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The molecular-dynamics technique is applied to the study of the classical (S = cc) Ising model in a
tlansvc1sc field on a, simple-cubic lattice. Thc results fol' thc longitudinal- and transverse"relaxatlon shape
funqtion are presented for a set of temperatures in the disordered phase at orie value of the transverse field.
The longitudinal spectra at T = oo and in the critical regime are analyzed via the Mori s continued-fraction

expansion and compared with various approximate results within this approach. The relation of the observed
central mode to a domain-w@11 motion is ilso discussed. However, due to heavy-damping phenomena no well-

defined propagating mocdes are observed in the critical region. Finally, transverse correlation functions are
tested against their diffusive character.

The Isirig model in a transverse field (IMTF) has
been in the past decade extensjvely studied in con-
nection with a variety of physical systems like
KH, PO, (KDP)-type hydrogen-bonded feri oelec-
trics, cooperative Jahn-Teller systems, rare-
earth compounds with a singlet crystal-field
ground state, etc. ' Recent theoretical investiga-
tions w6F6 dbvoted pr6doiQlnantly to the dynamics
of the model, where the emphasis was put on its
critical regime. To improve over the conventional
randoin-pliase approximation (RPA) results, which
lack the dalIipirig of the modes and are therefore
not able to cope with heavy-damping effects in
real situations, Chock and Dagonnier2 as well as
Moore and Williams' deriveci a, set of kinetic equa-
tions for the spin-correlation functions which they
solved numerically. In the critical region, Mori's
continued-fraction analysis, as applied to the re-
laxation shape functions ip the IMTF, ' seems to
be i@ore rewarding. By this method one is able to
extract the low-frequency phenomena in a system-
atic way, but at a cost of introducing rather phe-
nomenolOglcal parameters at a certain level.
Nevertheless, the qualitative and the quantitative
agreemerit of thes~ multipole approximations, as
they are often referred to, with the actual IMTF
specI(', ra, still remain to be tested.

Recently, there have also appeared speculations
on the low- fiequency dynamics of the IMTF, stim-
ulated by the numerical-simulation work of
Schneider and Stoll' on the lattice-dynamical mod-
el for the structural pha. se transitions. The au-
thors presented evidence of a central peak in the
critical regime above the transition temperature,
which w'as characterized by two essential features:

(a) in a substantial range of temperatures T& T,
the central peak remained well separated from the
underdamped soft mode, (b) for small wave vec-
tors g it split up into a double-peak structure,
giving rise to a new excitation branch. The cen-
tral peeak and the new branch were attributed to
the propagating domain walls. Due to the physical-
ly apparent relationship between the IMTF and the
lattice-dynamical model, one is tempted to expect
similar kind of phenomena also in the IMTF.

In order to clarify these points by objective
means we performed R, molecular dynamics (MD)
study of tile IMTF oil R 'till"66-d111161181011al (3-D}
simple cubic lattice. As the quantum case.8= ~

cannot be approached by. a, simulation method, due
to an enormous number of basic states for any
reasonable system, we had to rely on the classical
(8=- ~) vel"sloll of tile nlodel. Althougll tile S'= ~a

case basically differs from the 8= ~ IMTF
(CIMTF) in its physical nature at low tempera, -
tures, it is reasonable to expect that both repro-
duce similar qualitative features for I'& T*, T~

bei~ the quantum to classical crossover temper-
ature of the S= P. model. At least two arguments
could be put forward in support of this conjec-
ture: (6} Moment-expansiori results on the Heisen
berg-model dynamics for an arbitrary value 8 in-
dicate that there is an almost complete qualitative
as well as a, quantitative agreement between the
results for various 8, if the variables as the fre-
quency and the interaction are properly rescaled;
(11) 'tile s'tRtlc Rtld th6 dynamic cl"1'tlcR1 bellRV-

lor are expected to remain M th6 same unlver-
sa].ity class for all spin values 8, at least in the
region where the IMTF retains an Ising-type cha, r-
acter, i.e. , below the cr itical transverse field.
Recent Monte Carlo (MC) simulation results for
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the CIMTF statics, obtained by the present au-
thors, "also support this similarity.

The organization of the paper is as follows: In
Sec. II we introduce the model and derive, follow-
ing Mori s continued-fraction analysis, the three-
pole and the two-pole approximations for the re-
laxation shape functions. In Sec. III some technical
details of our MD simulation as well as our method
of MD data analysis are described. Section IV is
devoted to the presentation and the discussion of
our results. First, the T= ~ longitudinal relaxa-
tion spectra are shown and analyzed in connection
with the three-pole and the two-pole approxima-
tions. In the finite-temperature examples, which
are located. in the critical regime, the longitudi-
nal functions are tested with respect to a presum-
able new excitation branch within the central mode.
Again, a comparison with the continued-fraction
analysis results is performed and a quantitative
evaluation of the phenomenological parameters
entering the three-pole approximation is carried
out. Finally, we discuss the transverse correla-
tion functions and analyze their diffusive char-
acter. Conclusions are given in Sec. V.

II. THEORY

We define the CIMTF by the Hamiltonian

~ ~S, BII
S; = S), ' ', , a=&yX~g,

BS) BS)

where (a, , b, c) =a (b&& c) denotes the mixed pro-
duct. Hence,

Sv( ——Q Z(~Sv~sv, (4a)

where S,. is a classical spin vector (
~
S,

~

= 1) lo-
cated at the lattice site i, A is a transverse field,
and J,,= J is the longitudinal interaction acting be-
tween the nearest neighbors only. The equations
of motion, which govern the dynamics of the mod-
el, are usually derived from the corresponding
quantum-mechanical equations for the case of
finite S,

s,. =(i/e)ta, s,.] . (2)

After the variables have been properly rescaled
and the commutators evaluted, the limit S-~ is
invoked and the operators are replaced by their
c-number counterparts. It is nevertheless unnec-
essary to appeal to the' limit of quantum results.
Following Mermin, "the classical equations of
motion can be written

Sf= —Q J,)S)Sf+ Qsv), (4b)

8,. = -QS)~. (4c)

s(q, t)=N-"t'g e""~s,(t). .

In addition, we introduce the normalized relaxa-
tion function and the relaxation shape func". ion
(RSF)

E""(q, t) = C'"(q, t)/C""(q, 0),

Fvv(q &) dt& fafFvv(q
2m

(8)

Note that in Eq. (8) already a classical limit has
been employed.

The theoretical approach, which provides the
most systematic framework for the discussion of
the IMTF dynamics, follow's'the continued-frac-
tion analysis of the RSF, first introduced by
Mori l3

=1 t -1
E "(q, u&)= —Re in+ &~, i&@+.

'F + ~ ~ ~

(9)

Here, &,'~, ~',~, . . . are related to the frequency mo-
ments of E (q, &),

(~2)uala

4)ua/(&2)nn ( 2)an
a & a

where

(10a)

(10b)

(&d ) = AdF (q, (d)(d
~v OO

The RSF representation as given by Eq. (9) be-
comes useful when- the dynamics of the system is
dominated by few slower processes with frequen-
cies centered in the complex plane around v = 0.
When this is the case Eq. (9) may be truncated at
a certain level whereby the effect of faster pro-
cesses is taken into account via some real fre-
quency-independent parameter X.

In the present work we are able to evaluate fre-
quency moments separately from our MC data"
(or exactly at T= ~), thus from Eqs. (10a) and
(10b) also &,', &,'. In this way we avoid any ap-
proximations at this stage. We list here few ex-
pressions relating lowest-order moments, w'hich
we will need later, to the static correlation

A convenient way to study the dynamics of the
system is to look at the correlation functions

C""(q, t) = (S'(-q, 0)S"(q, t)), (5)

where S"(q, t) = S'(q, t) (S"(q)), ( ) denotes the
thermodynamic average and
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functions. Note that (F1'"")""= 0:

(~2)Ãx Al 1

Jq[C (k, 0) —C~~(q —k, 0) ]
pc-(q, 0)

((g').' = (S")0/PC"(q, 0),
0

(12)

(13)

Fsc(» ): 2 1
2 qi v (~2 5 )2+y2~2

2
(20)

III. NUMERICAL-SIMULATION METHOD

where, in general, x2&x3. In contrast to the lon-
gitudinal RSF, neither F,""(q, l11) nor E","(q, &1l) would
present a satisfactory approximation to the trans-
verse RSF, which appear to be partly diffusive in
character.

x g J~[C"(k, 0) —C""(q —k, 0) ]

where P=- I/tl~T and

11l.' = O' —Q(S")Z.,+ (J-,(S'))',

(14)

(15)

J-= g 8,.&
exp [-iq ' (R; —8&)] . (18)

Already (&d')5' and (&u')-"" involve three- and four-
spin correlation functions which are, even within
the MC simulation, difficult to evaluate. Fortu-
nately, in the case of the longitudinal RSF E"(q, ld)
w'hich is physically the most interesting, the
three-pole truncation of Eq. (9) seems to be suffi-
cient for a qualitative description of the IMTF
spectra in the disordered phase,

E (q, ld)

ELM (1v5 )1/2 (18)

Tommet and Huber interpolate between Eq. (18),
which seems to be justified in the critical regime
with a well-pronounced central mode, and the ex-
pression more appropriate for a resonant behav-
ior of F"(q, &u),

1 /2 g3/2 O 5g2g-l/2
yTH 2 ' I 2

2 5+5
Cheung' uses a mode-coupLing approach to esti-
mate X,. Whereas Eqs. (18) and (19) predict a
finite value of X~=o at the transition temperature

3
T„Cheung's result suggests a critical behavior
of X~, namely, X10o-(T —T,)'

In the analysis of our MD data we shall employ
also the two-pole approximation

X„5„5„
ll (O'(uP —5,', —5&,)'+ [Cc (ld' —5j,) ]' '

(We henceforth omit indices z and q wherever there
can be no ambiguity as to their meaning. ) Theo-
retical evaluations of X3 have to rely on rather
crude approximations. Lovesey and Meserve' as-
sume a Gaussian time decay of the memory ker-
nel in Eq. (9), which yields

Within our numerical-simulation approach we
have studied the CIMTF on a 3-D simple cubic lat-
tice with K= 16 && 17 & 18= 4896 spins. For con-
venience, the boundary conditions w'ere -taken to
be staggered periodic. Our procedure was divided
into two steps. " First, for a given temperature
the MC technique was used, whereby the system
was allowed to age 500-700 MC steps/spin, which
insured a'well-defined thermal equilibrium also
with respect to large-distance static correlation
functions C~ "(R, 0)." The final configuration thus
obtained served as the initial condition for the MD
procedure. While solving the system of Eqs. (4a)—
(4c) we employed the fourth-order Runge-Kutta
algorithm with a time increment typically —,', mean-
field-approximation (MFA) precession time, which
proved to be sufficient to maintain the desired nu-
merical accuracy. In the evaluation of C~ "(R, t)
we used the statistical significant sampling as
proposed recently by Koehler and Lee,"
c'"(R, t) =

1 0'

N

x Q Q Q [S~(R„t )S"(R,+O'R, t+ t )] .
fat f Q&

In Eq. (21), ill runs only over uncorrelated time
intervals where t —t „,= w is determined by a
characteristic decay time of the fluctuations within
the system. In our calculations we have fixed v'

by its T=. value where it was approximately equal
to one MFA precession period. The spatial sum-
mation takes into account only uncorrelated vol-
umes; therefore

~

R —R,
~

- e 1, x being the in-
verse statical correlation length (in our examples
correlated volumes contained 1, 8, 27 sites, re-
spectively), while O'8 generates the group of

equivalent R.
While calculating E~"(q, F1) from C~ "(R, t) we

used the appropriate Gaussian filtering in the q
as well as in the & Fourier transforms" to avoid
various termination effects and to suppress the
data which were already below the thermal noise
level.
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IV. RESULTS AND MSCUSSION

The static and dynamic properties of the CIMTF
are, for a given lattice, determined by two dimen-
sionless parameters, the reduced transverse field
y=0/J, andthe reduced temperature @=@AT/J;
Note that y = 0 corresponds to the ordinary S= ~
Ising model. The effect of finite y is reflected in
the decrease of the critical q, . When the value
y = y, is reached, g, 0 and the phase transition
is suppressed altogether. In Fig. 1 we present
the phase diagram for the CIMTF on a simple
cubic (sc) lattice, as calculated within the high-
temperature-expansion approach. " For compari-
son we include also two points, accurately deter-
mined via the MC simulation, as well as curves
representing MFA and self-consistent RPA results.
It is worth noting that, in contrast to the S= ~ case,
y, = J;,/J is known exactly for the CIMTF, due to
an entirely MFA behavior of the model at 7=0.

Since a MD study of the CIMTF within the whole
range of both parameters was unfeasible, we re-
stricted our calculations mainly to the y = ~y, = 3

case. There, the phase transition was located
by. the MC data at q, = 1.305. One of our main aims
wRS the investlgRtlon of the crltlcRl behRvior of
the longitudinal HSF. For this purpose we per-
fomed the MD simulation at q= 1.25, 1.35, 1.4,
and 1.V. These temperatures are more or less
all effectively in the critical regime, at least as
far as the stati:cal quantities are concerned. We
were not able to approach q, more closely, since
the finite size effects would show up in the large-
distance correlations, while at the same instant
longer time sampling would be needed to average
out the very slow critical fluctuations (mainly in
(8')). The 7)=~ case deserves the attention by its
own, because it often represents the starting point

l.

LL

MO

—3-pole approx.
——2-poIe approx.

/

~/

l

2.

FIG. 2. F (B—O, t) vs tJ at 7—~ for two values of
0/J. For comparison F& (B=O, t) and F&~~(R= O, t) vrith
best adjusted A. are also plotted.

for the extrapolations to lower temperatures, es-
pecially when the knowledge of parameters such
as X is lacking. Also, we are treating separately
the transverse-relaxation functions.

A. Longitudina1-rdaxation functions: T =~

The longitudinal-relaxation functions reduce at
q = ~ to E"(q, t) = 3C"(R= 0, t) and are thus g inde-
pendent. In Fig. 2 we plot our MD result for
E"(R=0, t) Besides . the y = 3 case, we include
here also the y = 1 case, where the value of y cor-
responds more closely to the experimental situa-
tion in pure KDP. At y = I E"(R=0, t) in Fig. 2

clearly exhibits an overdamped character, where-
as for y = 3 we observe damped oscillations with
an effective frequency approximately equal to A.
The same behavior can be traced in the E"(R=0,+)
spectra shown in Fig. 3.

3
u

)er

LL

1. 2. 3, I. 5.

FIG. 1. Phase diagram of the CIMTF on a sc lattice,
i,e. , ka'I'~/J plotted vs 0/J, as obtained by the high-tem-
perature expansion to the fifth order (Bef. 11). The
MFA and self-consistent BPA curves are also presented.
Crosses denote MC simulation results.

4 (I) /j

F1:G. 3. F'~(B= O, ~) vs ~/J at T=~ for hvo values of
0/J . F~&~(B=O,cu) and I ~&'(B=O, cu) are plotted arith the
same parameters as in Fig. 2.
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The resonesonant spectra, as realized for the y= 31, e a
case, are usually described in terms f tw d0 0 is-
p aced Lorentzians, centered ate a (do and -&o where
~,- Q. However, this form lends a satisfactory

rve curve only forrepresentation of the observ d

CO —(d eing a characteristic deca t'
First the L

cay ime.
Lorentzian curve clearly fails at h'

(d due to th
ai s a igher

o e moment violation (~")=~ f
More

) = ors
over, it cannot properly take int

e mar ed asymmetry of the spectral line. Both
these deficienci' ncies are partly eliminated within th
two-pole and three-

wi in e

and (20 . T
-p e an hree-pole approximations E (17)qs.

). o mvestigate the feasibility of both
representations at y= 3, we applied a be
ce ure or, an „respectively, whereas ~
=Q' and & =2J'J are known exactly at g=~. The

1

correspon ing curves are also incl d d F
and 3, where X,=1.21J and X, =2.6J.
It can be easily observed that E"(R=0

y= does not follow a simple cosnte-fl. law A
well-defined v= 1.12/7 is establ' h d I

, while the da, mping estimated from the first-
oscillation period would yield a. much lar

R=O, f), as obta, ined by an analyti-
cal transformation of Eq. (17) ' is a very accurate
a.

' ' . ra er A., independent).approximation for f&1.5/J (r th
owever, the fixed form of th f te irs period in-

duces, for lar er tg imes, oscillations with marked-
n e other hand,ly underestimated damping. On the

at the ex en
&,' R=0, t fits satisfactorily the overall b hr e avlor

and some
expense of a badly reproduced firstirs period

some phase shift in later periods. Similar
conclusions can be reached f th
Fig 3 I'+R= 0

rom e spectra in
F . . ( =O, u&) ts centered at cu =3.06J; Th

-p e approximation provides &„&=2.87J,
whereby the shift is caused b th
fall less ra idl th

y e wings which
a ess rapidly than our MD curve. Neverthe-

, &) accounts properly for the ob-
served line shape. At the same time E (R=O, z)
fails completely in w'idth as lls we as in pea.k posi-
tion. Namely, from Eq. (17) it follows that the
two-peak structure of the s tspec ra is recovered
only for Z, ~ X = (5 + 5 )/(25 )'~',, which in our
case leads to X = 2.59J.59J. This value is alread
much too lar e tge to reproduce correctly the width

y

of the MD sspectra. . In this connection we can
quote also the vso e values, as obtained from Eqs. (18)
and 19), X3L"= 1.777 and X~T" = 3.98J. Althhough the
a er expression was designed to cope with the

double- eak s ec-p pectra, , it is easy to recognize th t
both X, lead to an e

nize a
ea o an even worse representation of the

MD data than the E"(R=0 ) I t ' '
ep otted in Fig. 3. The

apparent fa.ilure of the three-p 1ree-po e approximation
in this case might be understood along the lines
already discussed by Mori. " Thee use of n-pole

e on y insofar thatapproximations is legitimate 1

th~~~ are n po les of E™a(q,~) located 'th'

& ~„ the rest of them being well separat d f
egion. If this condition is not met we ma

obtain un recise r
n poles.

p esults when retaining onl f ty irs

Turning now to the y= 1 case it b
that E'~ R=

e, i ecomes cleara, (R= 0, &o) fails whereas E"(R=0
qualitativel a

, (o at least
'

e y accounts for the merging of th
dam ed mp mode with the nascent ce t 1

i o e over-
cen ra compo-

nent. Also, the fitted X,=1.59J overla s to
i e eoretically predicted values

—1 VVJ and X =1
3

1

fee:

.8

0/J =3.

I I

FIG. 4. F' (B,t) vs tJ at q=k&T/J=1. 35 just ahorse th

B. Longitudinal-relaxation functions: finite T

As we lower the temperature mor d t te is an cor-
ations become important. In Fig. 4 different

relaxation functions E'~(R f aare plotted for q=1.35
]ust above the phase transition g, = 1.305. At s

rves for A&0 reveal an extended pla-
teau, which is due to the fact that the lowest mo-
ments are exactl zery o for large-distance
E"(R,cg), namely, (u')a'= 0 for A& 0 &u4 "=

lon -' enoting the lattice spacing t Th, ec. e
g-time behavior is charact d

amped oscillations, their period bein deter-
a y an average soft-mode frequen-

cy, which are superimposed 1on a, s ow relaxational
process. The contributions of A&a fun0

i - quency regime near g .i in e low fre
or q&7t tc their influence i

C

ce is less dramatic since
e q transformation tends t

0 thn e other hand at
s o average them out.

q mK as many functions as
possible should be included ' t
Esg(~

u e in t e evaluation of
q, ). o this purpose, we calculated in thet. T

present exam les u
via E . 21

p up to 35 nonequivalent C"(R
q. ( ), i.e. , from R=O to R=(4, 4, 0 a . Thi

was necessitated b th os cri-y e fact that in the most cri-
tical example (@=1.35) x '-3 5. ao and also B&5a0
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0.6

3

Li

0/J =3.

k0T/J =1.35

q = (k„.k„. k) ia,

0.2

-0.2

plG. 5. F"(q = 0, t) vs tJ at &/J=- 3 for various q =

= &~7/J. Note that q=1.25&7), corresponds to the or-
dered phase.

1.5.5 1 u)/ J

FIG. 6. F"(q=0,~) vs ~/J at 0/J=-3 for different
temperatures g=kJ3T/J.

had to be considered in order to achieve a rea-
sonable q resolution.

In Fig. 5 we present the results for E"(q= 0, f)
at different q in the critical regime (the @=1.7
case is effectively outside this regime since K '
a,). Whereas the @=1.7 curve. still retains the

qualitative character of the q= ~ case in Fig. 2,
at @=1.4 the oscillating part of E"(q= 0, f) is al-
ready less important, and the process is domi-
nated by the critical-slowing-down phenomenon.
This trend is even more pronounced for /= 1.35
where the amplitude of the superimposed oscilla-
tions is further diminished. In the q= 1.25 case
which, in contrast to all preceding examples, rep-
resents the situation in the ordered phase g & g„
the oscillations become enhanced again. It must

7. ~"(q, ~j vs ~/J at q=&g&/J=1. 35 just above
the critical q, for 0/J=-3 and different q in the Brillouin
zone.

be noted that, due to (S') &0, the physical inter-
pretation here is slightly different, thus attribut-
ing the slow decaying part of E"(q= 0, t) to the
conventional longitudinal relaxation of (S'), which
persists also outside the critical regime. The
behavior described above is reflected also in the
spectra E"(q=0, &u) in Fig. 6. At i)=1.7 only a
damped soft mode can be observed, whereas in
the q=1.4 case besides the soft-mode component
a strong central mode emerges. It is worthwhile
pointing out the structure of the soft-mode com-
ponent which indicates a slightly narrower peak on
the otherwise overdamped background. This was
achieved while improving the q resolution over the
preliminary version. " The g= 1.35 case is domi-
nated by the central mode while the soft mode is
overdamped. Again, g= 1.25 is quite different in
character, allowing the existenc e of an under-
damped soft mode besides a narrow central peak.

In Fig. 7 we present the spectra E*'(q, &u) for a
fixed temperature g= 1.35, but for various q in
the Brillouin zone. At q& q, - 1.7/a, the spectra
reveal resonances at &&- +(d», where z-'s corre-
spond to the RPA frequencies in Eq. (15). The
same behavior appears for i) =1.4 at q&1 5/J while.
in the @=1.7 case it is characteristic for all q (see
Fig. 6). At q& q„ the central mode at ~ = 0 begins
to emerge. At the same time the soft mode be-
comes increasingly damped and for q-0 finally
disappears into the central component. The value
of qp 'to great extent coincides with qp-mK, which
confirms our previous discussion.

%'e can now test our results on two conditions,
mentioned in Sec. I, which E"(q, w) should satisfy
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TABI,K I. Values of the parameters 6&, 4&, Q for 0---0 at various temperatures g in the

paraphase, as obtained by the MC simulation —6&, 6z, by the three-parameter fit of F (q
= 0, t)—6&f, 602f, X30f, by the one-parameter fit of P '(q=- 0, t)—~3, from the height E' (q= 0, ~
= 0) ~0", and froze the express'ions (18) and (19)—& ", Q~ ~, respectively.

g0/g2 ~0/g2 g0f/g2 g0f/g2 p 0P/g y0f/' y0h/g p
0 LM/g g0 TH/g

1.7
1.4
1.35
1.305

9
1.00
0.39
0.18
0.0

2

1.73
1.48
2.04
2.80

1.31
0.36
0.20

1.30
1.15
1.35

2z6

1.07
0.80

1.64
0.90
0.51

3zd

0.8
0.75

1.77
1.65
1.52
1,79
2.10

3.98
1.22
1.25
1.65
2.10

in order that their central component might be at-
tributed to propagating dome, in walls: (a) Clea. rly,
none of the presented examples supports strongly
the notion that. the central- and the ",oft-mode corn-
ponent could coexist well separated, which would
be an indication of the existence of two kinds of

approximately lndepender" processes. We may
conclude fI'om Figs. 5-7 that the soft mode r'e-
mains Underdamped (but still heavily damped) ln

the presence of 1:he central mode only in a, naxrow
region of q and q (i.e. , q=. 0, q'" l.4 and r~=1.35,
q'-'1. 4/a, }. (b) A check on the propagating char-
acter of the central mode would be a phononlike
structure of. the centraL peak for srrlall q. Thus
E"(q, & ) would reach a, maximum value at u~~- c,q
and e, would be related to the effective domain-
wall velocity. In our g:=- 1.35 ca.se the height of
the central peak decreases as (qa, )' and no new
off-center maxima are observed. For q.=- 1.4 the
conclusions Rre sornewJ1Rt less cer'tain. HRvlng

in mind our q resolution, Dq 0.25/c, as well as
the frequency resolution, 6~-0.078, we can note
that the peak width in Fig. 7 i.s considerably larger
while the top of the peak is rathex flat. These facts
indicate some possible structure which however
couM not be resolved within. our accuracy. Nev-
ertheless, it still seems plausible fx'om the an-
alogy with the lattice-dynamical model' that the
central mode might be corlnected with a, cluster
dynamics, although this dynamics does not pos-
sess R propagRtlng cbaractex'.

Finally, let us turn to a conti. nued-fraction anal-
ysis of the E"(q, a) spectra For the. exa.mples in
Figs. 6 a,nd 7 which Qo not involve a central com-
ponent, the two-pole representation as given by

Eq. (20) is generally more appropriate. We do not
repeat here the discussion presented in this con-
nection in Sec. IV A. Concentrating predominantly
on the examples incorporating the central mode,
we can state that the three-pole approximation (17)
becomes increasingly reliable as we approach 'g, .
In order to get a. quantitative understanding of the
most interesting q.=- 0 situation, we performed
three independent fitting procedures within

E", (q= 0, ~) to estimate X"„which reproduce the
best agreement with our MD BSF:

(a} First, E"(q = 0, t) curves as presented in

Fig. 5 were fitted to E", (q= 0, t),"where only the

X,". 's were taken to be unknown parameters. The
remaining 5,' and &,

" were obtained from Eqs. (10a),
(10b), (13), and (14), where for (S"), C"(q, 0}, and
C""(q, 0) the MC data were used. " The frequency
moments could as well have been deduced from the
short-time behavior

Ezz(q~f) 1 1(&2)zzfz + 1 (~4)zzf4
2 q 24 (22)

However, the straightforward application of Eq.
(22) to the evaluation of (&u")zz is not practicable at
n & 2 and could lead to ambiguous results.

To understand the behavior of ~„~» and X~ near
q„we must quote here afew results obtained via
the MC simulation. " (S") is a monotonous func-
tion of 7) for q&q, . The same is true for C'-'(q, 0)
= (S")/PA, which is exactly q independent, and
C*"(q,0). C""(q, 0) appears to be for y= 3 almost
identical to C"'(R= 0, 0) in the whole range of 7),
where more distant correlations contribute cor-
rections below 3.%. The critical behavior of 6~ is
thus, via Eq. (13), determined by C"(q, O). On the
other hand, we can show by the use of Eqs. (10b)
and (14) that in the vicinity of q, 5& is dominated
by the C"(R„„,O) term, where R„„=(1,0, 0)a,.
thus exhlblts a cuspllke dependence 5,', —&,

~

T —T„~", v denoting the correlation-length
critical exponent (v = -z in a 3-D lattice).

The VR1ue 8 for 53 obtained by the one -parameter
fit procedure are given in Table I, together with
corresponding &, and ~,. The matching of the cal-
culated E (q= 0, f) with the MD curves is not very
satisfactory since the oscillations dephase after
1.5-2 cycles. Also, the E (q=0, ~) spectra show
a general tendency to underplay the width of the
soft mode.

(b) To overcome these two difficulties we have
performed also a three-parameter fit with respect
to 5„', 5,', and X', to obta. in an E (q = 0, f) which
would achieve an overall agreement with the MD
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data. The corresponding 6,'~, ~2', and X,'~ are
presented in Table I. Note that 5,' still largely
agrees with the exact &,', whereas the &2' 's are es-
sentially lower than 62'.

(c) Finally, X3 has been determined from the
height of the spectra at-z = 0, where Eq. (17) yields

0,3

to'

0.2

X'"=- 5'/v &'F"(q = 0 &u = 0) (23) OJ

For 5,' and 5, in Eq. (23) we again insert the MC

values.
All three sets of X,' values in Ta.ble I are rea-

sonably consistent and they exhibit a common
trend, i.e. , they decrease as q, is approached
from above. The results also indicate that X, is
less critical than 6„which is essential for an ap-
proximate validity of the conventions. l critical-dy-
namics theory. " The disagreement between the
fitted X,' values and the theoretical estimations
X',™,X", " (note that XOLM= LOT" at i}= i),} is not so
large as one would expect from the crude approxi-
mations which were applied while deriving Eqs.
(18) and (19). Nevertheless, the theoretical values
reveal, besides the discussed deficiency at g» q„
an e'ssentially different trend in the critical re-
gime. Cheung' evaluated X,' within the model cou-
pling approach. Replacing in the critical regime
F"(q, t) by F (q, t) and taking into account only the
diffusive part of F""(q, f) [see Eq. (24) j, he ob-
tained a critical dependence X', ~ C ', where 'C de-
notes the specific heat. Thus, X,'

~
T —T, j'~',

which' induces a qualitatively similar behavior to
that observed in our MD simulation. However,
the approach involved many questionable approxi-
mations and the estimated values are at lea.st an
order of magnitude too large.

C. Transverse-relaxation functions

According to the theory, ' the transverse RSF
E""(q,&u) can be for small q and e written

I

).0 2.0 30
I

4.0
I

50 t J 6.0

FIG. 8.' Few lowest C""(B,t), multiplied by their sym-
metry factors in a sc lattice ZR, plotted vs tJ at q = ~.

x"," -x&"
D Xxx gP

(25)

At II= ~, Eq. (25) simplifies within the sc lattice
to

r„,= n'/(n'+ z') . (28)

For y= 3 we obtain gD= 0.9, whereas for g = 1.35
we can deduce from our MC data using Eq. (25)
&a=0.27. The g= case is thus almost entirely
of a diffusive character. $D diminishes while ap-
proaching i}, and following Eq. (25} vanishes, g~
~C i. The short-time behavior of C""(R=O, t) in

Figs. 8 and 9 can be understood with the help of
frequency moments. lt follows from Eq. (12) that

pertinent to the diffusion processes. The only de-
viations are observed at short ti.mes in the diagon-
al 8""(R=0, f} which is entirely consistent with Eq.
(24) whei e g(&u) accounts for this effect. The rel-
ative intensity of the diffusive part t'D within
F""(q, &u) can be 'calculated via the relation'

y + Xgg 2+ ID ~2%~ (24).
0.)5

Here, D~ is the diffusion constant for the energy
density, X~" and X ~" are the isothermal and the
adiabatic susceptibilities, respectively, while
g(~) is supposed to be a slowly varying function
of q and z. The first term in Eq. (24) represents
the diffusion of the transverse spin components
which should persist for all q& q, . In order to
check up on the diffusive character of the trans-
verse relaxation functions we calculated, for y = 3
and i}= ~, 1.35, 20 nonequivalent C""(R,f). Few
lowest ones, multiplied by their symmetry fac-
tors Zy, are plotted in Figs. 8 and 9. It can be
clearly seen that the functions display features

to.

ID
to'

OJO

0.05

40 tJ 50

FIG. 9. Few lowest C""(H,t), multiplied by their sym-
metry factors ZR, plotted vs tJ at p=1.35 just above q, .
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(~')""=J,C'(R„„,0)/pC""(q, 0). The value at 7)=~
can be expressed exactly, (~');""=2J', whereas
for q= 1.35 we use our MC data, (a').""=4.62J'.
These ra.ther large values indicate that the spectra
E"'(q, &u) incorporate, besides a narrow diffusive
component, also extensive wings.

To give a quantitative estimate of DE we employ
the diffusion relation

dt.

questionable. As C"(q', f) does not incorporate the
critical-slowing-down part, and furthermore small
q' values are filtered out by the factor (q VJ;,)',
the critical behavior would be determined by D~
~ C ' ~

~

T —T,
~

'~'. An approximate evaluation of
Eq. (29) for the @=1.35 case shows, however, that
it can to some extent explain the rather large val-
ue of D~, obtained from our MD data. A decrease
of D~ could be expected only in the very vicinity of

n'
6 14 A'+ J' (28)

Note that in the derivation of Eq. (28) we already
employed the 8= ~ limit. In our case Eq. (28)
gives a smaller value, D~~" = 0.16Ja',. At q= 1.35
an analysis via Eq. (27) is rather ambiguous due

to the fact that the C""(R,f) for .R& 2a, remain at
all t below the 0.00j. level and a,re dominated by
the thei"mal noise. In spite of that we are able to
deduce D~ accurately enough by comparing the
time scales of diffusion in Figs. 8 and 9. The re-
sult D~ = 0.80Ja', indicates a much faster diffusion
in the critical regime. Here, we can comment also
on Cheung's result for D~ which he obtains by ap-
plying a mode-coupling approximation to the en-
ergy-energy correlation function, '

[C'*(q', t)]'df (29)

To evaluate Eq. (29) at q=~, we insert C"(q', f)
= &E (R=O, t). Assuming also X2~, «5„we get Dx
= J'a', /3X„= 0.27Ja', which is in satisfactory agree-
ment with our MD value. Near g, the consistence
ot' Eq. (29) with our MD result appears to be more

(27)

At 7)= ~, Eq. (27) yields a well-defined value D~
=0.30/a', for t&v=1/J. r indicates the decay time
of g(t) in Eq. (24) and is approximately related to
the decay time of C""(R=0, f). We may compare
this result with the theoretical estimate at q=~,
which assumes a Gaussian decay of the energy-en-
ergy correlation function"

V. CONCLUSIONS

Using the MD simulation approach we have stu-
died the dynamics of the CIMTF on a 3-D sc lat-
tice. In the critical regime above the phase tran-
sition our longitudinal BSF reveal the existence
of the centra, l mode, in addition to the convention-
al damped soft mode. Ne do not observe any new
excitation branch in the low-frequency regime,
which could be attributed, following the analogy
with the lattice-dynamical model for the struc-
tural phase transitions, to the propagating domain
walls. A physical explanation seems to be much
heavier damping effects in the CIMTF which de-
stroy the independence of soft modes and cluster
modes. These arguments do not exclude the pos-
sibility of finding this phenomenon in other di-
mensionalities or in connection with a longer-
range J;,, which would depress the damping of the
modes.

An analysis of our longitudinal RSF via the con-
tinued-fraction expansion shows that resonant-
type spectra, are well represented by a two-pole
approximation. . On the other hand, the three-pole
representation has in these situations a tendency
either to produce some ghost central peak or to
underestimate badly the width of the spectral
lines. In the critical regime the 3-pole approxi-
mation to E"(@=0, &u) becomes increasingly re-
liable. Our MD data favor a decreasing trend of
X3 when p, is approached from the disordered
phase. Our results for the transverse functions
confirm@ their diffusive character. Lowering the
temperature we observe a decrease in the inten-
sity of the diffusive part, whereas D~ shows an
opposite trend.
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