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A class of infinite-ranged random model Hamiltonians is defined as a limiting case in which the appropriate
form of mean-field theory, order parameters and phase diagram to describe spin-glasses may be established.
It is believed that these Hamiltonians may be exactly soluble, although a complete solution is not yet
available. Thermodynamic properties of the model for Ising and XY spins are evaluated using a "many-

replica" procedure. Results of the replica theory reproduce pr'operties at and above the ordering temperature
which are also predicted by high-temperature expansions, but are in error at low temperatures. Extensive

computer simulations of infinite-ringed Ising spin-glasses are presented. They confirm the general details of
the predicted phase diagram. The errors in the replica solution are found to be small, and confined to low

temperatures. For this model, the extended mean-field theory of Thouless, Anderson, and Palmer gives

physically sensible low-temperature predictions. These are in quantitative agreement with the Monte Carlo
statics. The dynamics of the infinite-ranged Ising spin-glass are studied in a linearized mean-field theory.
Critical slowing down is predicted and found, with correlations decaying as e ~ &~' ~, )~"j r foi' T greater than T„
the spin-glass transition temperature, At and below T„spin-spin correlations are observed to decay to their
long-time limit as t

I. INTRODUCTION

In recent years considerable interest has arisen
in the possibility of the existence in suitably spati-
ally disordered systems of a new type of magnetic
order not found in pure systems. This is the so-
called spin-glass phase" in which magnetic mo-
ments are believed to be frozen into thermal equil-
ibrium orientations but with no average long-range

.order; one way of defining this statement mathe-
maticaliy is to say tha«l(Si&l&nt 0 but ((5;& (S,»,
-0 as H, —8,. —~, where ( ) refers to a. thermal
average and ( &, to ah average over the spatial
disorder (in the latter case with 8; -8& held fixed).

A number of physical examples appear to exist;
the canonical cases' i,re metallic alloys with sub-
stitutional magnetic impurities, such as CuMn or
A.uFe; other examples are found in amorphous
systems arid in compounds with inequivalent sites
randomly available to magnetic ions. A necessary
requirement seems to be a locally random com-
petition between ferromagnetic and antiferromag-
netic forces, although this competition may have
a. number of possible microscopic ori.'gins; for
example, fixed positions but random exchange,
fixed exchange interaction as a function of dis-
tance but: random positions, topological disorder
as in an amorphous system with antiferromagnetic
exchange but no possibility of a sublattice, etc.

In order to demonstrate theoretically the pos-

sible existence of a spin-glass phase Edwards
and Anderson' (EA) introduced a simple model
with. exchange disorder and were able within a
novel mean-field theory to demonstrate the ex-
istence of the phase. Their model is of a set of
classical spins S; on a periodic lattice interacting
via an exchange interaction

where the sum is over nearest-neighbor. pairs
and the J, are independently distributed wj.th the
Gaussian probability dis tribution

The disorder is quenched; that is J,&'s are chosen
randomly but then fixed for all thermodynamic
purposes. It is evident that none of the convention-
al types of order is possible. To study this prob-
lem, EA employed a novel replication procedure
with spin correlation between Qibbs-like replicas
playing the role of a spin-glass order parameter
in a generalized mean-field solution; Since that
work, extensions have been made' to include inter-
actions beyond nearest neighbors, ~' exchange
distributions offset from zero to allow for com-
petition between spin-glass and ferro (or antifer-
ro-) magnetism, ' and some quantum etfects. ~'
These studies have all employed mean-field the-
ories with the unconventional EA order parameter.
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It is well known that molecular-field theory for
a pure ferromagnet becomes exact in the thermo-
dynamic limit for a constant infinite-range ex-
change interaction provided that the interaction
is appropriately scaled with the number of spins
in the system. ' In this paper, we examine the
arialogous situation for systems which can exhibit
spin-glass and ferromagnetic behavior. The
Hamiltonians we employ are analogous to (1.1)
but the summation Z&,, &

runs over all pairs of
sites (ij) in the system and we concentrate pri-
marily, but not exclusively, on an Ising inter-
action. We show that to lead to physical but non-
trivial thermodynamic consequences a cumulant
moment of J;, (denoted (J",&),) must scale inversely
as the number of spins A. Thus, for possible
ferromagnetism we require

(J;J),= JON + O(N ) (1.3a,)

and for potential spin-glass behavior

(~ ) gaN-x ~ O(N-r) (1.3b)

The relative magnitudes of J~ and J determine
whether ferromagnetism or spin-glass ordering
occurs at low temperature. Higher cumulants
will scale as higher inverse powers of N than the
first two and thus do not affect the thermodynamic
properties of an infinite-ganged model. We shall
therefore employ a Gaussian distribution of inter-
actions without loss of generality.

The plan of the paper is as follows. In Sec. II
we employ the replication procedure' of EA to
analyze an infinite-ranged Ising spin-glass-fer-
romagnet model with a Gaussian distribution of
interactions the moments of which are as given
in (1.3a) and (1.3b). A condensed version of Sec.
II was originally presented in Ref. 5. In See. III,
we present a high- temperature series expansion
for the same model, which confirms the predic-
tions of the replication procedure for the trans-
ition from paramagnet to spin-glass or ferromag-
net with decreasing temperature. [This expansion
has been described by Thouless et al.' (TAP) for
the case of pure spin-glass ordering. ] In Sec. IV,
we investigate the corresponding classical planar
spin model using the replication method. As stated
earlier we believe the general classical I-vector
model based on an infinite-ranged version of (1.1)
with distributions scaled as in (1.3) is in principle
exactly solvable. Section V reports Monte Carlo
tests of the replica and other theories, necessary
since no real systems with the assumed interac-
tions are known. The simulations also give access
and insight into some of the microscopic phenom-
ena which are unique to spin glasses. Dynamics of
spin-glasses (assuming Ising interactions and

single)spin-flip relaxation processes) are analyzed
and then studied by Monte Carlo in Sec. V.

Inx= lim (x"—I)/n, (2.1)

with x taken as the partition function Z. For in-
tegral n, Z" may be expressed as

n

z"=IIz. ,
e=1

(2.2)

where n is a dummy label. The set n = 1, . . . , n
may be interpreted as identical replicas of the
real system. In a disordered system Z is a func-
tion of the disorder, all the replicas n having the
same disorder but not interacting in any way with
one another. Averaging the free energy over the
disorder leads, via (2.1), to an averaging of Z"
over the disorder. For the ease of integral n,
averaging Z" leads in turn to an effective inter-
action between the replicas o. and thus to an ef-
fective pure system with an interaction of higher
order than the real (impure) system. This ef-
fective system is analytically continued to small
n to give the averaged free energy using (2.1).
In this section, we'apply this replica procedure
to the infinite-ranged Ising model with Gaussian
exchange distribution.

The system we consider here is characterized
by the Hamiltonian

(2.3)

where the spin operators S,. take the values +1,
the (ij) sum is over all bonds, the J,~ are dis-

II. REPI.ICA THEORY

For purposes of calculation, it is usually con-
venient to average over any randomness in a phys-
ical system at the earliest possible stage. When
the randomness is quenched (immobile) the aver-
aging must however be carried out on. a physical
observable. In the present thermodynamic prob-
lem, we must therefore average the free energy
I' and not, for example, the partition function Z.
Normally, this is a much more awkward procedure
than that of averaging Z, a's would be appropriate
to a system with annealed disorder. Hov ver,
at the cost. of increasing the effective spin dimen-
sionality and using limiting procedures, a free-
energy average can be transformed into a partition
function average using a procedure which appears
to have been first used in statistical mechanics
by Kae' but rediscovered independently by Ed-
wards, '" Grinstein and Luther, "and Emery. " .

This. procedure is essentially the identity
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tributed according to

p( J,,) = [(2x)'/TJ] "exp
—J;,—Jo (2.4)

and H is an external field. Using (2.1) and (2.2)
the averaged free energy per spin, f(=E/A) in
the thermodynamic limit may be expressed
as

f kT }'= 2 —(S ) ' fll [ p( J)edde] rp„exp+ Q Jed/S, /kT+HQ. S /kT) —1IN~O n~O (ij) a=1 (ij) i
(2.5)

=-21'1'm iim (kr ) 'ITr, exp g QS, S/1/k"re+ 2;. 2,"S'SrJ'/2(kT)' +—QQS," —1I,
H

N~~ n~O „(ig) I (2.6)

where n, P label n dummy replicas and Tr„denotes the trace over spins in each of the n replicas. After
some rearranging we obtain

2f=-kT lim lim (nA') ' exp([ J'/4(kT)'](A'n -n'A) —(J,/2kT)AnjTr„exp ' g g S,"
N~ n~O 2kT

+
2(kT) Q (Q S)S]) + Q Q S[)—1 (2 7)

where (c.', P) refers to combinations of o( and P
with n 4P. Note that the exchange terms in the
second exponent are now in the form ]].(Z, 0&)
where 0, is a local intensive operator, which
leads to physical but nontrivial thermodynamic
consequences only if X ~A '. The physically sen-
sible scaling of J„Jis, thus,

tributions than (2.4) will, in general, give rise
to terms of sixth and higher order in (2.6), but
these will be of order Ã ' or smaller, and thus
are without thermodynamic consequences.

lt also follows from the form ](. (Z, 0&)' that a
transformation may be made to a Gaussian-aver-
aged single-site problem, using the identity

Jo = Jo/A'

J =J/A'/',

(2.8a)

(2.8b)

exp(ke')=(2 ) e'f dxexp[--,'x'+ (21)' ' *]. (2 2)

with J„Jboth intensive. More complicated dis-
Dropping terms which vanish in the thermodynamic
limit, we may rewrite (2.7) as

f
'

A 1/2 -
A 2/2

f= kT(im ii (xs)'[exp[2's /-4(kT}*] f il — dx ff — ds"e'
N~ (So n~ O

2n ( ~t) ) 2 IY

x exp -N -' x~ ' + —' y(~t') '
at (fM 8)

Z/2
—ln Tr exp —Qs' + ', /, gx'S" +—p y(ms)s"S~ 1,(2.10)

where the trace is now over n replicas at a single
site.

For large 1V and integral n ~ 2 the integrations
in (2.10) can be performed by the method of steep-
est descents, the integral being dominated by the
region of maximum integrand. At the maximum
all the x are equal as also are all the y' 8'; we
denote their values by xn, y„. A convenient para-
metrization permitting analytic continuation to
e-0 then follows from the substitution

2g y'„"s s'--,'y„g s"
(e8) O

(2.11)

q„=y„(kT/J),

m„=x„(kT/J )'/'

the integral in (2.10) for n ~ 2 becomes

(2.12a.)

(2.12b)

together with the use of identity (2.9). With the
further substitution
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I

(qe(k„) '1'exp rq(n—(I I'„/22T)+ (f/2kT)'( (n —1)q'„+ 2 q„)

—ln dg 27I 1/2exp -~ z2 2cosh:"„" 1+ 0 N (2.13)

where .„=(J,m— „+Zq„'/'z+I1)/kT, and m„, q„satisfy the coupled equations

f dx(27)') '/' exp(--,'x ')(2 cosh:-„)"tanh:"„

f dz(2))) '/' exp(--,'z')(2 cosh:-„)" (2.14)

f dg(2))) '/'(kT/J)(s/q„'/')(2 cosh:"„)"tanh:"„1+ n —lq„= f dz(2w) '/'(2 cosh:-„)"
(2.15)

A„ is an [-,'n(n+ 1)j && [&n(n+ 1)] matrix whose ele-
ments are simple functions of m and q of order
unity; it is given explicitly in Appendix A. Con-
tinuing these equations to small n and substituting
(2.13) into (2.10) we. find

/=kT((/, '/22T) —[P(1—2)'/4(kT)']

—(2 )
' 'f re*exp(--', e') 1n(2 enn:. )},

(2.16)

with

m= dz 27t' '/'exp --,'z' tanh=, (2.17)

q= dz 27) '/'exp -2z' tanh:-.

Solutions of (2.17) and (2.18) may be obtained
by expansion near the points T=G and T= T,. Be-
fore exhibiting the solutions and their consequenc-
es for the thermodynamics let us note the physical
significance of m and q. As shown in Appendix B,

magnetic state occurs at a temperature equal to
the larger of J,/k, J/k, the ordered phase being
ferromagnetic if J0&J, spin-glass if the converse
holds. A finite field H removes sharp phase trans-
itions by allowing m and q to be nonzero at all
temperatures.

For lo/d» 1 the effect of exchange fluctuations
are weak and q-m~, in accord with the physical
interpretation of q as the mean-square frozen
moment per site. Although q(T=0) =1, m(0) is
diminished by weak fluctuations as

m(O) -1—(2/m)'"(Z/Z, ) exp( J',/u'), (2.21)

and vanishes continuously at the spin-glass phase
' boundary as

m(0) -(1«)'"(d/~, )'[(2/~)'"-did 1'" (2 22)

Values of m(T) and q'/'(T) obtained by numerical
solution of (2.17) and (2.18) are exhibited in Fig.
2 for four choices of d, /rJ. We note that the effect
of fluctuations is strongest at low temperatures,
causing a decrease in magnetization as T 0, and

m = ((S,))~,

q = ((S;)')~.

(2.19)

(2.2o)

1.50

kT/J

1.00

PARA

A nonzero q thus indicates magnetic order, while
nonzero m (in addition to q) indicates that the
order is ferromagnetic. When m = 0 but qc0 w' e
call the state a spin-glass. A uniform infinite
range model does not permit periodic antiferro-
magnetic orderings although these are possible
in related short-range interaction models.

The solution of (2.17) and (2.18) leads for H =0
to the phase diagram shown in Fig. 1. All the
phase transition lines are second order. The
phase transition from paramagnetic to ordered

0.50
SPIN

Gl ASS

0.0
~ 1.00

I

~0.50 0.0
I

0.50

J0/J

1,00 2.00

FIG. 1. Magnetic phase diagram of the random infinite-
ranged Ising model defined by Eqs. (2.3) and (2.4), using
the natural units (2.8). A spin-glass phase is obtained
at low temperatures for all negative J 0, even though the
corresponding uniform system has no phase transition.
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FIG. 2. Frozen moment, q ~ (T) (solid line), and magnetization, m(T) (dotted line), for four magnetic systems
described by (3), with parameters chosen to exhaust the possibilities of the phase diagram in Pig. 1. T is scaled to
the transition temperature from the paramagnetic phase to whichever ordered phase forms first. In (a), go= 0, and
ypg=0 for all T. In {b), J 0

—-1.15 J, and the ferromagnetic phase gives way to a spin-glass phase at lower T. In (c),
go-—1.5f, and only a ferromagnetic phase is found, with q1~2(T) significantly greater than m (T) for all T «T . Case
(d) is a pure ferromagnet (J =0), with q (T)=m(T).

a line of second-order transitions from ferromag-
net to spin-glass with decreasing temperature for
Z,/Z between 1 and (-,'v)'~'.

The frozen moment '~q'( ),Tas is shown in Fig.
2, is found from (2.17) and (2.18) to be proportion
al to (T, —T)'~' just below T„ tends to unity as

and is always greater than m(T) at the same
temperature (for Zw0). The low. temperature be-
havior of q(T) is predicted to be linear

q(T) -1 —(2/x)' '(kT/Z) exp(- J,'m'/2Z') . (2.23)

This contrasts with the behavior of m(T) in a. uni-
form Ising magnet, for which all temperature
derlvRtlves vRnlsh Rt T =0 since excltatlons f

lorn

the ferromagnetic ground state require a finite
energy.

The st Rnd Rrd t her IDodynRmlc functlons follow
straightforwardly. For example, the internal
energy may be obtained via the Gibbs-Helmholtz
relation, yielding

U/N =-[2'Zo m +4 (1 —q')/2kT+Hmj. (2.24)

The low-temperature limit of U/N is extracted

by substituting (2.23) into (2.24). In particular,

U(0)/N = —1-', 8, m (0)'+&m (0)

+Z(2/m)'~' exp[-P ~(0)'Pj] . (2 25)
I

Higher-order terms in (2.23) were calculated
in order to obtain analytic expressions for the
heat capacity C a.t low temperature. Numerical
results are displayed in Fig. 3. The following
features should be noted. C is zero at 7.'=0, as
required by general. thermodynamic considera-
tions. At the ordering temperature, T„C has a
singularity. If the transition is to a spin-glass,
C displays a cusp [Fig. 3(a)]; if the ordered phase
is ferromagnetic, there is a discontinuity [Figs.
3(b)-3(d)]. In both cases, a finite contribution
to C(T) is found above T,:

C/N=J'/2kT', T&T, . (2.26)

This latter behavior should be contrasted with
the situation for a pure infinite-ranged ferromag-
net (or a finite-ranged ferromagnet treated in
mean-field theory) for which C vanishes above the



IXFI51TE-RANGED MODELS OF SPIN-GLASSES

C(T)

/
I

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/

)f(T) = [1—q(T)]/faT -J,[I q(—T)]]

X( )/(I J ~(o)) (2.28}

S/& = [J,m'-/2 T+ ( J'/4 kT')(1 —q)(1+3q) Hm/—T]

) (2 )"*) ase*p(-! ')( (2 cosh=-).
,
2.29)

where X'" is the result for J,=0. Above the or-
dering temperature, where q = 0, this is just a
Curie-Weiss law. In-. the spin-glass phase, fluc-
tuations decrease y'0' and y, giving rise to a cusp.
Positive J0 enhances y at all, temperatures.

Vhthin this formula, tion the entropy is given by

0,0 1.00

FIO. 3. Specific heat as a function of T (normalized
to the relevant ordering temperatv. re), for the four cases
treated in Fig, 2; (a) JO=O, solid line; g)) J 0--1.154
short dashed liDe" (c) g =g 5J long short dashed linee,
(d) j=0, long-dashed line.

In the ferron1agnetic phase, fluctuations still
give rise to a. linea. r term in C, the amplitude of
which decreases to zero as m(0} tends to I with
increasing ratio J,/J:

y27 2 1/2

(—,'., &' —(2&) ' exp[-(J, m/J)']]

&«exp[-k(J„m/J )'"]. (2.2Vb)

i)()hen J',/J' lies between 1.0 and w'~'= 1.25 the
transition from spin-glass to ferromagnet with
increasing temperature is indicated by a second
discontinuity in C(T). This case is shown in Fig.
3(b).

The susceptibility y at general H may be ob-
tained directly from (2.15) and has been illus-
trated for various cases within the spin-glass
parameter range in Fig. 3 of Ref. 5. In the limit
H -0 the susceptibility may be simply expressed
in terms of q as

ordering temperature,
In the spin-glass phase the leadipg contribution

to the specific heat at, low temperatures is given
by

C/N- {(),'T/J)(2/x)'~'[ —,'., 7r2 —(27) '], (m = 0) .

(2.2'la)

At high temperatures this yieMs physical results,
which we shall see are in accord with series ex-
pansions, but it leads to unacceptable con. sequenc-
es as T-0; for example if H=O, m=0, the T-O
limit of (2.28) is -0/2'17. This Incorrect result ts
the most obvious indication that the procedure
used above of continuing integral a~2 results to
small contlnUOUs g ls not correct ln Rll details Rs

T tends to zero. Other evidence lies in the com-
puter simulations reported below. On the other
hand, the computer simulations verify- many of
the qualitative features below the ordering tem-
perature. Both the Simulations and partial sum-
mations of high-temperature series indicate that
the results for temperatures greater than the
ordering temperature are correct, as also is the
prediction of that temperature.

Another apparent difficulty is that f of (2.18)
cannot be considered a Landau variational free-
energy function. Although it has an extremum at.

(q, m) as given by (2.17), (2.18), this extremum is
not R minimum ln the spin-glRss phRse but R max-
in1um. " This particular difficulty does not invali-
date the solution since f is not such a variational
functloQ but rather is deflQed only Rt the physlcRl
values of q, zn. In particular it is evident from
series expansions (see Sec. III) that the spurious
minimum of fat q=0 found, s-ay, for 8=0, Jo&J
does not represent a stable solution.

Finally, by way of further support for aspects
of the above RQRlysls, lt Should be Qoted that slnc6
the prelininary report of this work the spherical
model analogue of (2.3), (2.4), and (2.8) has been
solved at all temperatures by Kosterlitz et al."
They use two methods of analysis; the n-0 pro-
cedure, and a direct method, not generalizable
to the Ising model, which employs the exa,ct eigen-
value spectrum of R GRusslRQ random lnflnlte DIR-

trix. They find the same results by both proce-
dures, provided care is taken in the order of cer-
tRln n1ultiple lntegrRtlons. The Spherical Dlodel
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also gives a negative entropy at T =-0 but this is
normal for classical continuum models. They do
however also find that f is maximized for the spin-
glass q in the n-0 li.mit. 'These results give us
extra confidence in the general nature of the n-0
procedure.

Z ——Tr II exp( I&((S(S()-
(&5)

(3 1)

=--2'" lI cosh', , Tr2" Il (1+S(S(t„),
( &/) (&/)

III. HIGH-TEMPERATURE SERIES

In our preliminary letter it was noted that the
specific heat above t;he ordering temperature as
derived above .is identical with that given by high-
teMperature series expansions- ln fact) however„
as noted by TAP, " the high-temperature series
for the free energy for the remodel given by (2.3)
and ('2.4) can be summed completely at least to
ordex' + ln F without using any 8 ~ 0 tricks glvlQg
(i; the same result" as above for kT&Z, and J and
(ii) divergences at s. temperature equal. to 'the

la.;"ger of J,/k and J/k. This demonstrates. that the
transition temperatures from paramagnetic to
ordered ('tate Rre correctly given ln Sec II at
leRst vj?lth respect; to transitions of. gx'eatex' thRQ

first order. IQ this section, we discuss these
serre' for the Harniltonian oi (2 3) withe =0

U&ir~g' standard manipulations, the partition func-
. tion lTYay be expressed Rs

Diagrammatically the argument of the ln in the
last. term of (3.5) is the su'm of closed loop dia. -
grams with Rn even number of bonds at each ver-
tex and no repeated bonds. Repeated bonds can
occur once the logarithm is expanded. Taking
the average against P(J(() given 'by (2.4) with the
scalings (2.8), one retains to order N ' in the last
term of (3.5) only single and double polygons. '"

One finds

kT-ln—2 —J /4 kT+ (lkT/2N) ln(1 J,/k—T')

-(kT/2N) lnI» —(J/kT)'] +J,/2 N+ 0(N '), -

f= -kT ln-2 —J(/4k T, (3.7)

in agreement with (2.16) and (ii) the series di-
verges at k T = max(Z„J ), signalling the breakdown
of-the paramagnetic phase at the same tempera-
tures as obtained in Sec. II. Below this tempera-
ture, the paramagnetic phase is unstable. When
the single-bond polygon series is divergent, one
expects a transition to a phase in which ((S())i is
nonzero, while a divergence of the double-bond
polygon series is consistent with nonvanishing

((S,)')„. These observations are in accord with
the relevant part of the pha, se diagram (Fig. 1)
predicted by the repl. ica theory.

IV. OTHER INFINITE-RANGED SPIN-GLASS MODELS

where the ln strictly signifies the first (N —1)
terms of the expansion of the loga. rithm. From
the (3.6) we can note the following: (i) for kT&max
(J„,J') the free energy is given to leading order by

A'„rrr J,~,/kT „

fager
" t4%nh Kf j

(3.3)

(3.4)

Equation (2.3) can be general. ized to give a,

Hamiltonian for general classical m-vector spin-
glasses in the form

The RverRged free energy 18 therefore given by
X= —Q J((8(' 8( —H'Q 8(, IS~ =1,

(&5)
(4.1)

f—-$g7." lnP d I((P (J(() ln cosh'((

II «((f'(J(()

&& ln 2-~Tr 1+S,S,t,„
(&/)

with P(J(() a continuous di..tribution as before.
We believe that this model is in principle solvable
for arbitrary nz Rnd give below a solution for the
planar model (I =2), We shall. use the n-0 limit-
lQg procedure.

With the transformations as employed for the
Ising problem the free energy for an arbitrary
w-vector model may be expressed as
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For the planar model this can be put into a form
suitable for steepest descents analysis using

cos(q), —q), ) cos(q)B» —q)B)

» (S(nB, S(nB Tn(B, T(nB) (4 2)

where 8, is a two-dimensional unit vector charac-
terized by an angle

= V» + q/» ~ (4.5)

For n =,8, T ~ reduces to U ~, a unit vector or-
iented at an angle 2q)». With this notation, f may
be rewritten

q/» = q'» —q/», (4 4)

and T, ' is a similar unit vector with the angle

2 J2 2 2
f= —kT lim lim (nN) ' Tr„exp &,/2kT g p~; +

8 k
-B p' g~» +

E~~ n~0 i

+ ), Z U",. — »n' nn'n
&(n&),

(n)n' — ¹n') —(I (4 6)

= —nT )' )' (nn) '
i

xp(J N/. BnT)'fll(')n'/Rn) d'n' nn ll (n''/2 ) nn n)2

S-~~ n~0 I ag

&&exp -N —,
' s '+-,' Q ' + ' —,

' s '+-,'
0( Dig

-lnTrexp J, av. 'i' s' .+ J 2ITu. U

+ (Z/2kT) g'(s' 0"+t" T Bi
' eB

(4 '1)

The trace is taken over spins at a single site only.
This integral can be performed by steepest de-
scents as was done for the Isi.ng model in Sec. II.

The general steepest descents treatment is com-
plicated. We therefore make the physical Ansatz
that for small enough J0 there exists a spin-glass
extremum with s' =u = t"B = 0 and with all the is B

i

equal. The angle of s ~ in its reference plane is

arbitrary. We set it to zero for convenience. An-
ticipating this identification of the order parameter
in the lim„, we define

q„=q" = is"
i
2kT/Z

at the extremum. The trace in (4.V) may now be
expressed as

d (dr J — JTr exp J 2kT}'q„'cos y —y = —

i

—exp- 2& x --- 2q„r exp -nq ——-

(4.10)

where the x integration is two dimensional and
leads to

r d~ exp(- ,' r') [I,(&~/kT )(-,' q„)'/—']"'
2g

I„(X)= (dq)/2»») cos(nq))e" ~"
0

(4.12)

x expt-nq„(Z/2 kT)'], (4.11)
is a modified. Bessel function of nth order.

Applying the extremal condition to (4.7) and tak-
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lng the llD1~ 0 %'e obtain

q =1 —(»P)(2/q)"

=0.7C.

-0.72—

i,S[~(," q)'~-'/»j

This yields a spin-glass ordering temperat~e
T, = J'/2k, as c:ompared with i/k for the Ising case
and//Sk found for the Heisenberg system by Ed-
wards and Anderson. We speculate that for.- an m-
vector classical model there will be a second-or-
der spin-glass transition at Z/mk. Below the or-
dering temperature, q increases as

q =-', I+ o(P), (4.14)

where t = (T T)/T . At —low temperature, q ap-
proaches unity linearly in T:

q = 1 —v'~'(kT/J) + O(T'). (4.1

The free encl I"y ls given by

f= (2'/8 kT)(-l q)'

rA exp —,x lni, Jx, q kT, 4.16

I I i

0.005 0.01 0.015 0.02 0.025 0.03

1/N

FIG. 4. Ground-state energies found for finite sam-
ples with interactions coupling all pairs of spins, dis-
tributed as in (1.2), with zero mean. For each size,
N the number of samples studied was: 40 spins (200
cases); 80 (200); 200 (60); 400 (40); and 800 (20). The
arrow indicates the ground-state energy predicted in
(5.1) for an infinite sample.

and the i.nternal eriergy by

U= —(8'/4 k T)(l —q').

This leads to a specific heat which tends to a con-
stant —,'k per spin, at T=O, a consequence of-the

classical nature of the system. It has a cusp of
the usual sort at T, and decreases as J'/4k. T'
above T .

The TAP analysis' is confined to the case Z, = 0,
and differs significantly from the present work
only for T & 0.5 T~. %e compare Monte Carlo re-
sults with the predictions of the two theories,
emphasizing the low-temperature results in Figs.
7 11o

In order to obtain predictions for the low-tem-

The infinite-ranged interactions that make it
possible to demonstrate the existence of a spin-
glass transition in the model Hamiltonian (1.1) do

not occur in nature. In order to test the predic-
tions of the present replica methods or the extend-
ed mean-field theory of TAP for the low-tempera-
ture phase, the necessary experiments were per-
formed by computer simulation. Data obtained in
samples of up to 800 spins are reported and com-
pared with theory in this section. Since space and
time constraints limited the sample size N to a
relatively small number of spine (N ~ 800), some
attention is given to determining the dependence of
the results on ¹

Since the reylica method predicts an unphysical
(slightly negative) entropy in the limit T-0, we
have made a fairly extensive study of the ground-
state properties of the infinite-ranged Ising spin-
glass as a. function of Z, and compar'e these with
the other predictions of the theory in Fig. 4-6,

U(0)/N J

-1.20—

-1.30
0.0

L

0.50
I

2.00 2.50

FIG. 5. Ground-state energies p(0)/NJ, for 500-
spin samples, as a function of J'0. Each point repre-
sents an average over 20 cases. The solid line (heavier
in the spin-glass phase) is the predicted result (2.25).
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1.00 0.80

0.80—
m(0)/N

0.60— 0.60

0.40—

0.20— 0.40

0.0
0.0

I

0.50
I I

1.00 1.50
'J0

2.00

0.20
FIG. 6. Zero-temperature magnetization for 500-spin

samples in an applied field h = 0.01' . Data points repre-
sent average and rms deviations found in 20 cases at
each value of J p.

0.0

perature thermodynamics, TAP characterize the
low-energy excitations of a spin-glass by a distri-
bution of single-spin molecular fields P(h) neglect-
ing possible excitations which might require the
simultaneous reversal of more than one spin. They
argue that such a distribution is only stable against
further spin rearrangements if p(h) increases from
zero no faster than linearly in h at small fields.
I

A related argument has beeri used to show that
P(0) =0 for random exchange interactions which de-
cay as 1/R~; see Ref. 16.j. This implies that
q(T) =1 -n(kT/J)2, instead of the linear T de-

0.0

-0.20
0.0

I I I I I I

0.25 0.50 0.75 1.00 1.25 1.50 1.75

kT/J

pendence given by (2.23). TAP suggest that o.

should be the value which gives the maximum
density of low-energy excitations consistent with
their mean-field equations, o. = 2(ln2)'~' = 1.665.

FIG. 8. Entropy as a function of temperature, obtained
by integrating the Monte Carlo data of Fig. 7 (data
points), and as predicted by the replica theory (solid
line). The Monte Carlo results remain positive at all
temperatures, and are in good agreement with the TAP
prediction (dashed line) at low temperatures.

-0,20—
0.60

0.50

C(T)

-0.40
0.40

0.30

-0.60 0.20

0, 10

-0.80
0.0 0.50 1.00

kT/J

1.50 . 2.00

FIG. 7. Internal energy as a function of kT for four
samples, 500 spins each. Error bars on the points at
kT = 0, 0.5J, and. l.OJ indicate typical sample-to-sam-
ple variations. The solid line gives the prediction of the
replica theory.

0.0
0.50 1.500.0 1.00

Ii T/J

FIG. 9. C(T), averaged over four samples of 500
spins each, with J'p=0 0. The solid line gives the re-
plica theory result, which is linear in T as T 0. The
dashed line indicates the TAP prediction.
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1.20 The simplest property to test is the internal en-
ergy. Specializing (2.25) to the spin-glass phase
gives

Tx(T)

0,80

0.40

0.0
0.0 0.50 1.00

kT/7

FIG. 10. &X I', &'), averaged over four samples of 500
spins each, with jo——0.0. The solid and dashed lines
give the replica theory and 1AP predictions, respec-
tively.

1,00

0.80

q(T)

0.60

0,40

o

I

0.50
0.0 I

0.0 0./5 1.00

kT/J

FIG. 11. Edwards-Anderson order parameter q (7'j,
obtained from the data of Fig. 10. Averages were taken
over 400 time steps per spin at each temperature. Solid
and dashed lines are replica theory and TAP results.

1;25 1.500.'25

Once 0 18 determined predictions al e readily
obtained for y(T) -o. (AT/J )', S(T)- (-,'a')kT'/J',
and C (T ) (-,'n')(k T-/J )'.

Some of the glassy features found in actual spin-
glasses, ' e.g. , the existence of many metastable
energy minima and unusual slom relaxation phen-
omena, also occur in the computer simulations
and can be subjected to "microscopic" examina-
tion. %e report preliminary results of such a
study below.

We wish to check two features of (5.1)—first, that
U{0)N scales as J (i.e., as JN ' '), a'nd second
the value of the coefficient. One can construct
upper bounds to U(0) which show that U(0)/JN
must be extensive. Consider the following "dy-
namic programming"" construction of an approxi-
mate ground state: The spins are arbitrarily
numbered 1-N. The alignment of spin 1 is ar-
bitrary. The orientation of spin 2 is chosen to
make J,,S,S,&0 so that the contribution U,
=-J»S,S, to the internal energy is negative. The
orientation of spin 3 is then chosen to make U,
=——(J»S, +J„S,)S,(0, and so forth. The internal
energy of the approximate ground state constructed
in this way 18 obtained by summing all the U„, and
gives an upper bound to the actual U(0). The av-
erage value of U2 is -J(2/v)' ', and that of U„
is -J(2n/v)' '. The expectation value of the sum
of all contributions gives the bound

(5.2)

which ls —,
' of the replica precllctlon

A fairly elaborate procedure was followed in the
calculations to ensure accurate estimates of U(0)
for finite samples. The heuristic precautions des-
cribed below were taken because the computational
effort necessary to prove that no better ground
state exists increases rapidly with increas-
ing ¹ Attempts to improve upon the bound (5.2)
by constructing the m lowest-energy configurations
of n+1 spins, and so forth, proved ineffective.
For /= 800, keeping track of the lowest 100 states
as each spin was added gave no significant im-
provement over (5.2). Only for samples with few-
er than 50 spins were apparently convergent esti-
mates obtained, and this required keeping track of
2000 or more intermediate configurations. In the
language of computational complexity theory, "
finding the ground state of a spin-glass has fea-
tures in common with the "NP-complete" prob-
lems, which always require exp(N) effort to solve
in the worst case. What is surprising is that all
samples prove to be "worst cases."

For each sample, many random starting ar-
rangements of spins were constructed, and for
each starting configuration a deterministic pro-
cedure, analogous to the method of steepest des-
cents, was followed to reach a minimum energy.
At each step a list of partial exchange energies
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P~, Z;, S,S, is constructed. The spin with the high-
est energy is flipped (if that energy is positive),
and the list corrected. If no spin can gain energy
by flipping, pairs of spins are searched to find a
pair which will lower the energy of the system if
they flip simulta. neously. If such a pa, ir is found

they are flipped and the search over single spins
continues. If not, selected triples and quartets of
spins with small individual exchange fields are al-
so searched. Such searches were carried out for
60-80 starting configurations in each Monte Carlo
sample, keeping the best ground state encounter-
ed. Small further improvements in the ground-
state energy were obtained by slightly disordering
the best ground states ("warming" them to a tem-
perature 2 or 3 times T» for a few time steps per
spin) and repeating the descent procedure.

The data obtained, plotted in Fig. 4, confirm
that the ground-state energy scales as J, the
central feature of the Edwards-Anderson picture.
However, the coefficient given in (5.1) lies below
the values actually found in samples of 40-800
spins, and the discrepancy appears to be outside
the range of possible error. Fig. 4 suggests that
the calculated U(0)/JN, extrapolated to infinite
sa, mple size, must lie somewhere between -0.75
and -0.77. This agrees with the -0.755 ~0.01
which TAP report from their Monte Carlo calcu-
lations. The replica theory predicts too low a
ground-state energy [since the negative entropy
implies dF(T)/dT & 0 as T -0j, but the magnitude
of the discrepancy is only 3%% -5%.

Various portions of the descent algorithm were
used on four 500-spin samples with J, =O to de-
termine their relative efficacy. The lowest en-
ergies obtained using only single spin flips and

80 random starting configurations of spins ranged
from -0.71 to -0.74. Searching also for spin pairs
which could flip narrowed this range to -0.72 to
-0.74 by lowering the higher-energy states. The
further improvement from considering three and
four-spin processes was of order 0.001. The
warmup process made a more significant contri-
bution. The samples were warmed briefly to ST»,
then relaxed into the ground state, then warmed
to 1.5 T» and cooled, and finally warmed to 0.75T»
and cooled. After this process, all four were
found to have minimum energies between -0.75
and -0.76.

The discrepancy between Monte Carlo results for
U(0) and the prediction (2.25) decreases with in-
creasing J„as is seen in Fig. 5. Although (2.25)
predicts that U(0) is independent of J, in the spin-
glass phase, since q(0) and m(0) are, the calcula-
tions show U(0) decreasing slightly as the ferro-
magnetic phase is approached. There is no evi-
dence for a discontinuous change 'in the derivative

of U(0) with respect to Z, at the phase boundary in
agreement with (2.25). (There does appear to be
a discontinuous change in slope in the U(0) data"
obtained on finite-dimensional spin-glasses with
the bonds restricted to take the values +J,.)

More direct evidence of the spin-glass ferro-
magnet phase boundary is shown in Fig. 6, which
compares the observed ground-state magnetiza-
tion (in a, small external field) with the predictions
of (2.21) and (2.22). Very large fluctuations in the
magnetization, both from sample to sample and
between different low-energy states of a given
sample, were observed for 1.0&J & 1..4. The pre-
dicted phase boundary occurs at w' '=1.25, the
concentration which in fact shows the largest scat-
ter inm(0). , The fluctuations seen in Fig. 5 have
a parallel in the recent observation by Vannimenus
and Toulouse" that {fortwo-dimensional Ising mod-
els with interactions of random sign but uniform
magnitude) the energy cost of forming a domain
wall around a region of reversed spins becomes
very small close to the spin-glass ferromagnet
phase boundary. For J ~ 1.5, agreement between
theory and experiment in Fig. 6 appears excellent.

VI. STATICS FOR I' $0

To study the properties of an infinite-ranged
spin-glass at finite temperatures, we have per-
formed Monte Carlo simulations on four samples
of 500 spins, each with J, =O.O, taking data at
temperatures from zero to 2T,. These are des-
cribed below and compared with the predictions
of Sec. II. Within the replica treatment, thermo-
dynamic properties are independent of J, in the
spin-glass phase, since J, enters = only when

multiplied by rn(T), which is zero, so study of
this one set of samples would seem sufficient to
characterize the phase. However, the ground-
state energies plotted in Fig. 5 show that some
properties may be modified sufficiently close to
the ferromagnetic phase boundary.

The calculations were performed by starting
each system in its lowest known energy state,
and letting each sample evolve for 400 time steps
per spin at an ascending series of temperatures.
The data plotted in Figs. 6-10 were obtained by
averaging over the last 280 time steps at each
temperature. The results were compared with
averages over larger and smaller time intervals
to ensure that equilibrium was reached. The er-
ror bars on selected data points in Figs. 6-10
indicate the variation from sample to sample
(rms deviation). Some Monte Carlo runs with

larger or smaller samples, or much longer av-
eraging times were also performed as checks.
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Tx(T)=N '(Qs,.sq), (5.3)

is plotted in Pig. 10. It is found to be =1 above T,
and lies below the prediction of (2.28) when T «T,.
The disagreement would be more striking if g(T)
were plotted. Equation (2.28) gives y(T) -(2/v)'~'
as T -0, while the Monte Carlo results are consis-
tent with y(0) = 0.

The differences between simulations and the rep-
lica theory in both Figs. 9 and 10 can be summar-
ized by saying that the system appears to be more
ordered than the theory would predict. Figure 11,
which shows results for q(T) as directly calculated
using (2.20) from the simulations, confirms this
trend. We see that q(T) lies consistently above
the value obtained from (2.18). In both Figs. 10
and 11, the TAP expressions give a good account

The internal energy U(T) obtained in this way is
compared with the prediction of (2.18) and (2.24)
in Fig. 7. The discrepancy seen at T =0 in Figs.
5 and 6 persists up to roughly 0.5 T~. The Monte
Carlo observations at T~ and above agree with the
theory to within numerical uncertainty. The en-
tropy has been obtained by integrating T 'dU-(T) up
to 2T„using the data in Fig. 7, and matching to
the high-temperature limit, S-kln2-J' /4kT', of
(2.29). Figure 8 compares the computed entropy
with the result of substituting the solution to (2.18)
into (2.29), and with the TAP low-temperature
prediction.

S(T,)=k(ln2--,') as predicted. The magnetic en-
tropy extracted at temperatures above T~ in the
present model is therefore less than is observed
experimentally, ' "or in calculations on finite
dimensional spin-glass models. ' " Below = 0.5
T~, agreement between Monte Carlo and the re-
plica theory becomes poor. The entropy predicted
by (2.29) goes negative at T =0.25 T~, while the
computed S(T) appears to go to zero with zero
slope. The TAP T' dependence and coefficient
gives a good account of the Monte Carlo entropy
for T& 0.3T,.

This behavior for S(T) is consistent with a spec-
ific heat which increases from zero no faster than
as T'. In Pig. 9 are plotted the Monte Carlo re-
sults for C(T), obtained by averaging energy fluc-
tuations over the final 280 time steps out of 400 at
each temperature. The results agree fairly closely
with the theory (2.26) above T, but lie consistently
below the prediction of (2.27) for T «T,. Figure
9 suggests that at low temperatures, C(T) tends
to zero with zero slope and in qualitative agree-
ment with TAP, but the data are too crude to dis-
tinguish C ~ T' from an activated form, C ~ exp(
-A/T), such as is found in conventional Ising fer-
romagnets. Similarly, Ty(T), obtained by averag-
ing

0.80—

0.60—

p(I1)

0.40—

0.20—

0.0
0.0 0.50 1.00 1.50 2.00

FIG. 12. Distribution of partial exchange energies
pl'k) as defined in (5.4), averaged over 20 samples of
800 spins each, with J 0=0.0. The dashed line indicates
the MHF prediction (5.5).

P(h) = (2/v)'~'Zq'~' exp(-h'/2Z'q), (5 5)

arguing that (2.17) and (2.18) should be interpreted
as self-consistent equations of the MHF type, e.g. ,

( ) = I a)(() ) im) (()) ). (s())

We plot (5.5) in Fig. 12 as a dashed line, and ob-

of the low temperature data.
In the course of the ground-state and Monte Carlo

calculations, the one-spin excitation energies,

h,. = g~„S,.S, , (5.4)

are available and can be used to test TAP's con-
clusions about p(h) as well as the assumptions of
mean-random-field (MBF) treatments of the Mar-
shall- Klein- Brout"~" type, which attempt to con-
struct a self-consistent P(h). The distribution P(h)
found in the ground states of twenty 800-spin sam-
ples, the largest size studied, is plotted in Fig.
12. As TAP predict, P(h) is linear in h for small
k. The small positive intercept appears to be an
artifact of the finite sample size, and decreases
slowly with increasing Ã.

Mean-random-field theories predict a P(h) which
is qualitatively unlike the results in Fig. 12. The
major difficulty is that such theories when applied
to Ising systems invariably give p(0) 40. For the
infinite-ranged model, Klein has proposed" that
the appropriate MHF is
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serve that it bears no special resemblance to the
observed distribution. The disagreement is most
obvious at small h. Within the MRF approximation
one can calculate the internal energy from p(k) by

U(T) = ——
Jt dhP(h)h tanh(gh) . (5.7)

However, this predicts a ground state energy U(0)/
JN= -. (2m) '~', which is half of the replica theory
result, and far from the actual value observed in
the simulations (Fig. 4). The identification of the
factor exp(-x') in (2.17) as a Gaussian MRF is
therefore inconsistent with the thermodynamics of
(2.16).

Some of the microscopic details accessible dur-
ing a computer simulation do not have direct ex-
perimental consequences but are nonetheless use-
ful guides to one's intuition. One possibility we
explored during the siniu]. ations was determining
the number of distinct ground states of some sam-
ples and searching for the activation pathways
which connect them. Two ground states were
deemed distinct if their energies differed by more
than 0.0001 J. Using the deterministic descent
procedure desci. ibed above we first counted the
number of distinct local minima found by starting
from many randomly generated initial spin config-
urations in samples with N= 20, 30, 40, and 100
spine (20 samples each). The number of ground
states reached was: (N=20) 2-6; (N= 30) 8.25
+3.5; (N=40) 25.0+7.5; and (N=100) 415+19.
For the smaller sample sizes, 400 starting con-
figurations were used. For the N= 100 samples,
after 2000 trials only one or two new local minima
were being encountered every 50 trials. There-
fore, while in principle the quoted numbers repre-
sent lower' bounds to the actual number of energy
minima, we do not expect large errors.

One might think of the phase space of a spin-
glass as cori.sisting of large valleys separated by
high activation energies, each valley containing
many local minima. The large activation barriers
between valleys represent the reversal of large
clusters of spins, which will either require high
energy or have low entropy (since many spin flips
must be coordinated), and thus is an extremely
rare eveht in thermal equilibrium. The local min-
ima are separated by reversals of one or a few
spins, which can involve relatively low activation
energies. To test this view we started each sam-
ple in its lowest-energy state and allowed it to
evolve by the usual Monte Carlo dynamics at a con-
stant temperature T while sampling with the de-
scent algorithm for local minima. After each de-
scent, time evolution was resumed from the con-
figuration at temperature T from which the descent
was taken. For T s 2T, this process yields many
fewer distinct minima than did sampling from ran-

domly generated configurations.
To estimate the number of valleys as a function

of N, we divide the average number of minima
foun'd by searching at T = T into the total number
of minima found for that sample. The results are:
(N= 20) =1; (N= 30) = 2.2; (N= 40) = 3.5; and (N
= 100) = 13.0. Both the total number of ground
states and the number of valleys appear to increase
as some sinall power of N, rather than as ~exp(N),
consistent with our finding in Fig. 8 that S(0)-0.
Since the passes connecting two valleys are appar-
ently inaccessible at T and lower temperatures,
this picture of the low-temperature states of a
spin-glass provides a possible starting point for
thinking about remanence and other "glassy" ex-
perimental phenomena.

VII. DYNAMICS FOR T $0

Study of the dynamical properties of spin-glass
models of. with infinite-ranged interactions shows
additional differences between the spin-glass and
conventional ferromagnets. In particular, the be-
havior of the systems in their low-temperature
phases proves to be rather different. The natural
dynamics to study for an feint, model is the relax
ation process in which spins flip independently but
remain in equilibrium with a heat bath at temper-
ature T. Following Glauber, '4 we take the prob-
ability for the spin S, to flip to be given by

zv(S( -—Sq) = —,
' (1 —S( tanhgh, .), (5.8)

where the unit of time, or the rate at which spin
flips are attempted, is set equal to unity, and the
change in energy upon flipping the spin 8,. is given
as h, S,', with h( a molecular field. The form (5.8)
satisfies detailed balance, and thus assures that
the correct equilibrium distribution of microstates
is attained. Suzuki and Kubo, "in a classic paper,
have developed a mean-field theory of relaxation
processes governed by (5.8). Their theory has re-
cently been extended to treat the random molecular
fields found in the infinite-ranged Ising spin-glass
with J, =. 0 by Kinzel and Fischer. " To shorten the
derivations, we shall follow these two papers
closely, although our treatment differs from that
of Kinzel and Fischer in an essential step.

Averaging a, master equation based on (5.8), Suz-
uki and Kubo find that the time dependence of the
order parameter in the usual ferromagnetic case
is governed by

(S,(t)) = —(S,(t)) + (tanhsh, (t)) . (5.9)

A mean-field solution to (5.9). is obtained" by as-
suming that unique values of (S(t)) and h(t) exist
and are proportional
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gh(t) —= )((S(t)}. (5.10)
Then, expanding the tanh in powers of its argu-
meDt, oDe obtains

dt
—) 2(f) = (1 )()m(f) —(-,'-)(')m'(f), (5.11)

valid for temperatures close to or above T',. In-
'teglatl'oil of (5.11) ls straightforward. Fol T& T
the result is

{5.12)

decaying exponentially to zero as e "~". From
(5.10) alld (5.12)) we ldellilfy )(= T3/T. As )( 1)
the solution exhibits critical slowing-down, chang-
ing over to a power lair form,

Subtracting the effect of {5.18) from (S„) in (h/}
leRves

(5.19)

This expression for (/2/} was rediscovered by TAP,
who derive it by several independent arguments.
They found that without the second term it is im-
possible to calculate even static properties of a
spin-glass correctly in the infinite-ranged limit. "

Substituting (5.19) into the kinetic equation (5.15)
and keeping only the linear term in the expansion
of tanh, 3A& leads to

(5.20)
~{f,T,) = (l. +-,"/}-'/' (5.13)

e (j [1 (T)2] -2(X-)) t)-)/2 (5.14)

For the spin correlations of interest in the pres-
ent case, Kinzel and Fischer" have used similar
arguments to obtain the kinetic equation:

d
(S,S/(t)—}= (S,S /(t)} + -(S, tanhgh/(t)}, (5.15)

where S,. here denotes S&(t=0), and

dt (S;(f)S,(f)}= -2(S;(f)S,(f)}+(S&(f) tanhgI& (f))

with the critical exponent —,'. Below T„exponential
relaxatlon RgRln occursy this time to R nonzero
equilibrium limit, m(T):

g Qg q(x& )„qo)) (5.22)

the time decay of correlations may be expressed
in terms of the independent relaxation frequencies

Thus, if we expand

by (2.8b), the left hand side of (5.20) is independent
of j. Equation (5.20) can now be solved''(by ex-
panding the solution in terms of the eigenvectors
of the random matrix whose coefficients are J,.~.
If

+ (8/(t) tanhgh, (f)}. (5.ie) (S,.S,(f)) =- I((-' g a, (f)q&2&q/&'&, (5.23)

In the steady state, (5.16) determines the equilib-
rium cori e1Rtlons

(S,S/}, =(S,tanhgh/}„. (5,17) a„{t)= a, (0) exp f- (1+g2O' —)()t]. {5.24)

(5S„)=-)(„' '(S ) =gJ (S ), (5.18)

In a, spin-glass, it will not be valid to treat
(S&S/(f)} or ()))/(f)} as spatially uniform) since in
fact 0& will fluctuate about zero. Also, the expres-
sion for (h/} commonly employed when treating
static properties in the mean-field approximation,
(h/} = Q, J»S,}, gives incorrect results when one
attempts to calculate susceptibilities, as Brout and
Thomas' have pointed out. The remedy was orig-
inally noted by Qnsager. " One must remove from
(I)/} the field of the extra moment induced on neigh-
boring sites by the presence of the moment (S/}.
This is

The al(0) are readily calculated by expanding the.
equilibrium correlations as in (5.23) and substi-
tuting into (5.17). The result is

al(0) = (1+g24 ' —)() '. (5.25)

Note that if the J» were not random but constant,
as in the infinite ranged ferromagnet, the largest
eigenvalue of the matrix would be J„and all other
eigenvalues would be zero. Thus, only one mode
contributes to the decay of correlations in a ferro-
magnet in the mean-field limit. In contrast, there
ls R coDtlnuous SPectrum of A, fol" the sPln-glassy
and its density takes the simple form

where we have used a simplified expression for
X„'&', valid only above the ordering temperature.

+28 J'

X 'g = (2vg'J') ' dX[{2Pj)2 )(']'/'.
-28 J

(5.26)



INFINI FE-RANGED MODELS OF SPIN-GLASSES

Introducing x=—X/2PZ and combining (5.23)-(5.26),
we obtain the linearized result, valid for 7& T,:

(S&S,(t)) = exp[—(1 61—)'f]

(2/7f)(1 x )~~2/-281(1- x)t
X

(1-BZ)'+ 2'�(I—x)
(5.27)

&-X"'(T- T,)/F(T- T,), (5.29)

In the high-temperature limit, the integral in
(5.26) can be evaluated by neglecting terms of or-'

der g in the denominator, with the result

(S,.S,(f)) = e &' '"-&e-""f,-(26f)/sf

-exp[ —(1 —,6J') t]/[2ir / (Rt) / ] (5 26)

This result, like the ferromagnetic solution (5.12),
exhibits critical slowing down as 8 ' decreases to
J = kT, . Unlike the ferromagnetic system, the
spin-glass has a correlation decay rate proportion-
al to [(T—T,)/T]', so the effects of the critical
slowing-down should be observable over a wider
range of temperatures in the spin-glass than in the
ferrornagnet.

In studies of dynamical critical phenomena, "it
is conventional to interpret the characteristic time
& for order parameter relaxation as the ratio
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of the order parameter susceptibility (here, x'")
to a friction coefficient I". In a mean-field theory,
one expects that fluctuations in the order para-
meter will cause x to diverge as (T —T,) '. For
spin-glasses, Fisch and Harris" have confirmed
that this value of the susceptibility exponent is
reached at sufficiently high dimensionality, by an-
alysis of series expansions of X'". This implies
that l -0 as I' - I', for spin-glasses„which in
most mean-field theories, I' remains finite at
T, . This unusual behavior is consistent, how-
ever, with the general picture of the spin-glass
transition temperature T, as the point at which
blocking effects (TAP) or "frustration"" sud-
denly set in.

Monte Carlo calculations of (S,S&(t)), using the
Glauber dynamics (5.6) were carried out at several
temperatures, both above and below T,. The re-
sults above T, are compared with the predictions
of the Iinearized theory (5.27) in Figs. 13(a)-13(c).
The integral in (5.27) was performed numerically
to obtain the plotted curves. Each sample studied
in the Monte Carlo simulations had 800 spins, and
two samples were considered in each of Figs.
13(a)-13(c). Before beginning the collection of
data on (S&S&(t)), 100-200 time steps per spin were
taken to allow the samples to come to equilibrium
at the desired temperature. In each. of the three
cases, the observed decay of correlations was
slower than is predicted by the linearized theory, ,

0.0
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Time steps per spin

I080 T
I'

(S;S;(t))
I.

o.6o —,'

1:
I

',
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Time steps per spirt

but the error seen at the highest temperature, 7.'

=2.0T, [Fig. 13(a)] is fairly smalL Agreement is
still fair at T = 1.5T, [Fig. 13(b)], but begins to be-
come poor at T= 1.25T, [Fig. 13(c)].

Evaluating (5.27) at T, where 6j= 1, gives26

FIG. 13. Dashed lines indicate the decay of spin
correlations predicted by the linearized molecular-
field theory in (5.27). The closely spaced dots are
Monte Carlo data for two samples with 800 spins. Cases
shown are (a) T=2.0T~, (b) T=1.5 T~, and (c) T=l.25T, .
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&S; S;(f)) =(1 — )ql( +1«)"'+q., (5.30)

gives an excellent fit to the data. The heavy cir-
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&s;s~(t)&
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0.0 I

10 20 30 40 50
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FIG. 14. Monte Carlo data on the time dependence
of spin correlations are plotted as in Fig. l3 for three
temperatures: (top to bottom) T=1.0T~, 0.8T~, and
0.6T, . Four samples of 800 spins each were used at
each temperature. The circles indicate the phenomen-
ological expression (5.30), embodying a I; ~ decay.

(S&S,(t).) -f '~', the same asymptotic dependence
as seen in the mean-field result (5.13). The sim-
ilarity is probably coincidental, since (5.27) leaves
out the nonlinear restoring term in (5.11) which is
the source of the f limiting behavior ln (5 ~ 13).
It is difficult to add such nonlinear terms to the
treatment leading up to (5.27) since these will mix
the modes which have been treated as independent.
Mg. and Rudnick'~ have recently studied spin-glass
dynamics in a nonlinear mean-field approximation.
Their model, a scalar Landau-Gipzberg-Wilson
Hamiltonian with a random molecular field, may
be applicable to the present simulations. They
find (S,S,(t)).- f '~' for long times, not only at T,
'but also at all lower temperatures. However, their
calculation gives r -(T T,) ' above T„ in contrast
to (5.28).

Our Monte Carlo results at and below T, @re con-
sistent with Ma add Budnick's prediction. At tem-
peratures below T„(S,S,(t)) does not decay ex-
ponentially as it would in a ferromagnet [see (5.14)].
Data for T= T„O.BT„and 0.6T, are shown in Fig.
14. A plot of [(S,.S,(t)) ' —1] against f, using the
T= T, data of Fig. 14, gyve a straight line for the
first 25 time steps per spin. At longer times, the
statistical fluctuations due to the finite number of
spine swamped any further decrease in (S,.S&(t)).
Thus, the data taken at T, can be described as
=(1+nt) "~' where n is a. phenomenological constant
which turns out to be not too different from the —,

'
obtained in (5.13).

Below T„an extension of (5.13),

cles in Fig. 14 indicate fits of the form (5.30) using
q0=0, 9.22, and 0.49 for T= T„O.BT„and 0.6T„
respectively, and values of n between 1.0 and 0.85.
These values of q0 were chosen to agree with the
long-time-averaged values of the EA order para-
meter expected from theory [see (2.18)] and as ob-
served and shown in Fig. 11.

No choice of parameters i.n an expression of the
form (5.14) gives an adequate fit to the data T= 0.8
or 0.6T,. If the known long-time limiting values
of q(T) are used and the initial slope is taken as a
free parameter, (5.14) reaches its limiting value
too rapidly. If we force agreement with the data
for 25-50 time steps per spin, (5.14) gives too
small an initial rate of decay.

Binder' has described a similar slow decay of
the EA order parameter in Monte Carlo sb~dies in
two- and three-dimensional Ising models with ran-
dom exchange interactions governed by a Gaussian
distribution, but he did not assign a functional
form to the decay. Since the EA order parameter
does not relax rapidly to its equilibrium value at
temper atures «T, as the magnetization, governed
by (5.14), would for a ferromagnet, Binder has
questioned whether some other order parameter
might be constructed with more conventional be-
havior.

We do not think this likely. In the infinite-ranged
spin-glasses, we have demonstrated that q is the
order parameter which uniquely characterizes the
spin-glass phase. The Monte Carlo simulations
show that even in this mean-field limit, q(f) exhib-
its nonexponential relaxation at all T ~ T,. The
linearized analysis of dynamics suggests that the
existence of a continuous spectrum of relaxation
rates extending to zero is sufficient to introduce
power law decays of correlations. Thus, the un-
usual time dependence of the EA order parameter
seems to be a signature of the spin-glass state.

VIII. CONCLUSIONS

In this paper we have investigated the properties
of spin-glass models with infinite-ranged random
exchange interactions, both analytically and by
means of computer simulation experiments. The
discussion has been presented mainly, but not ex-.
clusively, in terms of Ising spins. Consideration
ha. s been given to four theoretical approaches: (i)
a replication procedure' ' in which the random
system is mapped at the outset into a limiting case
of a fictitious pure system with extra spin labels
and higher-order interactions, (ii) high-tempera-
ture series expansion, ' (iii) a mean-field theory
allowing for a different mean field on each site and
deferring all averaging to the end of the calcula-
tion, ' and (iv) a MHF approximation. "" Only
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the first three of these approaches claim any
degree of rigor, the fourth being heuristic.

In this paper we give a detailed derivation of the
first approach, and briefly review the others. The
second and third theories are discussed at length
in Ref. 8. Computer experiments presented are
of three kinds: (a) investigation of the structure
of the low-energy states of the system, (b) Monte
Carlo simulation of the equilibrium thermody-
namics, and (c) Monte Carlo simulation of dy-
namics.

The replica procedure has been solved subject
only to making an interchange of limits (the therm-
odynamic limit, N- ~, and a limit on the number
of replicas, n-0'). The procedure predicts a
phase diagram with two types of magnetically
ordered phases, ferromagnet and spin-glass. The
spin-glass to paramagnet transition manifests it-
self by cusps in the zero-field susceptibility
(which xs rounded in the presence of an external
field) and in the specific heat. At all but the low-
est temperatures, the predicted thermodynamic
functions are physical but at low temperatures the
procedure yields a finite negative entropy.

The high-temperature series expansion can be
summed exactly in the thermodynamic limit and
predicts phase transitions from paramagnet to
ordered phase at the same temperatures as found

by the replica method. In the paramagnetic phase,
analysis of the high-temperature series in zero
magnetic field confirms all the corresponding
equilibrium thermodynamic predictions of the
replica procedure. The third theoretical ap-
proach' (TAP) has been studied in detail only for

. a particular case of the general model which can
be treated by the replica procedure, namely the
case with mean exchange and external field equal
to zero. Approximate solutions within this ap-
proach, believed reliable in the thermodynamic
limit for temperatures above and close to the spin-
glass transition temperature T, are in complete
accord with the replica results above T, and agree
to the leading order in (T, —T) immediately below
the transition. At low temperatures, however,
the TAP procedure when coupled with an ansatz
for the solution' (based upon limited computer
simulations and physical intuition} leads to results
somewhat different from those of the replica
method. In particular, it does not exhibit the un-
physical negative entropy.

Monte Carlo simulations were performed on
samples of up to 800 spins with infinite-ranged
interactions to test the predictions of the various
theories and to provide quasimicroscopic informa-
tion about the low-temperature phase of a spin-
glass. The ground-state energy predicted by the
replica method lies slightly lower than the Monte

Carlo results, the difference exceeding the proba-
ble error in the simulations. The discrepancy
between the predicted internal energy and Monte
Ca.rlo observations becomes insignificant at tem-
peratures greater than 0.5T„and at all tempera-
tures when the mea. n value of the exchange inter-
actions was sufficiently great for the system to
remain ferromagnetic at the lowest temperatures.

The entropy was determined by integrating the
internal energy found by simulation. To within the
accuracy of simulations S(T =0) =0. The absolute
difference between the replica theory prediction
for S(T) and observation becomes small for T
~ 0.5T,. The TAP expression for the limiting be-
havior of S(T) at low temperatures gives good
agreement with the Monte Carlo results. Simu-
lations of the specific heat and the susceptibility
are also in good agreement with the TAP ansatz.

An attempt was made to quantify the degeneracy
of the spin-glass ground state by counting the num-
ber of distinct local energy minima. The minima
were, found to occur in groups, which may be
thought of as large "valleys" in phase space. Both
the number of minima and the number of valleys
appears to increase with N, the number of spins,
as some small power of ¹ They therefore do not
give rise to a finite entropy at T =0.

The distribution of exchange fields in the spin-
glass ground state was obtained in the course of
the simulations and compared with the distribution
assumed in the mean-random-field approximation.
The two distributions prove to be very different.

Linearized random kinetic equations for the de-
cay of spin correlations above T, are derived and
solved. They give good agreement with Monte
Carlo studies of spin relaxation for T ~ 1.5T,. At
and below T, the decay of (S,S;(t}}to its long time

, limit, the Edwards-Anderson order parameter q
is slower than exponentia. l. It can be accurately
described by a t '~' law.
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APPENDIX A

The matrix A of E(t. (2.13) is conveniently
expressed in the basis (x",y" ), tbe general mem-
ber of which we shall denote by z', where v runs
from 1 to 2n(n+1). The )1v matrix element of
A„is &'g((z])/Bz'()z" where-&g({z} ) is the ex-
ponent of the exponential integrand of (2.10). The
derivatives are evaluated with all x", y set equal
to x„, y„, and expressed in terms of rn„, q„using
(2.12). Thus,

8'a
~ ~

J0
8g8x' ' uT

— —
~ (-;)' (-')-:

8 g J
sy(a())sy(y()) (ns)()'s yT: ( (cx8)(1()))

J '
&& .

— (f„(5~ +5~g +58 +58(, )kT
-(1-6.,)(t -6.,)(t -6,„)(t-6 )

x — S~S~S~ + —q
'

system characterized by the effective Hamiltonian
-defined by

p(-l((c„'")-=f ll rLI„ I'(z;;)exp(-()P)() .

This result is true for any distribution P( J,1), and
not restricted to the infinite-ranged models dis-
cussed in this paper.

The thermal average of the spin at any site i
is given by

(S, ) = [TrS, exp(-pK)]/[Tr exp(- pK)]. (aS)

g (S;) = p
' —ln Tr exp -pK+ phd S;8k h=0

8= p —llm g
8@ .-0

x Tr„exp -p+K +phd S; -1
0', f, e „h=0

(ag )

Averaging over J;, we therefore find
t

5
y +58~ rn„

-(1 —6., —() „)(S"S'Sr)„+m„q„),
(AS)

Jdz(2s} '~' exp(- —,'z')tanh'=cosh" =

j(fz(2v) '~'exp{--,' z')cosh":-
(A4)

and

}1 j exp (-2z ) ta)lil ~ cosll

(s s's"s')„=-
, 1g 2 exp{-2z ) cosil Fr

~2m)'~'
(A6)

((S,.)), = (f((p)-' lim )1-'—
8h

x Tr„exp -pK„''+phd S;
i
—1

] - h=09

where the effective Hamiltonian was given in (2.6):

x„"=-g(z s."s,":z P s;s;s8s'z y2)T),
(&j) n a8

-eels",
APPENDIX 8

In this Appendix, we demonstrate explicitly that

m =((s,))„

e =((s;)'&~,

(2.19)

(2.20)

((S,.)), = tim Tr„(nA)-' g S;. exp( pK „«)
$, n

= lim (S ",. )„Trexp(-PK„"'}=m .

)B: tlm ( S~()„Tr„exp(-PK),u ), (at)

q -=lim(s," Ss) rT„ex(p- pK„'" ;}nep,

where m and q are the averages introduced in Sec.
H, and defined by

Similarly,

Q (8,)'=() '- -) r„„Te p( (I(K +3C")-"8

V V

,) a„„Ps;s;),

where ( )„denotes an average in the n-replica where p, , v label distinct replicas,
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=lim @fS~),„Tr,„exp(-HR'„") {«P)

Averaging over J,.&
and explicitly performing the

h, „differentiation we obtain

= lim q,„Tr,„exp(-gK,'„")

= ling q„Tr„exp(-PX„'") =q .
n~O

(B12)
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