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Dynamics of the classical planar spin chain
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In this paper we pay attention to the classical one-dimensional planar spin system and, in particular, to the
dynamics of such a model. We use the Monte Carlo method to calculate the static correlation functions,
needed to determine the relaxation functions completely. We are then able to give the results for the in- and
out-of-plane component of the relaxation function. At low temperatures the excitations of the out-of-plane

component behave as free particles while the excitations of the in-plane component are very similar to the
excitations in the Heisenberg chain.

I. INTRODUCTION

The dynamics of one-dimensional magnetic sys-
tems is very interesting because mell-defined
spin-wave excitations are observed' 4 at nonzero
temperatures although there is no magnetiza, tion. '

A spin chain is called planar if an anisotropic
term is added to the Heisenberg exchange inter-
action such that the spins are forced in the x-y
plane. The substance Cswi. F, is well described by
the model as was shown by a lot of static and dy-
namic measurements. 4 The material is a spin-one
system which means that quantum-mechanical ef-
fects play an i.mportant role. A transformation to
semipolar coordinates, as proposed by villain, '
made it possible to calculate low-temperatures
properties for the quantum system.

For the classical planar cha. in, it is not possible
to calculate all static quantities analytically as is
the ease for the classical Heisenberg chain." It
is possible to calculate several interesting static
quantities by means of the transfer-operator meth-
od."

I oveluck and Lovesey also obtained results for
the out-of-plane component of the relaxation func-
tion" by expressing the moments of the relaxation.
function in terms of spin-correlation functions
which could be calculated numerically. It is prac-
tically impossible to calculate the in-plane com-
ponent of the relaxation function or to obtain better
approximations for the relaxation function in this
way because of the amount of work which is nec-
essary to evaluate the correlation functions.

In this paper, we will shown tha. t the Monte Ca,rlo
method" is very useful to calculate correlation
functions of time derivatives without the need of

I

analytic expressions in terms of static spin-cor-
relation functions. It will be obvious that thi. s
method ean be applied to other models as well.

In Sec. II we derive the relaxation function using

Mori's formalism~' "and we calculate the fre-
quency-dependent transport coefficients with the
method given in our earlier paper. " In See. III
we. discuss the various possibilities to calculate
the static qua, ntities appearing in our relaxation
function and we compare our results with results
obtained by other methods. In See. IV we give ex-
tensive numerical results. We also calculate the
dynamic form factor as a function of temperature
for the in-plane and out-of-plane component.

II. DYNAMIC EQUATIONS

A planar spin chain, with nearest-neighbor in-
teraction J, is described by the Hamiltonia, n4

If the anisotropy A. is positive, the spins mill be
forced. in the x-y plane as the temperature de-
creases. %hen A. is negative, the spins will prefer
to stand along the z axis. It is convenient to intro-
duce Fourier transformed operators by

I8 =—+8' "8n'

and then the Hamiltonian reads

H=-J Q S~ '8
~ cask+A Q S~S'~.

In the following, we will only be concerned with
the classical model for which one is able to calcu-
late certain static correlation functions. " In a
classical model, the spins are replaced by angular
momenta of unit length that can stand in any direc-
tion.

If we want to study the dynamics of this system,
we have to calculate the time-dependent spin-spin
correlation functions. These functions can be
measured directly by inelastic neutron scattering. 4
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We will use the Mori projection operator formal-
ism" "and therefore we have to find the quantities
that describe the slow motion of the system in or-
der to separate these modes from modes that de-
cay fast in time.

Because we have a classical system, we define
the scalar product as the static susceptibility

(s,s)„o
o (is, I.s), (2.10)

as our set of relevant variables. We have replaced
the second time derivative L'S, by A, because the
matrix of static susceptibilities

(s, s)„=p(s;s',), s=z, y, z. (2.4) (A, ~)„
As usual, P denotes the inverse temperature (we
use units such that h=l, k»=1). The Liouville
operator L determines the time evolution

is diagonal.
The frequency matrix yields

sa(f) &iLtsa(o) (2.8) 0

and is related to the Hamiltonian by

I,s„=[a, s;7, (2.8)

C k, (z, k) =(S', (» I.)-'S'),

where the square brackets denote the Poisson
brackets. Then the Laplace transform of the time-
dependent relaxation function can be written'6

(I.s, I.s),
(s, s). 0

,A)k
(is, I,s),

(2.11)

and the projector on the subspace spanned by the
relevant variables is given by

=-i dte' S' t, S 0 ) (2.7)
(S, B)k (iS,B)k (A, B)k
(s, s), ' (is, is), "(A,w)„ (2.12)

withe =++i&, e&0.
'By symmetry, we have

(s', (» -i) 's')„=~.k(s', (z -i) 's'), . (2.8)

where I3~ denotes an arbitrary operator.
The projector on the orthogonal complement is

Q=—1-P and because QLS„=QL'S,=O by construc-
tion, the transport matrix contains only one non-
zero element

This means that there is no coupling between the
different spin components in the dynamic equations.
Because the total spin in the z direction is a con-
served quantity, we know that S~ and its time de-
rivatives LS„'and L'S,' are slow variables. The
total spin in the x or y direction is not conserved, but

for A & 0 it is a critical variable which means that

S~ and S,' are also slow variables'. "
We do not have such a plausible argument for the

time derivatives of S~ or S~ but as we want to treat
S," or S„'on the same footing as S,, we will take
LS," and L'S," as additional variables. Because of
Eq. (2.8) we will now ommit the index referring to .

the spin component since it simplifies the notation
considerably. Then we take

0 0 0

Z(z, k)= O O O

o o z(z)

@ss @sr,s @'sA

C(z, k)= e„,C„„e„„
/

AS @AI S @AA

(2.18)

Zk(z) = -(A, A)k'(@LA, (z —t»tI t»t) 't»tiA)k . (2.14).
The matrix of the relaxation functions

s ts x =r.*t—
kt kt k k (S S)

(2.9)

is the solution. of the matrix equation

[»1 —Qk+ Z(z, k)]c$(z, k) =X» (2.16)

and we obtain

»'+z Z, (») (A, A),/(iS, I.S)„
k»[»' (i's i's) /(is, is)k]+~k(z)[z'-(is, is)k/(s, s)k)



for the Laplace tx'ansformed spin-spin relaxation
function. The imaginary part C&sz(z, k) of this
function is related to the dynamic form factor by

s(k, ru) =[-~/(1 —e '")]c,",((o, k).
Until now, no, approximations have been made,

but Eq. (2.17) still contains the unknown function
Z, (z). If we note the similarity between the for-
mal expression for Z~(z), givenbyEq. (2.14), and Eq.
(2.7) we might wonder what we have gained by the
formal manipulations that led to Eq. (2.17). The
main advantage of this method is the fact that we
have made a separation between important contri-
butions to the long-time behavior of the relaxation
function and fast fluctuating terms by introducing
the projection operator P. At extremely low tem-
peratures, the number of slom' modes is large and
therefore we can expect that we have to extend our
set of variables to have a reasonable description,
but this is no principal difficulty. Therefore, the
only remaining problem for our dynamic descrip-
tion is to express the transport coefficient Z~(z) as
a function of the frequency and some static suscep-
tibilities.

%'6 derive the equation of motion for the trans-
port coefficient by twice applying the identity".( -qLq) '=1+qLq( -qLq) ', (2.»)
and we find

!!'+ '

) (QTA(!!—QI.Q)!', QIA)

=g (qLA, LA)~+ (qL~A, (z —qI q} 1qLA)1.

(2.20)

Now we assume that the last term of the right-hand
side of Eq. (2.20) can be replaced by its value for
w =0. This is a reasonable assumption because
this tex"m contains higher time derivatives than all
the other terms and we have

&2+ ' ' (qLA (s qI.q) 'qLA)

x(qr A, (fe —qr. q)-'qLA), . (2.21)

Using (A, rl)& ——(B~,A 1)
&

Rnd spRce-1'evel'sRl 1nvR1'1-

ance, we conclude that the last term of the right-
hand side of Eq. (2.21) is purely imaginary and we
calculate this term by using the sum rule

s+1(LA r,A)!,"'/(A, A),"' '
!.

It is cox1venieiit'to1 expx'esa:the su'sceptibilities ap-"
pearing: in'this, formula in terms of spin-spin sus-
ceptibilities': and ''we find

(A, A)„=(r.'S, L2S), (LS, LS);/(S. ,S)!„(2.Z4R)

(LA, r.A), = (I.'s, r.'s),
2(r,s, Ls),(r.'s, r.'s), (I.s, r,s},'

(s, s), (s, s);
(2.24b)

(qrA, rA), =(I.'S, r.'S), ' '. (2.24c)
(I,'s, r.'s)',

Inserting Eq. (2.24) in Eq. (2.17) and expanding the
relaxation function for large z values, me. obtain

(s, s), (r.s, r.s),
C'ss1Z, !t' = . +s Z3

(I.'S, L'S), (I.'S, I.'S),
g5 87

mhich means that our relaxation function satisfies
the sum rules

(I "s,L"s),= -- dco e'"c(&u, 0)
m

(2.26)

for n =0, 1, 2, which is a consequence of the choice
of the variables, and for n =3 which shows that our
calculation of the transport coefficient is as con-
sistent as possible.

III. STATIC SUSCEPTIBILITIES

In the previous sections, we calculated the Lap-
lace transformed relaxation function as a function
of the frequency and the static susceptibilities. In
this section, we will discuss the various possibil=
ities to calculate- these static quantities.

First of all, it is worthwhile to examine the kind
of correlation functions that have to be calculated.
Of course, we need all spin-spin correlation func-
tions

(Sos„'), n =0, ' ' ', N; a =x,y, g

The f1nal expl 6sslon fo1 the tx'anspox't co6fflc16nt
reads

(qLA, r,A),
(A, A),

(qLA, I.A), = ——lim
j.

d&Im QJA, g —QIQ QL+)~.

(2.22)

in order to calculate the Fourier transformed cor-
relation functions (S„'S'„).

For the Siisceptibilities of the type (8, LC) the
situation is different because the relation

(rl, «) = &lrf', cD
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ean be used to shorn that in the case of nearest-
neighbor interaction

(I 'S~o, I.~S'„)= 0 if s ~ 2j;

j=1,2, '; a=@,y, z . (3.3)

This result reduces the number of terms consider-
ably. However, it turns out that even then, it is a
very tedious job to express (I&SO, I~S'„)in terms of
2j-spin correlation functions ancI although an exact
expression for j=3 is available for the Heisenberg
magnet, ' it is not surprising that no similar result
for the planar chain exists.

Let us nom look at the different methods. The
very elegant and numerically exact transfer oper-
ator method which has been, used for the planar
chain by Loveluck, Lovesey, and Aubry'o reduces
the problem of calculating the partition. function to
an. elgellvalue px'obleID. Once the eigenvRlue px'ob-
lem is solved, one eancaleulate two-spin, four-
spin, Rnd six-spin correlation functions; but as
already mentioned, some expressions for the relax-
ation function are very. complicated combinations of
the static correlation functions. One could argue that
the work done in obtaiping such expressions is largely
compensated by the fact that one obtains exact re-
sults, but if one considers the amount of work and if
one realizes that these expressions are only useful
for a very small class of Hamiltonians (in our case,
the corresponding expressions for the Heisenberg
chain should be found by putting A =0), one should
conclude to look for other possibilities. Clearly,
a more direct and general way to calculate static
susceptibilities for classical systems is desirable.

A very general method to study various aspects
of classical many-body systems is given by the
Monte Carlo method. '~ The initial idea is to mrite
a computer program mhich simulates the physical
system that one mould like to study. %6 do not
want to discuss the general aspects of this tech-
nique here and therefore only a brief description
of the computer progx'am fox our spin model mill
be given.

The first step is to set up the initial spin con-
figuration, for instance a random configuration.
Then a spin is selected using a random number and
the direction of the selected spin is changed ac-
cording to three random numbers. The corre-.
sponding energy diffex ence 4E is calculated and
if exp(-P b.E) 0 x (0 (x (1, random number) the old
spin direction is replaced by the nem one. Repeat-
ing this procedure M times, one can shorn that the
configurations are distributed according to the
canonical ensemble if 'M- ~. Once the system is
close enough to its equilibrium, averages of spin
combinations are easily calculated.

——,(I.S;, I,S;)+ , (I,'S;.., I.'S.;)—
te

(I sS' I,SS') + ' ' '
i& j

we canq ln. prlnelple~ obtain numel ical values fox'

the morrients by calculating the time derivatives
of the correlation function. However, it is well

TABLE I. Comparison between exact and Monte Carlo
results for P JR=15 and A=0.214'.

Correlation
fUnctlon

(gxgx)/g 2

(Sxg x)/g 2

z~s)/~2

(s's')/s'

0.4751

0.4411

0.0499

0.0147

Monte Carlo

0.4743

0.4365

0.0514

0.0157

The disadvantageous aspects of the transfer op-
erator method are not present in this approach.
Indeed, me only have to calculate I-S;., a=x, y, z
and once these expxessions havebeenprogrammed,
the computer takes care of the remaining calcula-
tions. Although the program is rather simple, a
complete check on the results should be possible
to have an idea of the statistical errors which are
unavoidable in Monte Carlo calculations. In our
case, this is easy. because analytic results of the
classical Heisenberg model are known. There is
an excellent agreement between our numerical
values and the exact results. A comparison be-
tween some exact resultsio obtained by the transfer
operator method and Monte Carlo results for the
planar chain is summarized in Table I.

%6 conclude this section with some general re-
marks. One might monder mhy, since me are doing
Monte Carlo after all, me did not use the equations
of motions clirectly in order to obtaiQ the dynamic
form factor. Then we should not need the moments
explicitly.

The objection to this point is that the integration
of the equations of motion is only valid for rela-
tively short times' (high frequency) whereas we
are interested in spin maves, mhich are lom-fre-
quency (long-time) phenomena. Because the low-
frequency region is mell described by Mori's for-
malism, it is an 'appropriate tool to study these
excitations~ RQd therefore R cRlculRtloQ of the xQo-

ments is necessary. An alternative way to calcu-
late the moments is to calculate the time-depen. -
dent correlation functions for short times and be-
cause
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known that, even in very simple cases, this is
often one of the hardest problems in numerical
calculations. Since we compute static susceptibil-
ities appearing in Eq. (3.4) directly, we can com-
pare the time-dependent correlation function with
the values obtained by integrating the equations
of motion, and for short times there is an excel-
lent agreement. This supports the fact that the
calculation of the moments from the data obtained
by integrating the equations of motion is a very
difficult numerical problem.

IV. DISCUSSION OF THE RESULTS

As said in Sec. III, the quantities that are calcu-
lated are two site correlation functions of the spins
and their derivatives. These have to be multiplied
with the inverse temperature to yield the corre- .

sponding susceptibilities. We always took A.

=0.214, because this value corresponds to the
anisotropy in CsNiF„ for which measurements
are available.

In Fig. 1 we give the self correlation function and
the correlation function between nearest neighbors,
for the x and z components and the exact results
for the Heisenberg chain (A =0). From these re-
sults we obtain

(IS', IS'), = 4a (l —cosa) (S,"S,"),
(LS",LS"),= »I. &(S.")'& —&(S')'&1

(4.l)

+ 2J(1 —cosk)((S"S,"&+ (S;S;&). (4.2)

In Figs. 2-7 results for some correlation functions
of time derivatives are shown. To find the k-de-

10

gJs'

FIG. 2. Self-correlation function of the second time
derivative of a spin component. To get the correspond-
ing susceptibility, one must multiply with PJ4$ . The
meaning of the x, z, and H symbols is the same as in
Flg. l.

pendent susceptibilities we perform a Fourier
transformation and using Eq. (3.3) we find

(I ~S', L~S')» = (L~S~O, L'So)

2 -a
+ 2 cos (kn)(L~S;, L'S'„). (4.3)

n=l

The most difficult quantity to extract from the

sx~
1 '- (L'S, , L's, )

1 H

Z

10 15

PJs'

FIG. j.. Self-correlation function and the nearest-
neighbor correlation function as a function of pJ$,
where p is the inverse temperature. The in-plane, out-
of-plane, and Heisenberg results are marked by x, s,
and II, respectively. The correlation functions are
given in units of $2.

I

10

pJs

FIG. 3. Correlation function between the second time
derivatives of nearest neighbors. See also Fig. 2.
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t0

FIG. 4. Correlation function between the second time
derivatives of next-nearest neighbors. See also Fig. 2.

numerical results is the wave-vector-dependent
correlation function, because at finite tempera-
tures all (S;S'„)are different from zero, and con-
sequently contribute to (S;S'„).From results ob-

30

FIQ. 6. Col relation function between the third time
derivatives of nearest neighbors. See also Fig. 5.

tained by Loveluck, Lovesey, and Aubry'0 for the
planar chain, and knotting the exact result for the
Heisenberg chain

(s;s„"&= (s;s„&= (s;s„&= —,'s'e-""",
it seems justified to suppose the following be-
havior:

(s's'&=((s')'&e "~' '" a=x y s

)0

10

10

FIG 5. Self-co11elation function of the third time deri-
vative of a spin component. To get the corresponding
susceptibility one must multiply with p&6$8.

. FIG. 7. Correlation function bebveen the third time
derivatives of next-nearest neighbors. See also Fig. 5.
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IPC P JS'=1
2

OPC

INVER;;;E

CORRELATION LENGTH I PC g JS'=2 3 I-OPC t3JS'

6 —IPc OPC P, JS'= S
I)

10

3 IG. 8. Inverse correlation length ~ as a function of
the inverse temperature PJ52.

6 —IPC PJS =10 12 —OPC

10

8

g JS =10

for the static correlation function. Because ((S'„)')
is directly given by the Monte Carlo calculation,
only the parameter v, (P) has to be fitted. N', (P) is
the inverse correlation length, and is a measure
J('x the pxt~nsloT) of the short-range order 1n the
system. IQ Flg. 8~ K~ a,nd Kg al"e coDlpal ed with
the I-IIeisenberg result I(.«. It is seen that I(.„and I(."«

vanish at l..c,w temperatures, and thus the zero
wave-vectox susceptibility diverges. I(.', on the
contrary remains finite, and thus 8 i.s no critical
variable.

FroDl Figs. 2-7 it is seen that the moments of
the in-plane component deviate vex'y little f1ODl the
Heisenber g results. The moments of the out-of-
plane component however differ considerably at
the lower temperatux es. From the essentially
dlfIvrent behav1or of the susceptlblllt1es for the
out-of-plane component, coxnpax'ed w1th the ln-plane
component„ it can be expected that the two relaxa-
tion functions will also differ considerably. This
is confirmed in Fig. 9. We have chosen a typical
wave vector (q =0.35m) and plotted the imaginary
part; of both components of the normalized relaxa-
&ion function. At low temperatures the line width
o:I.'the z component is much smaller than the line
width of the in-plane component. At I3JS'=10, the
z li.~:e width is even so small, that we can. consider
th;-. excitations of the z component as free particles.
At low temperatures the frequency is the same for
both coDlponents, ' The difference ln the line
shape between the two components= disappears
..'radually if we go to higher temperatures. Also

2
I

I I &I)

0 . 5 l. 1.5 2. 2. 5 0 . 5 l. 15 2, 25

PIG. 9. IInaginary part of the normalized relaxation
function for the in-plane (IPC) (left) and out-of-plane
(OPC) (right) component for the wave vector q=-0.35m,
and as a function of the inverse temperature AS . The
energy is measured in units of Jg. It should be noted
that for the two lowest temperatures the scale on the
ordinate at the right-hand side differs from that of the
left-hand side.

interesting to note is the renormalization of the
frequency. At higher temperatures there is a
shift to lower frequencies for both components.
This was also found by Steiner et al. although they
found a smaller shift. At pJS' = 1, the inverse cox'-
relation length I(: is more or less equal to the wave
vector q =0.3571 for both components. The simple
spin-wave picture expects the spin waves to dis-
appear around this temperature. This is con-
firmed by Fig. 9.

Finally we remark that we have not Dlade a
quantita ti ve comparison with experiments for
Cs¹iF„because we believe that extensive and ac-
curate experimental data for small wave vectors
should be available in order to get a feeling for
the importance of the quantum effects in this spin
one magnet. However, it is interesting to note
that there is a good qualitative agreement between
theory and experiment. The results, presented in
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Figs. 1-9, were made for chains of 200 spins.
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