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%e consider the conductivities of a random resistor network on a regular lattice near the perco-

lation point. It is sho~n that there is a close analogy between this problem and that of phase tran-

sitions. It is possible to construct a Hamiltonian and define an order parameter. The mean-field

equation for the order parameter is found and the conductivities determined in the cases of a net-

work of resistor and open circuits and a network of resistor and shorts. Exponent relations are
discussed and the conductivity exponents given in 6 —e dimensions. The analog of the resistor
network arises in a number of other physical problems, e.g. , spin waves in dilute ferrornagnets,
the elastic&Ay of gels, hopping conductivity, and these results are also of interest in these systems.

I. INTRODUCTION

In this paper we consider a random resistor network
on a regular lattice. . Nearest-neighbor sites of the lat-
tice are connected by conductors each of which is
chosen randomly to have conductance a-& (with proba-
bility p) or o.„(with probability I —p) with a.(, ))o„.
Of interest is the macroscopic conductivity X of this
system in the vicinity of the percolation threshold.
Early work on this problem has been reviewed by
Kirkpatrick. ' The analog of the random resistor net-
work arises in a number of other physical problems
and we mention a few: (i) spin ~aves in a random
ferromagnet', the spin-wave stiAness corresponds to
tlie nlicfoscopic conductivity (see Sec. III); (il) elas'ti-

city of gels', (iii) hopping conductivity', and (iv) pho-
nons in disordered systems.

Recently, Straley - has suggested that the point
a„/o ~, =0, p = p, . is a critical point analogous to those
studied in magnets. Using this analogy he has con-
structed a homogeneous function representation for
the conductivity. Of particular interest are the two
special cases: (i) o-„=0, o.

&, finite (a resistor lattice
with a fraction of the resistors removed), and (ii) o„
finite, o.

&,
= ~ (a resistor lattice with a finite fraction

of shorts). Close to p, , the conductivity has a power-
law behavior; in (i) X —(p —p, )' for p & p, , and in

(ii) X —(p, —p) ' for p ( p, . , where sand tare critical
exponents. Scaling relations for resistor networks
have been discussed by deGennes, ' Skal and
Shklovskii, ' and Harris and Fisch. ' These are dis-
cussed in Sec. VII.

The critical exponents t and s have been evaluated
by Straley' for the Bethe lattice using some results of
Stinchcombe. 9 Recently, Dasgupta 'et al. '" have given
a renormalization-group treatment of this problem in

the special case o-„=0, o-&, finite, and p ( p, , i.e., they
have studied the average resistance of finite clusters

and determined the exponent determining this resis-
tance in 6 —e dimensions. The conductivity exponent
f has been inferred from scaling arguments. This
treatment is based on a modification of the Potts
model and it does not appear possible to extend it to
calculate the macroscopic conductivity directly or to
the case o-„&0.

In this paper we give a general formulation of this
problem which allows us to consider general networks
with both cr„and (7& finite or the case where the resis-
tors are replaced by more complicated circuit elements
with complex impedances. . %e show that there is a
very close analogy between this problem and that of
phase transitions in equilibrium thermodynamics. Us-
ing the replica method it is possible to construct a
Hamiltoriian for the network and from this Hamiltoni-
an a natural definition of the order parameter em-
erges. The basic critical exponents are best defined in
terms of the scaling pro'perties o'f the order parameter.
It is found that the critical behavior of the resistor
network is described by the percolation exponents and
two extra exponents which, in analogy with random
magnets near the percolation point, " we call the cross-
over exponents. The macroscopic and microscopic
conductivities of the network can be obtained from
the response of the order parameter to a slowly vary-»

ing (in space and time) applied potential and then are
analogous to susceptibilities in magnetic phase transi-
tions.

The paper is organized as follows: in Sec. II we be-
gin with Kirchhoff's equations and define the macros-
copic, frequency, and wave-vector-dependent conduc-
tivitity. These results are well known but are included
for completeness. In Sec. HI, using the replica
method, the Hamiltonian is derived, the order param-
eter is defined and the relation of the order parameter
to the macroscopic conductivity, the microscopic con-
ductivity and the average resistance of finite clusters is
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given. In Secs, IV —VI the mean-field equations for
the order parameter are obtained and the conductivi-
ties determined in three cases: (i) o =0, o,, &0; (ii)
o'- A 0, o b

= «u', and (Hl) o (, N 0, rrb W 0, p =p, . The
mean-field theory presented here should not be con-
f'used with the CA'ective-medium theory. In Sec. VII
we discuss the relation of the conductivity exponents
to the basic exponents appearing in the order parame-
ter. Using the results of a renormalizatiori-group cal-
cUlatioA thc conductivity cxpoAcnts Bfc given 1A 6
dime 0SioAS.

Q, = — pe 'Qr~r
ikr. $ tkr,

JV
(2.6)

8„,and from (2.2),

Q, = V, —U, = i (u8„' Uj —U,

We use a notation (Q),, to denote an average of Q
over all configurations of conductors on the lattice and
from (2.4) the average charge at site i is

(Q, ),. =i ru(8„'), U; —U,

Introducing Fourier transforms

II. LIRCHHOFF'S EQUATIONS

%C consider a random resistor network on a regular
lattice of X sites of coordination number:, Part of
the network is shown in Fig. 1. At each site a time-
dependent external potential U, e'"' is applied through
a capacitor. This network was introduced by Kirkpa-
trick. ~ 1f Q, e'"'and Ve'"'are the charge and potential
at site i, the KirchhoA' equations are

into (2.5), we have

(Q, ), =i~&k~&8-~), . Ik) U-U,

&& exp[ —ik (r, —r;)]

(2.7)

i o) Q, = i cu( V, —U, ) = —$ rr„( V, —V;) (2.1)

For convenience we have taken all the capacitors in

Fig, 1 to have the value unity. The conductors in Fig.
l may be replaced by more general circuit elements
with inductance and capacitance in which case o-„ in

(2.1) is replaced by the complex inverse inpedance
Z„'(cu). For simplicity we assume that all the a„are
real. The {T„areall independent and each o-„may
take on the two values n-&, and o-„with probabilities p
and 1 —p, respectively (ob &) o„).

Equation (2.1) can be written in the matrix form
(we use a convention in which repeated indices are to
be summed over)

We cont pare (2.7) with the equation of continuity for
the charge Q„, and current J„, in a medium of macros-
copic conductivity X(k, «u). Using J„,„=X( ik—U)
where —i k U is the electric field, we have

i«uQ„, b +ktXU =0 (2.9)

We identify Q„„with &Qb), . and from {2.7) and (2.9)
the real part of the conductivity XR (k, cu) is given by

X, (k, .) =( '/k') Re(k~(8-'), ~k) . (2.10)

The dc conductivity is given by

X„,. = lim lim XR(k, cu)
tu —0 I 0

8„V,= j(vU,

The conductance matrix 8 has elements

8„—--i cu+ $o.„, 8„=—o.„

(2.2)

(2.3)

where the order of limits is important.
Physica11y this macroscopic conductivity could be

measured by placing the network between the plates
of a capacitor and applying a slowly varying ac field.
The losses in the cavity are determined by XR.

%e denote the elements of the inverse matrix 8 '
by

II&. CWUSSrxz IXTKrRAI, ZORMVI, ATIOX
A.xD THE ORDER PWR+METKR

%e introduce a "partition function" in the form of a
Gaussian integral

FIG. 1. Random-resistor netvvork.

dV, exp{——V 8„V, +i bu V, U)
i

where again repeated indices are to be summed over,
The integration variable V; may be thought of' as the
potential at site i and the expression under the integral
sign as the probability distribution of these potentials.
For the conductivity we require the configuration
average of 8 ', and in order to obtain this average we



MICHAEL J. STEPHEN

introduce n replicas of the network. This is con-
veniently done by replacing V, and U, in (3.1) by n-

component vectors V, and U, with components V„„
and U„„=U, (o. =1,..., n). The configuration average
of Z" is denoted by Z(n):

B( ) =(f (dy)e*p(—VB'tt + V U))

(3.2)

where (dV) = g, dV, . From (2.3), we have

(3.11)

where

H()(s) = —X XB(,s, (p) A„s, (—p)
1

/) I /

(3.f 2)

H)(s, V) = gV, —I0)V, U,
I

where C is a constant and (ds) = g„g, ds, (p). Sub-

stituting this result in (3.4), we get

B( ) =C f (ds)(dp)

V, B„V;= I (u $V, + $ (r„(V, —V;) (3.3)
+ "X(v,—v)'

llll

—I/()( V) —fI
i

( V)
Z(n) = (dv)e (3.4)

where.

where the second sum is over all nearest-neighbor
pairs. The configuration) average in (3.2) is easily car-
ried out and the result can be written [omitting a fac-
tor (1 —p) ~"']

—$/8„s, (p)y„(V,) . (3.13)

Equation (3.12) and (3.13) define the Hamiltonian.
The order parameter is (s, (p)), where the angular

brackets denote a canonical average

( Q)lip(V) =—V, —
/ V, U,

I

+- ' $(v, -v,}',
IIII

H, (V) =—Xln(1+)ye " ' ' )

(3.5)

(s, {p))=
{ )

(ds)(dV)s, (p)e (3,14}

H„=—$ $8„rl,(p)dt„s, (—p) (3.1S)

to the Hamiltonian in (3.11). Then

To obtain an expression for the order parameter, we

add a term

H, (V)= X $8„y„{V)4„(V),
IIII ()

where Q„( V) = e'", and for convenience, we write

X„ instead of fd p. By e*p nding the n tn I iog in

(3.6) we find (for n =0)

(3.7)

~here ) =p/l~ —p and in the last term we have re-

placed o/) —o„by o~ as o(, )) o„.
The partition function is expressed in terms of the

order parameter by expanding H~ in a Fourier integral

Z„= (ds) (d V) e (3.16)

and, by differentiation,

' BlnZ„
8q, (P) )„p

= Bf, g A„(s((—p)) (3.17)

By making the transformation s, (p) = s, '(p) +rl, (p) in

(3.16), we find

Z„= (ds') {dV) exp —Hp{s') —H)(s', V)
i

~ (—}'+'
( -/) /2 &(8 =zg —— —l)e

/) () it

(3.8) + XB(,v), (p)(iff, (V)

A factor z has been introduced into the definition of
8„. %e thus have

= exp —g g 8„$„(V, )2„'4 „(V,), (3 9)
/)

I

where A„' = 1/z if i,j are nearest neighbors and is zero
otherwise. The exponent in (3.9) is a quadratic form
in the Q„( V;) and can be written

I

- &I ~( v) 1
e ' = C (ds) exp ——$ $8(,s, (p)A„s, (—p)

/) I /

+ X XB„s,(p)(if„(V,), (3.10)
/) I

)

{3.18)

where terms of order g' have been omitted. Then

. =8„(p„(V))lnZ„
~'gl P „P

and from (3.17),

QA„(s((—p)) = ((if„(V))

(3.19)

(3.20)

((if„(V, )) is the generating function for voltage fluctua-
tions at site i. The Fourier transform of A„ is
A (k) =1+0(k') and we may replace dt (k) by unity
or A„by 5„ in (3.20) yo that
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(s, (p))=(y „(V)) . (3.21)

The Fourier transform with respect to p of (s, (p)) is

(s, (IV)) = g e ~ "(., (p))(2rr)" I,
(3,22)

Equations' (3.21) and (3.22) are easily evaluated from
(3.2) and for n =0, we find.

ter. If P„,(R) is the probability that a site lies in a
cluster of m sites and average resistance R then
m = g„,s mP„, (R) and R = g„,„RP„,(R). The
definition of m is the conventional one and R same
way {a different definition of the average resistance of
a cluster has been used in Ref. 10). From (3.29) and
(3.30) it follows that by expansion of the order param-
eter in powers of IV' and tu/o. „we can obtain R.

(3.23)

—(W

ilaw

8.—. U )/2B. .

(s (IV)) = e (3.24)

The order parameter has the following convenient
properties:

C. Voltage correlations

We gefine the voltage correlations in the following
way: suppose we apply a potential U, = U at site i of
the network and set all the other U, =0. Then from
(2.4),

A. Macroscopic conductivity
V; = i o)B,,

' U, V, = i o)B;, ' U (3.31)

i

(s, (p)) = (8„'),U;
co Bp„.

(3.25)

The Fourier transform of the order parameter is

The response of the network to the external poten-
tial can be obtained from the response of the order
parameter to the potential. Thus form (3.23),

and we define the voltage correlation function

FI(bb) = (Vj/V) = (8I /8«)
and its Fourier transform

B—
1

F(k, bb) = —X (
" ),.e

N „

(3.32)

(3.33)

(s, (p)) = $e ''(s„(p))
W

(3.26)
This correlation function can be obtained from (3.24)

by choosing the potential U, =(I/M/V) Ue' ', Then

Taking the potential in the form (2.6) and using (2.8)
and (2.10), we have F(k, «)) =—, (s„(IV)) (3.34)

r

X„(k, ru) =, Re (s„(p))k2U ap„
i p=o

(3.27)

or in terms of the Fourier transform (3.22),

Xa(k, bb) =, limIm IV„dW(s, (IV))
k U»-o

8. Average resistance of finite clusters

(s(IV)) = (e " ),. (3.29)

and is independent of site i. It is shown in Appendix
A that

Consider the network for p & p, . in the case o-„=o,
o-b finite, and co « o-b. The network only consists of
finite clusters and in the absence of an external poten-
tial

, 8'=0

For p & p, , a, =0, a-b finite, and ~ & o-b, F„reduces
to the probability that i and j are in the same cluster.
In the conducting state, F(k, c«) will have a pole at
co =i o-„„k', where cr»„ is the microscopic conductivity.
Thus (3.34) allows us to determine the microscopic
conductivity. The microscopic conductivity
corresponds to the spin wave stiffness in a ferromag-
net.

We thus see that the order parameter (3.23) or
(3.24) contains most of the interesting information
about the conducting properties of the lattice. In the
remainder of this paper we establish the mean-field
equation for this order parameter and determine the
conducting properties of the lattice near p, .

The mean-field equation for the order parameter is
obtained by evaluating the s integral in (3.11) by
steepest descents. Differentiating the exponent with
respect to s, (p) gives the mean-field equation

(I/8„'), . = i «i [ m —i bbR + 0 (bb/o b) '1 (3.30) &s( p) = f (dV)e " 'e
1

(3.35)

where m is the average number of sites in a cluster
per site and R —I/o b is the average resistance of a
cluster per site. These are defined as follows: the
average resistance of a cluster is R = X,&, R„, where

R„ is the resistance between sites i and j in the cluster
and the sum extends over all pairs of sites in the clus-

where

Z, = (dV)e {3.36)

Taking the Fourier transform with respect to p of
(3.35) gives



MICHAEL J. STEPHEN

W„s, (W) =—{dV)5{W-V,)e
I

(3.37)

We now omit the angular brackets from s so that s is
the mean-f)eid value of (s). The factor Zl is to be
determined from thc condition s (p = 0) = 1. We now
consider the solution of (3.37) in somt; special cases.

IV. NKTi%ORK OF QPKN CIRCUITS AND
CONDUCTORS (a, =0, o i, A 0)

When rr, =0, H)(s, V) separates into a sum of
terms for each site i and the integral in (3.37) is a pro-
duct of W integrals. Ã —1 of these integral' {for sites
j Ai) cancel with identical integrals in Z~ and we ob-
tain

)

= 1 i Cu 8'2
A„s, (W) = exp — —i«)W U,

/l

[I-)~W2/2(I-x), p (p, ,

s(W) =
I —P —i «) W /2 (x —I), p & p, .

(4.7)

where P =2(x —I) =2~r«~ is the percolation. probabili-
ty. From (3.29) and (3.30) the coeIIIcicnt of

'
i «) —W—' in (4.7) is the average number of sites in a

2

cluster m =I/~1 —x~.
(iii) close to p, . we expect that s(W) will scale in

the variables W' and ro and we look for a solution of
the form

gives x =1 for the percolation point. This result has
been given previously. " We note that s{W') is nor-
malized as in (4.2) (for l) =0) so that our choice of
Z~ = e ls correct, It is interesting to note that equa-
tions of the type (4.1) and (4.4) arise in percoiation
problems where there are contributions from clusters
of all sizes.

(ii) Equation (4.4) is readily solved by expansion in
8" and in this way we can also obtain the solution for

p &p(:

+ gai, s, (p)e'" "
s ( W) = 1 —r„~f(«) W'/r s ) (4.8)

where Z;~ is determined from thc condition

(4.2)

tn the absence of a spatially dependent potential,
s;( W) ls independent of sltc i Slid (4.1) 1'cduccs to

where the exponents P and 5 must bc determined and
we have used the conventional symbols for these per-
colation exponents. " Equation (4.8} is substituted in

(4.4) and the natural log of both sides is taken. As-

suming p )0 we expand ln powers of I.
o f. It ls readi-

ly shown that P=1, 6=2, and f satisfies
)

1 i~%2s( W) = exp ————+ @B„s(p)e''"
Zl

We consider' some special cases.

(4.3) , f'+ f +iW2/2r«2 —=0

p&p,f =-I+ (1+ i~ W' r, ') ii'--
p&p( ~

A. Cr/, —c)c

(4 4)

The percolation point is determined by x = 1 and we
let ri)=1 —x. Solutions to Eq. (4.4) can be obtained
as follows:

(i) For p ( p, , Eq. (4,4) is readily solved by

Lagranges method

In this case from (3.8), 8„=z ln(1+ v) =x say and
is independent of p. It is shown belo~ that Z~ = e'
and (4.3) becomes

( W) i& W l2tx [s ( W) —I]—

This solution for f is in agreement with (4.7), and this
method for the solution of the mean-field equations
will be used below, We note that the scaling solution
breaks ()own if 8" is large. Thus from (4.4) or {4.5)1
s{8' ~) =0, a property which does not hold for
{4.8) and (4.10). This is not surprising as we do not
expect. Scaling to hold for the whole range of the vari-
ables. After these preliminary considerations we turn
to the case (T/, finite,

8. O/, An)ate

s ( W) $ P e iqtcuw /2—
pn=j

(4.5)
%e expeCt the solutiorl near p, . for s(p) in (4,3) to

be sharply peaked around p =0. This is confirmed
below and allows us to expand 8„ in powers of p2,

where P„, is the probability that a site lies in a cluster
of m sites and is given by 8„=X —p2//b + 0 (p')

(mx)"' i —nil /20

{2am') '"
( )/+I

p
b 2o-t,

/ )
(2

The second form is appropriate near p, . for large m.

The/ average size of clusters diverges at r0=0 which
In what follows, b will be used in place of' a/, . Substi-
tu'ting (4.11) in (4.3) (with Z, =e'), we obtain
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—iron 2 1 g ss(W) =exp ' +x[s(W) —I) + —y„2 QW

(4.13)

Again this equation may be solved in several ways.
(i) p & p, .: To obtain the average resistance of

finite clusters we solve (4.13) as a power series in W
and b '.. Let

s ( W) = 1 ——s
~
i cv W' + (1/4!) s 2 (i co W') '

1

Substituting in (4.13) it is found (for n =0)

s, (l —x) = 1 —(2i cu/3b) s2

s, (1 —x) =3(1+xs,)'

(4.14)

which give

s) = 1/(1 x) 2i (u/b (I x), s2 = 3/(1 x)

(4.1S)

From (3.30) the average resistance of finite cluste'rs is

R =2/bro (4.16)

and diverges with an exponent 4 as p p,
(ii) close to p, . we expect the solution of (4.13) to

scale in its variables rp, W', and b, and we choose a
solution of the form

i

s( W) —1 —rosFo( bW2rp~, co/bro—+ ) (4.17)

82Fo t
P &Pi

2Fp +Fp 2IMM/ +M
2

=0'
Qp2 p &p(

(4.19)

It is readily shown using the method described above
that P.= @= 1 and 4+ $ = 3 and Fp satisfies

2

2r(2) br p

It may be shown that the higher order derivatives om-
itted in (4.13), arising from the expansion of 8„ in

powers of p', do not contribute in the scaling region
to (4.18). Introducing the scaling variables
u = , bW'lro[ and ra& =—co/burro~', Eq. (4.18) takes the

form (n =0)

the boundary conditions for this equation are
g(0) = I, g(~) =0 and follow from s(W=0) = I and
s( W = oo) =1 —P. This latter result comes from the
fact that when ~ =0, the contribution of finite clusters
to s( W) is a constant independent of W, and for
p ) pi r this constant is 1 —P [see Eq. (4.7)]. It is in-
teresting to note that an identical equation to (4.21)
was obtained by Stinchcombe in his determination of
the conductivity of a Bethe lattice.

The scaling properties of the order parameter are
given in Eq. (4.17) and there are three independent
exponents. We now determine the conductivity.

C. Response of the order parameter
to an applied potential

In the presence of an applied potential
ik r,

U, = (I/JN ) Ue ', the order parameter is spatially
dependent. For small k the Fourier transform of A„,
A (k) =1+y2k2 . , where y is proportional to the
nearest-neighbor lattice spacing. Thus for long
wavelengths in Eq. (4.1) we may replace

1 —y O' . We take the order parameter in the
form s(W) =1 —ronF(r) and then following the steps
that lead to (4.18), we obtain the equation for F (with

P = I):
2I(o W

2f
~~2F
rp

tk r
8FoF=F, + (4.23)

when the potential is small and slowly varying. Sub-
stituting in (4.22) and neglecting the derivatives of n
with respect to W (we show below that this is a good
approximation for small k), we obtain

, W U (r) . (4.22)
rl)

We note that if the potential U is spatially uniform
that the solution of (4.22) is F =Fo(W —U). Physi-
cally this corresponds to changing the potential at each
site by a constant amount U which does not alter the
Kirchhoff equations. This suggests that we. take the
solution of (4.22) in the form

We note that R in (4.16) is in agreement with (4.17)
and that R —r 2~ '&+~

For the dc conductivity we will require s( W) in the
case for co =0 and for p & p, In this case we put

Fo(u, 0) = —2+2g(u), s(W) =1 —P[1 —g(u))

u Fo+I — X +f k'

", W. u, (4.24)
rp2

where g satisfies

82g' —g+u g =0 .
QQ

(4.20)

(4.21)

where g = y /lro~ is the correlation length and the
upper and lower signs apply for p & p, . and p )p,
DiAerentiating (4.18) with respect to W,„we obtain

brp p QWp QW,„rp
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Substituting in (4.24) and using the fact that Fo
depends on W2 we obtain

n = i (»—U / i (» + 2g k r()
222~~0

Q 8'2 (4.26}

i 2 2 ~~0o(= —((»o U / ((»(, + —g k
QQ

(4.27)

%e first use this result to determine the conductivi-
ty at long wavelengths for p )p, When ('k'/(»(, (1,
we can neglect the frequency dependence of I'0 and
put F()(u, 0) = —2+2g(u) as in (4.20) and then

cK= Icy»U/(I r»( ( k g ) (4.28)

The Fourier transform of the order parameter is then
obtained from (4.23) [with BFo/0 W„replaced by

4(ag/0 W') W.l:

si ( W) = 4ros»(,—$ W„p Bg (4.29)

When this is substituted in (3.28) we require an in-

tegral of the form (where 3 is a function of W')

lim d W W,„g W()A (Wi) = lim — d W WtA ( Wi)
It ™0 it 0 fg

8 d8'A (8'2

The last result follows because the volume element in

n-dimensional space is d%= Q„H'" 'd8; where 9„
is the area of a unit hypersphere in n dimensions and

lim„on 'A„=l.
Substituting (4.28) and (4.29) in (3.28), and using

(4.30), we find

In obtaining this result we have neglected derivatives
with respect to 8'of n. It may easily be shown that
the corrections to (4.26) are of order k'('/(»(', and are
negligible at long wavelengths. Introducing the scaling
variables u and ~, in (4.26) we get

F(k, „)= 2g'(0) 1

Irol ('k'g'(o) —((»(,
(4.34) s

where g'(0) = —0.76 and has been determined by Stin-
chcombe. o The pole in (4.34), (» = io „„k', determines
the microscopic conductivity

~;= —6j'(ro)'g'(0), (4.35)

and has an exponen(t of 2. This is in agreement with

the, Stinchcombe result for the Bethe lattice. The fact
that the macroscopic conductivity (4.32) and the mi-

croscopic. conductivity have different exponents has
been discussed by deGennes. '

The order parameter in this case is determined h„.

(3.37) and we first consider the case where U =0 so
that s;(W) =s(W), independent of the site index i

We approxiniate the last term in (3.13) by expanding

ar as.in (4,11). We look for a scaling solution of
{3.37) of the form s(W) =1 —ro"M, where M is a

furiction of the variables e„b —crI„~, W', and ro.
We can write this scaling solution in the form

. t
fL/'2g g P'F QJ a,M M

ro i oro ' bra
(5.1)

where, in analogy with (4.17), we have introduced a
crossover exponent Pi associated with the o.„variable.
The other exponents, 4 and @, are the same as in

(4.17).
The above form for s is substituted in (3.37) arid

after taking the natural log of both sides we get

quency dependence of the conductivity is determined
by the scaling variable (»& =o)/b ~rotii O. wing to the
approximati(ins made in obtaining (4.26), Eq. (4.31) is

only correct for kg & 1.
The voltage correlatiori function for p & p, , from

(3.34) and (4.29) is given by

X, {k,~) = x„,R (~,'/k'g'),

X„)y')I ~' J d (g')'=

(4.31)
in(1 .,'M) = x.,'M —i)r,"-—-

QMx X, + In R ( W)882 (5.2)

= —,
' y'& Irol'

OO I2

R (y') =3y' du
0 y2+p 2

(4.32)
~here R (8 ) is all the remaining terms in the integral
on the right-hand side of (3.37). R is written in Ap-
pendix B, but for the present purposes its exact form
is not important. From the condition s(8'=0) =1 it
follows that M(W=O) =0 and R(0) =1. For small
8'we may take

The dc conductivity thus vanishes at p, . with a mean-
field exponent of 3. This is in agreement with the
results of Straley on the Bethe lattice. The integral in

(4.32} has also been 6valuated by Straley. The fre-

(5.3)R (W) =1 ——a'W'+
2 1

I..

where) a' is to be determined. We show in Apperidix
B that it is given by



a'= —'(icu+o„z+[(iru+o, z) —43r, zj' I

(5.4)

Thus for rr, =0, a'=i 0) and (5.2) reduces to (4.18)
after expansion of the logs, For co=0, a'=a where

X (k ) = X ——'y'a In[1+(k'), 3'/ )'» (5 13)

The microscopic conductivity is determined by the
pole (5.10) and is given by

a = —,
' o.z[1+(I—4/z)3"] (5.5)

3rmi = 'y a/ro2

and diverges linearly as (p,. —p) '.
(5.14)

In what follows we will use the variable a instead of
a„. Equation (5.4) also shows that o.„and 0) scale in

the same way so that we conclude that @» = 5 (in
mean-field theory).

The equation determining M is obtained from (5.2)
by expanding the logs and we find

VI. CONDUCTIVITY AT p =p, . (o'„« o),)

From thc result of Scc. V we anticipate that thc ord-
er parameter at p = p, , may be taken in the form

—M2+ M ———
a' 8'2

2 I'p

1 QM
bro „g8'„ (5.6) x(a&bi(5+4)bi{5+k) IIrz ~/a) (6.1)

—m +m ——v=0» »

2
(5.7)

~here we have set P =1. This equation shows that M
is of the form (5.1) with 3t33 = 5 =2, ib+ 3t3) =3.

Of particular interest is the case b = ~, and in order
to obtain the conductivity for k( & 1, we only require
M in the case m =0. Then setting u' = a and
M(a W'/roz, 0) = m(v) with v = a Ilr'/roz, we find a'

M, ——w-sw =0,
a

(6.2)

~here wc have set @I = A. If $» & 5, a morc general
form, which follows from (5.1), must be used. Pol-
lowing the method of Sec. V, and making use of the
fact that a/b « I, it is easily shown that Mi satisfies
(n =0)

with the solution for p & p, ,

m = —1+(1+v)»/2 . (5.8)

where w =a»~'62~'8'2, we have set p=4tI =1 and
b, =2, and a' and a are given by (5.4) and (5.5),
respectively. In the case ~=0, we put
M)()v, 0) = m)()v) which satisfies

This scaling solution breaks down for v & v, , and we
can estimate v, , by including the leading nonscaling
term in (5.7). Prom (5.2) this leading correction
comes from the expansion of thc log on the left-hand
side and is —,rom3. This term is of the same order as

the terms in (5.7) when

2 Q m»
2.

m» —w —8w =0 (6.3)

This equation breaks down for large w and including
the leading nonscaling correction, , (a/b)' mi', —in

(6.3) we find that the cutoff is given by

3' = V,. 9/4f0

The response of the order parameter to an external
potential is taken in the form (4.23) with M replacing
Fo It is found for .kC & 1 that n is given by (4;26)
(with M replacing Fo). For k( & 1 and b = ~, we re-
place Mby m and

)v = '(b/a)—
The solution to (6.3) is conveniently taken in the
form

m, = (I + )v) 3" + m),

(6.4)

(6.5)

n = i m, U/(i 0), +—2 ( k m ')

where 0)„=co/a. Substituting this result in Eq. (3.28)
for the conductivity gives

1'

XR (k, 0)) = 2y a Q)~ dV
0),~+ (2kig~m')i

~here we have cut off thc integral at v, Using (5.8)
and (5.9) the dc conductivity is given by

Xd = —yea ln(1+ v.)

where m2 vanishes at w = ~. The most divergent part
of the conductivity is determined by thc first term in
(6.5) and is

Xd,.= —,y'a ln(1+ )v, .)»

and depends logarithmically on the ratio b/a The mi-.
croscopic conductivity is given by

a-; = 2y2a 2/'6»" m»'(0)

and diverges as (b/a) 3)) for large b/a.

and diverges like —ln(p, . —p) close to p, This is in

agreement with a recent result of Straley8 on the
Bethe lattice. The ac conductivity from (5.11) is given

by

The scaling behavior of the order parameter, Eq.
(5.1), shows that a description of the critical behavior
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(7.1)

Thc exponent @ is the same as the crossover exponent
in random magnets. " The same exponent $ =1 has
been determined by Dasgupta et ai'. ' by a diA'erent

method and shown to bc unity to all orders in ~ by
Young and Wallace. '4 The result $1=4 follows be-
cause a.„and ~ scale in the same way (they both scale
as "magnetic fields" as they couple linearly to the order
parameter). The results (7.1), while correct to all ord-
er in e, may not be true in low dimensions.

It is useful to express the conductivity exponents in
terms of the exponents appearing in the order parame-
ter. In this way calculation of the conductivity ex-
ponents is reduced to determining the scaling proper-
ties of the order parameter. We define the two con-
ductivity exponents

Xz, (a =O, b) —iron', p & p,

Xd(ah= ) —r()', p &p,
(7.2)

wherc w'e have used Straley's' notation. We also
define exponents for the microscopic conductivities

~.;(a =0,» —lrol', p &p, ,

o„„(a,b =~) —. ro'', p (p,
The relation of these exponents to the order-
parameter exponents may be inferred from (4.28),
(4.29), (5.10), and formula (3.28) for the conductivi-
ty. It is assumed that correlation length g —ro ' and
enters in the form k( as in (4.28) (mean-field theory
gives 2v =P). The following relations are then ob-
tained:

r =p+lL+|b —2v=p+(d —2)v

s =2v+$~ —p —A=/~ (d 2)v

t'= t —P, s'=s+P

(7.4)

A relation of the form (7.4) has been given by de'-

Gennes (with $ = 1), Skal and Shklovskii, 6 and Harris
and F1sch. Using (7.1) and the knowfi percolation
exponents, ""we obtain the conductivity exponents
in 6 —e dimensions

s =1+—
42

The result for t is in agrccrnent with that of Dasgupta
e( aj. "

of the resistor network involves the percolation ex-
ponents and two crossover exponents @ and qadi. Wheth-
er these exponents are independent cannot be decided
from the mean-field theory. The present theory can
be extended to include the eft'ects of fluctuations and
these exponents have been calculated in 6 —~ dimen-
sions'3 with the results

The frequency dependence of the conductivity is
determined by thc scaled frequency variables

(dan
= Ql/b iron cd/b froi

R —ro R, yR =2A+y —p . (7.8)

The exponent yR is related to the exponent y, of
Harris and Fisch' for their average resistance by

yR =y, . +A.
In conclusion thc Gaussian integral method intro-

duced in this paper enables one to derive a "Hamil-
tonian" for the resistor network and a natural order
parameter for the problem is found. The conductivity
is obtained from thc response of the order parameter
to an external potential and is thus similar to a suscep-
tibility. Using sealing arguments familiar in critical
phenomena we are then able to obtain considerable
insight into the properties of the random network near
thc percolation threshold.
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The conductance matrix (2.3) has the form
8 = i 0) + A, where the matrix A has elements

A;;=pa„, A„=—a.
,l

/

Thc cofactors of A are denoted by A;„A„;;. Thus A~„

is the determinant obtained by omitting row and
column i of A and A, ;;; is thc determinant obtained by
omitting row i and j and column. i and j in A. It is
easily shown that A„=A;/, etc. The resistance
between sites i and j in the same cluster is given by

W

lJ ~i/I//~II

Now consider 8;, ' in the case p & p, , o., =O, .and
o I, A 0, and suppose that site i lies in a cluster of m
sites. Then expanding (8;, ') ' in powers of i rd/rr& we
have

Cd„= fd/af 0 rd/a

when b = ~. In the case where a and b are nonzero
with a &( b, thc conductivity depends on the scaling

variable a/br& —a/bro.
Q+Q1

A further quantity of interest is the average resis-
tance 8 of finite clusters when a =0, p & p, This
diverges like
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lQ)mA;;+(i&0) A" +
8 —l »j

I2
a'= io)+ o-„z -a„' (dV " Va

' —I

x Q(+is)XQ;;;;+
, I

l

=ice m+Is XR„—/corn gR„+
IVI , I

(A4)

where the sums extend over all the sites in the cluster.
When (A4) is averaged over all configurations of con-
ductors on the lattice, we obtain Eq. (3.30).

APPENDIX 8

l

x exp Hp'(V) —ro g'M(V)

(82)

where Ho' is obtained from Ho by setting V, =0
(dV)'= ff,„,d V;, and the double prime on the sum-

mation means that jmust be a nearest neighbor to i.
The scaling properties of the order parameter Mare
given in (5.1) and we thus introduce new variables
V, '=(a,'"/ro) V; into (82). Then Ha'(V)
=(ro/a, ) Hp'(V') and can be neglected com-
pared with the term ro g,. M(V ). With this approxi-
mation all the integrals in (82) factorize and

a'=-i co+ (r„z —(1O) + ili(r„zroi

Here we determine a' in (5.3) self-consistently.
Fro'm (3.37) and (5.2) we have

R(W) =— .(dV)g(W —V,)z

xexp -H, (V) r, X'M(V-)
. , I

I() = d V ' e

J2= d V'V '~e

From (5.6) (with b =~),
M(V') = —1+[1+(a'/(r, ) V'ij'i'

= [('/ .) v'1'", (86)

where H„ is given by (3.5) (with U=O) and the prime

on the summation means that the term j =i is omit-
ted. %e have set b = ~ for simplicity and this can be
shown not to change the final result. 'We can easily

expand R (W') in powers of 5'by setting V, =W iri

the right-hand side of (81), omitting the V, integral,
and expanding the exponent in powers of fK For
n =0, Z = 1, and in this way we find

where the second form is valid for large V'. Using
this large V' approximation in (84) and (85) it is easi-
ly shown (for n =0) that

Ip=l, I, =o„/a'rp'. (87)

When this is substituted in (83) we find the equation

a" —a'(icu+o. )+zcr,'z =0 .

The solution is given by (5.4) where we have chosen
the solution which reduces to i eo when o-„=0.
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