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Symmetry of modulated phases in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ):
Four- and five-dimensional superspace groups
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The three modulated ordered phases in tetrathiafulvalene-tetracyanoquinodimethane are described in terms
of four- and five-dimensional superspace groups. The 47-K transition is driven by a soft excitation polarized
in the fourth "phase", direction. Extinction rules are derived, and the absence of certain 4kF spots observed

by Kagoshima et al. are explained. Additional experiments are suggested to completely determine the space
groups.

Recently it has been shown by Janner and
Janssen' and by de Wolff' that the symmetry of mod-
ulated structures should be described by space
groups of dimension higher than three. '

The ad-
ditional dimensions are related to internal degrees
of freedom associated with relative Euclidean mo-
tions of the distortions with respect to the basic
lattice. Consider for simplicity a one-dimensional
chain with displacement of the n'th atom u „=u sin
(qna 2et), where t is the relative phase. The dis-
tortion is invariant in the x-t plane under a lattice
of translations generated by the vectors a,
='(a, —qa/2m) and a =(0, 1). The corresponding
reciprocal lattice has a basis with. a,*= (2m/a, 0)
and a,*= (q, 2m). The projection on position space
of this lattice consists of the vectors k =na,*+mq
(n and m integers). ' These are the diffraction spots
of the modulated crystal. A modulated crystal in
n dimensions can in a similar way be imbedded into
an (n+1)-dimensional superspace. If the modula-
tion is given by a superposition of two incommen-
surate wave vectors the dimensionality of the su-
perspace group is n+2. Like ordinary space
groups, superspace groups can be used for the
classification of structures, for characterization
of excitations, and to explain systematic extinc-
tions in structures not having space-group sym-
metry.

In this paper we shall analyze the modulated
phases in TTF-TCNQ in terms of such superspaee
groups. The' notation used will be that of Ref. 1.
X-ray' and neutron-diffraction data4 originally
revealed structural phase transformations at
T, = 54 K and T,= 38 K. Bak and Emery' have ana-
lyzed these transitions in terms of a Ginzburg-
Landau theory and predicted that there should in
fact. be a third transition at T2 =47 K. The exist-
ence of this transition has, now been confirmed'.
The picture that emerges is that at 54 K there is a

transition to an ordered state M, » characterized
by a noncommensurate wave vector q= (2, $, 0),
P =2k~-0.295. Between 47 and 38 K the wave vec-
tor component in the a* direction decreases as
(q, ——,')' ~ T, —T. Below 38 K the wave vector re-
mains locked into q, =(—,', tl, 0). The latter two
phases are denoted M» and M„respectively. The
theory as presented here is fully consistent with
the theory of Bak and Emery. "

The space group of TTF-TCNQ in the nonordered
phase is P2,/c SThe st.ructure consists of chains
of TTF molecules and chains of TCNQ molecules
arranged in the b-c plarie. The lattice is spanned
by the vectors a, b, c. There is inversion sym-
metry and a twofold screw axis along b. Figure 1
indicates the positions of molecules in the unit
cell.

The M,» phase is characterized by a single wave
vector and the superspace group is therefore four-
dimensional. Figure 2 is an attempt to visualize
the nature of this group. The c direction has been
left out. The extra "phase" direction is the ver-
tical direction. If we consider a fixed position in
real -space, a shift of the relative phase of the
modulation can be expressed as a shift in this di-
rection. The basis of the four-dimensional (4D)
lattice is

(K, ——'), (b, -8), (c, 0), (0, 0, 0, 1).

(This lattice belongs to the Bravais class C ~n2t"

according to Ref. 1.) The distortions of the jth
molecule in the nth unit cell may be written

u(n, j) =fq(q) exp(i q n)+c.c.
Since the transition from the nonordered phase to
M«, is second order, the polarizations should
belong to a.n. irreducible representation of P2, /c, 9

with wave vector j. This-means
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FIG. 1. Positions of
molecules within the unit
cell of TTF-TCNQ. 1 and
2 are TTF, 3 and 4 TCNQ.
The twofold axis may be
chosen through 4. The full
circles are approximately
in the base plane, the, open
ones are approximately at
height 2.

f2(i) =&2„f,(a), f4(i) =- e2, f3(q),
c=y1,

where 2, is the twofold rotation with axis in the
b direction. An extended discussion of these modes
is presented in Ref. 11. For the symmetry ele-
ments of the superspace group we shall use the
notation

g=((R la, ),ill, [a,)),
where B~ and a~ are orthogonal transformations
and translations, respectively, in position space,
and RI and aI the corresponding operations in in-
ternal "phase" space. The possible symmetry ele-
ments are the inversion and the twofold screw axis
combined with internal operations:
(i)

C '& otherwise.
~1

These space groups are both monocligic, i.e., the
action on position space is a monoclinic space.
group.

The modulation vector of the M«phase is q
=(n, P, y), y-0, —,'&of& —,'. The lattice of the space
group is formed by the vectors (a, —u), (b, -P),
(c, -y), (0, 0, 0, 1). This lattice belongs to'the (tri-

thiselement is always present, with ar= 0 if a =.1,
and Q~ = pQ~ lf 6 = —1.-
(ii)

((TIO), JT a,));
this element is present if arg(f, ) =arg(f, ) +&2~ ~

Now, let us consider the possibility of having sys-
tematic extinctions. The diffraction spots are at
ha*+lb*+lc*+mq. We note that the 4d wave vec-
tor Q = (O, k, 0, m) is invariant under (i), and

Q (as, az)/2o' =-,'k is noninteger for k odd. We

therefore predict that the satellites kb*+ jmshould

vanish for k odd. We suggest that this be checked
in an x-ray or neutron-scattering experiment. In
addition, the satellites (h, 0, l, 0) =Q' are invariant
under the combined operations (i) and (ii), and
Q' (0, —,', —,', 0)/2w = ,'l. The main Brag—gpeaks
(h, 0, l, 0), l odd, should therefore be present in
the M»t phase only if the inversion symmetry (ii)
is absent. This could easily be checked in an ex-
periment. For the very dedicated reader we note
that the superspace group of M«, is

C '~t" if inversion present,
~ ll

,
. (b,o)
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—: (a,o)
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FIG. 2. Schematic representations of the modulated
structures. (a) and (b): Four-dimensional lattices of
the phases M&» and M», respectively. The sine waves
indicate the distortions in superspace. (c) Four-dimen-
sional lattice distortions at the 47-K transition.
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clinic) Bravais class PP7f. The only possible sym-
metry element besides the primitive translations
is ((I~0},(T~a,}). If this element is present the
superspace group is P.&, otherwise P.",'. Boih
these groups are telic/inic, and there are no sys-
tematic extinctions in this phase. The space
groups are subgroups of the groups of the M«r
phase, consistent with the transition at 47 K being
second order.

M, (T(38 K) is characterized by the t7vo vectors
q, = (—,', P,y) and q, = (-—,', P, -y), y - 0.'" The dimen-
sionality of the superspace group is therefore five.
The lattice vectors are (a, —,', ——,'), (b, -p, —13),

(c, y, -y), (0, 0, 0, 1,0), and (0, 0, 0, 0, 1).
The possib. le symmetry elements are

(I)

Recall that m is a mirror line in the 2d internal
space. This element is present if

f.(q, ) = 2,f, (q, ),

f, (q, ) = 2,f, (q.),

f,(q, ) = 2,f, (q, ) exp(- —,'77i),

f,(q, ) = 2,f, (q, ) exp(-,'77i);

f, (q, ) =m,f (qr»

f.(qI) =m,f3(q7);

and

arg [f7(qI ) ]= 0, + 277~ 77

arg if, (q, ) ]=+—,'77.

The diffraction spots are labeled (kklmP). The
symmetry element (i) leaves the vectors Q
=(O, k, O, m, m) invariant, and Q (0,—,', —,', 0, 0)/277
= 2'. This implies that there are extinctions for
k odd. The positions of the corresponding peaks
are + (0, 2mP(=m4kz), 0) around (O, k, 0). These
extinctions have already been observed by
Kagoskima et al." The peak at (0, 3 —0.59, 0) van-
ishes completely, whereas the peaks at (0, 3 —0.59, I)
(l cO) are clearly present (Ref. 10, Figs. 2—5). We
may therefore conclude that the element (i) is
present. Note that there exist two different types
of "4k+" spots& namely (kkl20) and (hk/11). The
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FIG. 3. Periodic distortions in ~r phase. projected—
onto the a-b plane. Drawn lines, TTF; broken lines,
TCNQ.

corresponding satellites are situated at (
—'„4k~, 0)

and (0, 4k~, 0), respectively. This is also in agree-
ment with the observations of Kagoshima et al.
The (kk/11) peaks disappear abrubtly a,t 38 K as
they should. The extinctions as derived here are
in agreement with those derived in Ref. 11 from a
different point of view. The vectors Q'
=(k,O, I, m, -m) are invariant under (ii). The cor-
responding extinctions are at (k+ —,'m, O, I+2my).
The superspace group is

P~2&~' if (iii) is present,

P, '& otherwise.

These groups are both monoclinic. Figure 3 illus-
trates the modulation in the a-b plane in the case
where all the symmetry elements are present. We
note that the space group of this phase is not a, sub-
group of the space group of M«(or vice versa).
The 38-K transition must therefore be first order.

At the 47-K transition one of the basis vectors
changes from (a, , —,') to (a, —,'+ 5). In analogy with a
uniform structural phase transition in a normal
3d lattice, this transition can be accomplished by
an excitation with wave vector k=(&, 0, 0, 0), e 0,
and polarization (0, 0, 0,p) [see Fig. 2(c)]. The
displacement in 4D space corresponding to this
excitation is

[u (n, j) ], =
f& (q) exp [i(q n —277t+ p cos(k n) ]+c.c. ,

This is the soft phason introduced in Ref. 7. The
phason belongs to an irreducible representation of
C '&~'. The only rota, tional symmetry element
which leaves k invariant is (m, Q. The phason
transforms as 1" with respect to the little group
of this k. The inversion $T, I}leaves the phason
invariant. This element is therefore either absent
or present in both the phases Mrrr an Mrr To the
same irreducible representation belongs another
excitation given by the wave vector k and polari-
zation (O, p, 0, 0), which is an a.coustical phonon.
This means that there is a linear coupling between
the (soft) phason and an irreducible strain of the
M, phase, and there is a distortion of the mono-
clinic lattice to a triclinic one; the angle y between
a and b axis should differ from 90' in M„onlyx
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