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Hamiltonians of Landau-Ginxburg-Wilson type are constructed for order parameters which are bases for
certain high-dimensional irreducible or physically irreducible representations in A-15 structure. These are all

the representations with wave vectors 1, X, and R and encompass cases of dimension 1, 2, 3, 4, and 6. A
renormalization-group analysis was performed on each new distinct Hamiltonian using the Wilson-Fisher "e
expansion" method to order r, in order to determine fixed points and stability, and critical exponents. For
representations of R wave-vector symmetry, only the two-dimensional R(1) has a stable fixed point and may
produce a second-order phase transition; for all other R wave vector representations, fluctuations prevent
second-order transition. No X point representation gives a second-order transition. Representations at I
which are permitted to be second order by "Landau theory" remain so in this analysis. Generally, if the
dimension of the representation is & 4 the transition is not second order, Few experimental results are
available for comparison: the known cases of Nb, Sn and Nb, Si agree with theory. A brief discussion is given

of some possible reasons for absence of stable fixed points, i,e., a failure of the "e expansion" in integral

powers; letting ~ —+1. A suggestion is made that a "hidden variable" may be present and may produce
multicriticality owing to b~ing accidentally set at a critical value in some samples.

I. INTRODUCE TION

This paper reports the results of an investiga-
tion into the structural phase transition and rela-
ted cr].tlcaj phenomena ln systems known as jL-15
compounds. '" This class of compounds comprises
a series of materials nf composition A3B where A.

is typically a transition metal (Nb, V, etc. ) and 8
is an element of the IVth column (Sn, Si, Ge, . . . ,
etc.). The space group of the "A-15" compounds
is 0„' -Pn3m. Among the reasons for considerable
interest in this class of compounds is the occur-
rence of relatively high-temperature superconduc-
tivity in various members of this class. '

A structural instability or phase transition is ob-
served in a large number of compounds. At, a tem-
perature T, the transition proceeds by trans-
formation from space group 0'„ to another lower-
symmetry group. In the cases where the lower-
symmetry structure space group is known, the
transition is to a tetragonal symmetry group.
Associated with this structural transition are a
variety of elastic and electronic anomalies (soft-
ening of elastic coefficient, temperature-depen-
dent magnetic susceptibility, etc.).

Since the discovery of the high-temperature
superconductivity in these materials in 1954, and
the discovery by Batterman and Barrett of the
phase transition, ' much work has been devoted to
understanding the origin and interconnection of
these phenomena. The phase transition has been
ascribed by various authors to Jahn-Teller ef-
fect, ' soft optical modes, 4 a "hidden" electronic
order parameter, ' charge-density waves, ' cou-
pled order parameters, ' defects, ' to name some

recent proposals.
In a previous paper, ' we reported the results of

an investigation of possible lower-symmetry
groups which could arise by second-order transi-
tion from the O'„—I'm3n group. That paper used
the Landau thermodynamic theory of second-order
phase transitions" and did not propose any
physical identification of the order parameters.
It utilized the possible symmetry of the order
parameters taking them as bases for a sin-
gle, physically irreducible representation of the
group 0& -Peg 3n. Possible lower-symmetry
phases were identified, which were compatible
with second-order transition using allowable irre-
ducible representations. It is known that such an
analysis based on the Landau mean-field theory
omits fluctuations of the order parameter and so
can be considered a "small-fluctuation" limit of
a more exact theory. "

The present paper continues our investigation
of the structural phase transitions in A.-15 sys-
tems. Here we use the modern renormalization-
group methods pioneered by Kadanoff, ~ Wilson, "
Fisher, "and others" to examine phase transi-
tions driven by order parameters of high symme-
try in these systems; the fluctuations are now in-
cluded in the theory. We shall use the Wilson-
Fisher "e expansion" method': we work to order

Since the method has been reviewed in many
places" and applied in detail recently to some
magnetic systems bj Mukamel, Krinsky, an/
Bak, "we shall only give a sketch of our approach
here.

The first step of the analysis is construction of
the Landau-Ginzburg-Wilson (LGW) Hamiltonian.
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Let the set of order parameters (fields) be denoted
(g„'j, n = 1, . . . , n where @~a))-D~ and the D~ is a
physically irreducible representation of the sym-
metry group G(=0'„-Pm3n). The JLJQ are bases
for g~. Since we shall restrict attention to one
physically irreducible representation D~ at a
time, we suppress index j in what follows. %e
constr'uct all the linearly independent quartic
(fourth-degree) invariants from the (gg: denote
these as f, ((gj), 0=1, . . . , m Denote the spa-
tial gradient of g as Vp~. The Hamiltonian is
then

d V uI II, .
A=l

The quantities (r, a„u„.. . , u ) are parameters
which are assumed to be analytic functions of the
thermodynamic variables (T, P, . . . ). By defini-
tion, each of the I, is an absolute invariant under
action of G. That is if g@G

The partition function g for such a system is'ob-
tained by performing the path integral

S.ge. (4)

Below we shall give the Hamiltonian, a,nd renor-
malization-group analyses including search for
fixed points and examination of stability for allow-
able order parameters belonging to physically ir-
reducible representations labeled *R(q), q=1,
. . . , 4; *X(s), s= 1, . . . , 4; 'I"(t), t=1', . . . , 5',
ln the space group 0=0„'.

Order parameters belonging to the 8 point are of
interest since ~R(4) is a six-dimensional irreduc-
ible representation —giving a six-component order
parameter. This representation has also recently
been utilized in an electronic model for properties
of r4-15 compounds. R(2) *R(3) 1S a physically
irreducible four-dimensional representation (di-
rect sum of two complex-conjugate irreducible
representations each of dimension 2). *R(1) is
two dimensional. Of interest is that at A, ~A =A;
only a single wave vector occurs in the star, so
the above-mentioned are simultaneously irreduc-
ible ray representations of the factor (point)
group 0'„/T = O„and of the full space group 0'„.

Representations at *Xhave been used by

Gor'kov, " for an electronic model of A-15 prop-
erties, and at I'have been used by I.abbd Friedel. s

Of direct relevance to the present work is the
current interest in analyses of critical behavior
of systems described by order parameters of di-
mension n ~ 4. This was greatly stimulated by
work of Mukamel et al. ,"Aharony, and others,
with which we shall make some contact.

II, HAMILTOMAN FOR POINTS A,X,I

The first step in the construction of the LG%
Hamiltonian for order parameters which are bas-
es for space-group irreducible representations
with wave vectors B, X, and I" is to determine
the number of independent "group invariant" poly-
nomia, ls which arise for each degree. The order
parameters are taken here to span aphysically irre-
ducible representation. of the space group so there
exists a single bilinear Hermitian invariant form:
the multiplicity is one. Because we are concerned
with second-order phase transitions, we exclude
order parameters for which a third-degree in-
variant exists.

To obtain the multiplicity of fourth- and higher-
degree invariants, we have calculated the Molien
generating function for each of the irreducible re-
presentations we use. Elsewhere, "we presented
the Molien function for all irreducible representa-
tions going with 8, X, and I" wave vectors: inspec-
tion of this function gives the number C~, =m.

To obtain the actual invariants we use a projec-
tion operator. The particular structure of the
invariants, but not the multiplicity of distinct
ones, depends upon the specific form chosen for
the representation. %e used the Kovalev genera-
ting matrices in our work, which fixes the
"gauge"; all the details needed for complete speci-
fication of the images of the irreducible (or phys-
ically irreducible) representations were given in
a previous publication. "

%e remark that in the present work we limit
ourselves to Q-invariant Hamiltonians up to and
including only polynomials of fourth degree (quad-
rilinear real form in the order parameters); this
is conventional in most of the current work using
"e-expansion" methods. Thus, the structure of
the Hamiltonians with which we are concerned is
always that of Eq. (1). In what follows here, we
present the results of determination of the struc-
ture and number (m) of quartic invariants for ir-
reducible representations with wave vectors
8, X, and I".

~R(j) = R(j) representations

Recall the space group is O~ -Pnisn. For wave
vector R = (w/a, v/a, v/a), one finds the translation
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gABLE I. InvariRDt qual tlc polynoInials for 8-point
K'ePr eSentatioDS.

TABLE II. Invariant quartic polynomials for X-point
repre8entations.

Hepre mentation InvarIRnt quartIC polynoInlR1

('+ 0'

&~&2+ &34-26&~&3&4

('~(I 4+ 4~43+ 2vjl~|t'344

(}~+02+ 43+ 4~+ 2@~43+ II:~4~)

(4I2 —4&)4~44+ (4& —44)4~43

g 54+7';)

g (04+ P;)

» 2p+»2p+»27~2

$2(2+ qgq2+ $2/2

N";+7';)0;7; PP ~—)
0jk)

X(l} given iD th'ks table Rnd reInalnl. ng X(j)» j=2» 3»
4 See text.

(jj4) means cyclic permutation of (123).

p 0;v;4,»;
f'&j

group of R to be the entire (primitive) Bravais
cubic group; thus, the. star of .R comprises only
the vectox' A. The little point group of 8 is then
Pm3n/T = m3n= 0„, the full octahedral point group.
The allowable physically irreducible ray repre- ~

sentations for this case are denoted B(1),8'(2)
R(2)@&(3),R(4) by Miller and Lovea'; dimen-

81ons of these ax'6 2, 4 =2+2„and 6. The four-
dimensional one is the direct sum of complex
conjugate ix reducible x epx esentations. Note-
worthy is the six-dimensional irreducible repxe-
sentation R(4); it is the highest (single group}
locQl degenex'acy pex'mitted ln any of the 230 cx'ys-
tallographic space groups.

In Table I, we present a listing of the fourth-
degree invariant polynomial8 for each of these
representations: basis functions (PAL always re-
fer to the indicated representation D only.

A. X(I)= X(j) representatIons

For wave vector X, =(w/a, 0, 0), the little point
group is G(X,)/T= D,„. The star consists of the
three wave vectors ~X-=]X„X„X,j which involve
cyclic permutation of x, y, and z. Allowable irre-
ducible ray representations of the little group D~„
axe all two dimensional. Hence, the space-group
irreducible representations, which are induced
from the irreducible representations of G(X,) to
the full group are six dimensional. These four

irreducible representations are denoted X(j),
j=l 2 3 4-

We can observe now that as matrix groups, X(1)
and X(2) are '"quasiequivalent. " (we first learned
of this terminology from L. Michel). That is, a
Similarity transforIHation by a fixed matrix will
transform X(1) into X(2) and vice versa. Techni-
cally this is an outer automorphism since X(1)
and X(2) are inequivalent irreducible representa-
tion of OI, . |c)2)uaslequlvalence has the obVlous Con-
sequence that the Molien functions are identical.
In Table II quartic invariants are given: there are
five 8uch lineal ly independent ones.

Likewise X(3) and X(4).are quasiequivalent; and
in fact, also quasiequivalent to R(4). In Table I,
the six linearly independent qu3x'tic invaxiants of
each ls glveQ.

We note that representations X(1) and X(2) (pre-
sent notation) were used by Gor'kov' in his the-
ox'y of the properties of A-15 coIHpounds.

B. ~I"(j)= I'(I) representations

At wave vector I' =(0,0, 0), the little point group
is again (as at A) Pm3s/T= 0„. Now the irreduc-
ible representations needed are the vector repre-
sentations of 0„: there are ten of them: j=1+,
. . . , 5+. These representations have been used

ln ealllex' work, ln which a Jahn- Tellex' IHecha-
nlsIH was exaIHlned» 8oft phonons were px'o-
posed, ' and a I andau thermodynamic theory of
the cubic-tetragonal phase was considered.

As mentioned earlier, we shall only carry out
the analyses for order parametexs belonging to
lx'x"educible representations which satisfy the
Landau (stability) criterion. In case of I; these
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Bepresentation Invariant quartic polynomial

TABLE III. Invariant quartic polynomials for I'-
point representations.

and b' = 1+ c lnb; (2w)'K„ is the surface area of
a (d- I)-dimensional unit sphere.

Since the last six equations in (5) do not con-
tain r, the fixed point may be evaluated by solv-
ing these equations with g', =g, After we intro-
duce new variables x, , i =1, . . . , 6,

W 1+ 02)2

g) 2+ |t) 2+ y 2)2

q4+y4+q4

x( =K~uglt, i = 1, . . . , 6,

we obtain a set of six quadratic equations:

(7)

~For the remaining I'(j) see text.

exclude all irreducible representations except
the following "active" ones (using the notation of
Miller and Love"):

I 1-;F2~; I"3-; r4-; r5~.

x, =36x', +x,'+x', +x', +2x'„

x, = 8x2+24x, x2+4x3x, +4x~x, + x'„

x, = 8x', +24x,x, + x,x, + 4X4, + —,x'„

x~ —8X4+ 24xyx4+ 4x, x, + 4x,x5 + 2 x6 p

g5 =10x, +24xix, +2x X3+2X3x~+ x~x + 2X6,

(8)

The quasiequivalent representations are I'1—
and I'2+; I'4- and I'5+. Thus, in Table III, quar-
tic invariants are given for the three +0& quasi-
equivalent irreducible representations. Note
that only I'4- (F5+) has two linearly independent
quartic invariants; the others have only one.

x, = x,(x, +Bx, +4x, + 4x, + Bx,).
These equations possess some apparent symmetry
(e.g. , x, and x, are equivalent; x„x„and x, are
equivalent at x, =0, etc.).

We find 24 real solutions of Eq. (8) which are
tabulated in Table IV. However, all of these solu-

III. RENORMALIZATION GROUP EQUATION

AND FIXED POINTS

u,' =b'[u, --,'(16ua, +48u, u, +Bu,u,

+ Bu u, + u', )K Inb l + O(&') i

u' = b' [u ——,'(16u4+ 48u, u~ + Bu,u,

+ Bu,u, +u', )K, lnb]+ 0(&'),

(5)

u,' = b'[ u, ——,'(20us + 48u, u, + 4u, u,

+4u, u, +4u, u, +ue)K, lnb]+O(&') .

u6 = b up[ 1 2(2u8 + 16—u2 + Bus

+ Bu~ + 16u, )K~ ln b] + O(e ).

We begin with the six-dimensional, quasiequiv-
alent representations R(4},X(8), X(4). For these
representations, the e-expansion gives renormal-
ization-group (IIG) equations, which to order e,
are:

r ' = b'[r + 2 (6u, + u, +u, +u, + 2u, )A (r)] +O(e'),

u( = b [u| —k(72u| + 2u2 + 2ug + 2u4 + 4u5)

,Kl bn] +(O~',}

u,' = b' [u, ——,'(16u', + 48u, u, +Bu,u,

+ Bu4u, + 2u', )K,lnb]+ O(&'),

Fixed point no. xi x2 x3 x4

0 0 0 0 0 0

5, 6, 7

8, 9, 10

13

15,16, 17

18,19, 20

1
36

44

54

72

1

40.

I
56

5

216
7

360
3

136
1

54
1

44

1
68

1
108
1
72

88

0 0 0 0 0

0 0 0

0 0 0

1

22

18
1

12
1

20
1

28
1
36

60
1

68

1
18
1

22

1
17
1
18
1
20

3
44

0 0 0 0

0 0 0 0
1
28

36
1

20

3
68

1
36

44

1
34

36

30

1
44

1
28

1
36

1
60

1
68

1
36

1
44

34
1

36

30
1

44

1
28

36

60

1
68

1
36'1

-44

34 .

1
36
1

30

1
44

0

1
17
1
8

1
15

1
11

TABLE IV. Fixed points for the representations P(4),
X(j)s j=1. ~ ~ ~ ~ 4.

In Eq.(5),

A(r) = (k'+r) ' d'k (6)

These are obtained by cyclic permutation of x2, x3,
X4 ~

"Solutions x6-—0 agree with Mukamel's type-I anti-
ferromagnets with magnetization orthogonal to the wave
vector (Hef. 18).
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TABLE V. Fixed points for the representation P'(2)
of the group OI3.

TABLE VE. Fixed points for the representations E 4-
and E 5+ of the group g&3.

Fixed point no. Fixed point no.

4 %~1-1 13'

0

24

2P (1+2 X)

24

2()(l —
2 X)

0 0

0
1

0

(] y2)i/2

~The appearance of this line of fixed points is dis-
cussed in Hef. 24.

tions correspond to unstable fixed points. There-
fore, we conclude t at a second-order transition
driven by A(4), X(3), X(4) order parameters, is
not permitted.

Next we consider the quasiequivalent, six-di-
mensional representations X(l) and X(2). The
quartic part of the Hamiltonian for these repre-
sentations is given in Table G. After a simple
"gauge" transformation

4, -(I/~2)(4 +0 ),
=1~2~ 3

P;-(I/~2)(A -6)
it can be seen that parameter space of this case
is the same as a hypersurface of the previous
case with u, =0. Some of the previous solutions,
which lie on this surface might turn out, in princi-
ple, to have only one unstable direction perpen-
dicular to the surface. Such fixed points would
become stable on the surface. However, this
does not happen in our case, so that u, =0
fixed points are still unstable: there cannot be a.

second-order phase transition driven by an order
parameter of symmetry X(1) and X(2).

Next, we consider four- dimensional repr esenta-
tion ft' (2) whose quartic part of the Hamiltonian
is given in TaMe I. After introducing new vari-
ables x,. defined as in Eq. (7) with i=1, . . . , 4,
we obtain the fixed-point equations as:

x, = &»', + 2x2+4x', +2«,xi+ ax, x, -4x,x„
x, = 10x', +2x', +4x', +24x,x, +ax,x, -4x,x„

2 3 (la)x, =x, +x, +40x, +2x4,

x~ =8x,x~+Bx2x4+16x,x4.

Vfe find real solutions of these equations,
given in Table V. All of these solutions corre-
spond to unstable fixed points and we conclude
that order parameters of symmetry ff'(2) cannot
drive a second-order phase transition.

Three-dimensional quas iequivalent representa-
tions I'4- and F5+ give quartic portion of the
Hamiltonians as in Table IG. This type of LG%
Hamiltonian has been analyzed by Aharony'o and

others. A change of variables as in Eq. (7) gives
fixed points of Table VL To order e only fixed
point No. 3 is stable giving critical exponent (to
order e at e = 1)

Two-dimensional representation ft(1) reduces
also to the case discussed by Wilson and Fisher. "
The fixed points obtained are tabulated in Table
VII (after usual change of variables). To order e
all fixed points, except fixed point No. 3 are un-
stable. The stable fixed point gives critical ex-
ponent

,(12)

Another two-dimensional representation is $3-.
There are two fixed points for this representatjon:

x=9 and x= g() ~ (13)

The second fixed point is stable giving the same
critical exponent as in the previous ease.

Finally, one-dimensional quasiequivalent repre-
sentations I'1-, I'2+ also have only one stable
fixed point

{14)

which gives exponent

rV. AXALVSES OF RESULTS

It is interesting to compare the results obtained
by the pr'esent HG analysis with results obtained

TABLE VEE. Fixed points for the representation p(l)
of the group OI3.

Fixed point no.
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by the use of the Landau theory of second-order
phase transitions. For 8-point representations,
we have found here that only the representation
R(I) produces a stable fixed point. Therefore, we.
conclude that in the other cases R' (2) and A(4),
fluctuations prevent the phase transition from
being second order. For the B(l) representation
we have already found allowable low-symmetry
groups, ' but no experimental observations have
yet been reported of a structural phase transition
from higher-symmetry group 0„ to a lower-sym
metry group with change of. the size of the unit
cell equal in all three directions. We predict fox'

such a transition (if observed), on the basis of
the present calculation, that the divergence of the
specific heat C~ at the transition temperature,
will be described by a critical exponent

a=0.1 . (16)

Differences between n's for different representa-
tions are quite large (-50/&) so we believe it
should be possible to distinguish them experimen-
tally. At present, it has not been determined
whether the observed phase transitions are second
order. In most cases, it is believed the transition
is "nearly second" order. Two experimentally
lower-symmetry groups have been reported to
date.

(a) In the case of Nb, Sn it is found" that the

low-symmetry group is D4„and that the transition
is first order. Since this transition does not in-
volve a change of the unit cell, it could be driven
only by a I'- point order parameter. However
Landau theory has already shown' that the trans-
ition 0'„-D (94wit nho change in unit cell) is not
allowed as a second-order transition and thus the
result agrees with experiment.

For all X-point representations, we have found
no stable fixed points, so we conclude that no se-
cond-order structural phase transition driven by
an X-point order parameter may occur, due to
the large fluctuations of the order parameter.

1"- point order parameters have been previous-
ly analyzed' by the Landau theory, Here we find
that fluctuations do not change character of the
phase transition: phase transitions. to low-sym-
metry groups remain second order. We find crit-
ical exponents a to be:

o.= -' = 0.045 for irreducible

representations I'4-, I'5+, (17)

cy=0. 1 for irreducible representation I'3-,
(18)

~=p = 0.1'7 for irreducible

repres. entations I'1-,.I'2+.

(b) The second case is Nb, Si,"which has low-
symmetry group C,'„(doubling in x and y direc-
tions). This transition could be driven by X-
point order parameter (M-point order parameters
would also produce doubling in x and y directions,
but the symmetry subgroup would then be nonprim-
itive). However for X-point, it has been shown'

using Landau theory that this subgroup is not al-
lowed as second order. This agrees with the ex-
perimental report. "

The nonexistence of a stable fixed point is inter-
preted as signifying absence of a second-order
phase transition. However, a stable fixed point
may be missed by the e expansion in integral pow-
ers: the leading power may be a noninteger.
There is also a problem of a general nature in our
procedure of taking e =1 at the end of the calcula-
tion. Such a large e can even produce a change in

stability of a fixed point by going to higher order
in the expansion. Here, we assume that the con-
clusions regarding fixed points and their stability
near ~ =0 could be extrapolated, but there is ques-
tion regarding the accuracy of other results ob-
tained by setting z =1.

From our results it is apparent that many re-
presentations were eliminated as bases for allow-
able order parameters of second-order phase
transitions, because of nonexistence of a stable
fixed point. In the framework of these calcula-
tions, we conclude that transitions associated
with such representations are multicritical. This
is not in contradiction with experimental i"esults,
which show that only some of the samples underg~
structural phase transition: the coupling para-
meters of the LGW Hamiltonian may depend upon
some as yet unknown, or hidden, thermodynamic
variables. Such variables may be accidentally
set at a critical value for transforming samples.
Qne possibility which has been suggested is the
concentration, or distribution of vacancies'; but
a recent determination of structure and electron-
charge distribution in V,Si by accurate x-ray dif-
fraction measurements appears to find in this
sample neither the suggested concentration of
vacancies, nor the suggested ordered distribu-
tion. " If there is some additional variable, it
would be interesting to have it identified and con-
trolled experimentally.
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