational effort on the
region of o(co) near &d =0. By doing this, we could
in.crease the number of atoms in the lattice and
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FIG. 6. Localization parameters when 8'/V =4. Fre-
quency is in units of the bandwidth.

hence hope to iook at o(co) near co = 0 on a finer
scale of 4'. This analysis was done for a 1000-
atom lattice. Unfortunately, near ~- 0 the statis-
tics for o(co) were very bad, by which we mean
that cr(co) changed drastically from configuration
to configuration. When we averaged a(cd) over 12
configurations, we found that the variances in o(co)
were of the same size as (cr(cd)). In contrast to
the results at higher frequency an4 for larger 4+,
here it was evident that the number of configur-
ations needed to obtain. the correct ensemble aver-
age of o(co) was prohibitively large to make this
approach an effective one, and we therefore gave
up this a,ttempt.

We can, understand this difficulty with statistics
from an examination of Eq. (2). First, the number
of possible transitions that satisfy conservation of
energy is given by the joint density of states D(&d),
which from Fig. 1 is seen to be greatly reduced
a,s ~- 0. Second, for strong disorder the eigen. —

states I or) and I P) are highly localized and hence
the overlap matrix element (u Ix I P) is very small
unless the centers of localization of I o.') and IP)
are very close to each other. Since this probabil. ity
is very sma, ll, the contributions of the possible
transitions are very small, and o(co) is dominated
by the few transitions where the two states are
reasonably close to each other. To average out
these effects requires many configurations. These
comments probably explain why Penchina and Mit-
chell' had difficulty obtaining a well-defined conduc-
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Energy

W/V= 0
a/V= 1
e/V= 4
W/V= 10

0.6 1.0
0.03 0. 3
0.01 0.03
0.006 0.008

1.0 1.0 0.6
0. 5 0. 3 0 03
0.05 0.03 0.01
0.0 1 0.009 0.006

TABLE I. Spatial extent ratio & as a function of en-
ergy and disorder S/V. Except for S/V=O, the values-
of 8 are averaged over ten eigenstates, centered around
the given energy. The energy is in units of the band-
width pj's.

ment with the results of Moore, " the states near
the middle of the band (frequency = 0.5) are more
extended than those at the band edge.

The second aspect is the dependence of the de-
gree of localization in relation to the amount of
disorder (ratio of W/V). In Table I we show our
results for the two localization parameters S and
P for states in various parts of the band as a func-
tion of the disorder, as measured by W/V. As
expected, states become more and more localized
as the disorder increases.

IV. FURTHER REMARKS

tivity: with only one electron, their statistics were
most likely very poor.

To illustrate the localization of the eigenstates,
we computed two different localization parameters:
the variance of the wave function relative to jts
mean position (which we call the spatial extent ra, -
tio, S)" and the participation ratio P."'" They
are defined for an eigenstate e by

P(E.)= At +la,.(E.) I' '

, E. l~

and, of course,

Q la, (E ) I

' = 1 . (16)

The normalization factor o is chosen so that S(E )

is unity when the wave function is completely ex-
tended throughout the system (i.e. , a, =N ' ' for
all i) The stat.es are more extended for larger
values of P(E ) and S(E ). As evident in Fig. 6,
the two localization parameters agree well with

regard to the relative degree of localization. be-
tween eigenstates and differ, as expected, only in

absolute magnitude.
There are two aspects about localization to be

considered. The first is the localization proper-
ties of the states relative to their position in the
band for a. given amount of disorder (value of W/V).
In Fig. 6 we show results for W/V=4. In agree-

%ebelieve the results of our computer experiment
accurately represent the overall behavior of the

(o(ur)) of the site- disordered one- dimensional Ander-

son Hamiltonian. In the past, results of computer ex-
periments have been helpful to assess the strengths
and weakness of approximate calculations of den-
sities of states and localization lengths of disor-
dered systems. ' '" We hope our results may be
useful in similar assessments of approximate ca1.-
culations of ac conductivities. In. this regard, we

would like to have also presented results for mo-
dels of higher dimensions and to have examined
the low-frequency behavior of the conductivity in.

more detail. However, the experience we gained
from the present investigation leads us to believe
that other techniques may be more appropriate for
examining these additional areas.

For example, our ability to diagonalize large
(400 && 400) matrices rapidly and efficiently was
largely based on. simplifications resulting from its
tridiagonal form. In higher dimensions the start-
ing Hamiltonian, depending on the model and

boundary conditions, will at; best be a real, banded
matrix and hence will be more expensive to diagon-
alize because of increases in computer time and

storage. In addition, to insure that the results are
indicative of bulk properties, it would be neces-
sary to study much larger systems since in higher
dimensions the fraction of atoms on the surface
increases dramatically and thereby enhances
boundary effects.

An examination of the low-frequency behavior of
the conductivity en. counters an inherent problem of
poor statistics. This problem is exacerbated by
the rapid decrease in the joint density of states
and ls exhlblted promlnantly as large fluctuations
from configuration to configuration that one ob-
serves when the conductivity is frequency averaged
over a very small A~. Hence, a detailed study of
the region near w-0 would require a very large
number of configurations for the averaged results
to converge to the correct average ac conductivity.
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APPENDIX A. EXACT ac CONDUCTIVITY OF A PERFECTLY
ORDERED ONE-DIMENSIONAL LATTICE

Here we give the exact ac conductivity of a per-
fectly ordered one-dimensional lattice of N atoms
with fixed boundary conditions. We found that the
model Ham iltonian

since in the present case the commutator matrix
element'is easier to evaluate than the x matrix
element.

After much algebra, we found that

g I [x, ff] I

cot(-,'k a), m odd,
sink Xa=

)t= 0 0 m even;
(A'I)

2Va sin.' —,'(k +k„)a —sin'-,' (k —k„)a
N+ 1 sin —,

' (k„+k„)a sin —,
' (k„—k„)a

(A6)

for m 4 n and m —n odd and is zero for m —n even.
To establish this result, we used the following

identities:

e= V g ( I) + I)&~ I + I) )&~ + 1 I)

has the eigenvalues

E =2Vcos(k a),

where

k =m~/(N+1)a

(A1)

(A2)

(AS)

1, m odd,cosk Xa=
. 0, m even;

sink asink„a=0, m 10;

sinXk a cosXk„a

(A8)

(A9)

!s )=( Qs"s(s.s ))ls),
1=1

(A4)

when the boundary conditions are that the ampl. i-
tudes at sites 0 and N+1 are identically zero. (In
this Appendix only we use Greek letters for site
indices and Latin letters for eigenfunction indices. )

To evaluate the ac conductivity, it was conven-
ient to recast Eq. (2.3) as

for m =1,2, . . . , N, corresponding to the eigenstates

r
1 sink a

I

2 sin —,'(k +k„)a sin~(k —k„)a
~ ~

mon, Im —nl odd,

0, mon, Im —nl even;
(A10)

sink a sink„a= sin' —,
'

(k +k„)a

a(+) = —g (f„f„)I
)'n I[x,e] lm-& I'

m, n

x 6(@a+E E„), (A5)

-sin'-, (k —k„)a.

When (A6) is substituted into (A5) we find

(A11)

2 2

)
2 g [ ( ) ( )]6. 5(d E —E„ ln (k +k„)a —8 n (k —k„)a

m, n V V (N —l)(N+1)~sin ~(k +k„)asin 2 (k —k„)a
(A12)

for Im —n I odd, zero otherwise. [Note that L= (N
—1)a]. In the limit N- ~, o(~) resembles a 6 func-
tion near u&=0 since for finite &u, v(u&) ~1/N'. The
leading contribution to a(u) in this limit occurs for
E =E„=, p, and Im —n I =1 so that

o((u) —(2 ve'a/5) 6(h&u/ V —2)) /N (2/w)', (A13)

when. the chemical potential is in the middle of the
band. Note that this leading contribution shrinks
to zero frequency as N- ~.
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