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We present a theoretical study of the propagation of surface magnetoelastic waves on a ferromagnetic
crystal which includes the effect of the exchange energy and the pinning of surface spins. The magnetoelastic
wave is in essence a Rayleigh wave modified by the magnetoelastic coupling. Large deviations from the
Rayleigh-wave propagation characteristics are found in the frequency range where bulk spin waves propagate
and where surface spin waves propagate. The deviations associated with the surface spin wave are very
sensitive to both exchange and pinning conditions, while those associated with the bulk spin waves are

insensitive.

I. INTRODUCTION

It is well known that ultrasonic waves in a fer-
romagnetic crystal may interact with the spin
system to produce a magnetoelastic wave which
is a combination of stress waves and spin waves.
Through the magnetoelastic coupling, Rayleigh
waves, elastic wavesbound to the surface of the
crystal, may interact strongly with both the bulk
spin waves and the surface spin waves. This pro-
duces a madgnetoelastic surface wave. The wave-
length and penetration depth of this wave can be
made small compared to sample dimensions and
thus one may think of the wave as propagating on
a semi-infinite medium. The behavior of the mag-

netoelastic wave is interesting in several respects.

The wave may be used as a probe of the nature of
the elastic and spin systems near the surface of
the crystal. Also, the properties of the wave
(attenuation rate, penetration depth, and dis-
persion) may be altered by external parameters
such as the strength and direction of an applied
magnetic field.

A number of theoretical studies of surface mag-
netoelastic waves have been made."”® Typically
the studies take the external magnetic field and
the magnetization to lié parallel to the surface
of the crystal. One then enquires into features
of the magnetoelastic wave, such as dispersion
and attenuation length, which propagates along the
surface at some angle relative to the magnetic
field.

The basic results of these studies are as fol-
lows: there exists a magnetoelastic wave which
is Rayleigh-like in its lattice displacement pat-
terns and which reduces to the Rayleigh wave in
the limit of vanishing magnetoelastic coupling.
The propagation wave vector is complex, so the
wave is damped as it moves along the surface.

In regions where the frequency and parallel wave
vector of the Rayleigh wave are close to those

of bulk spin waves, the damping is large. This
is a result of the elastic system radiating its
energy to the bulk spin waves. Damping is also
significant in the frequency range of surface spin
waves.

- The propagation characteristics are strongly
dependent on the angle between the applied mag-
netic field and the direction of propagation. When
propagation is parallel to the field, there is sig-
nificant damping over the entire range of allowed
bulk spin wave frequencies. As the angle between
the field and the direction of propagation is in-
creased, the damping is limited to a smaller re-
gion of the bulk wave spectrum. Another inter-
esting feature is the nonreciprocal nature of the
wave, i.e., the wave which goes from right to
left across the magnetic field has attenuation and
velocity significantly different from one which
goes left to right.

The effect of exchange and spin pinning was not
included in any of the above studies. Since ex-
change energy is dependent on the gradient of the
magnetization, one might reasonably expect that
exchange effects might be appreciable in a wave
with only a short penetration length. In fact the
penetration lengths in the magnetoelastic wave
are comparable to the thickness of the thin films
used to measure exchange constants by the method
of ferro-magnetic resonance.!®

The analysis of the effect of exchange and pin-

‘ning of surface spins on the magnetoelastic wave

is interesting in that the waves should provide a
useful tool for studying the nature of spin pin-
ning interactions at the surface of a macroscopic
ferromagnetic crystal. Most information about
spin pinning at surfaces has come from studies
of the ferromagnetic resonance spectrum of thin
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films deposited on substrates, and not on single
crystals.

In our results, we find the damping of the mag-
netoelastic wave due to the interaction with the
surface spin waves to be very sensitive to pin-
ning conditions. As pinning is increased the damp-
ing is reduced. Furthermore with the addition
of exchange and pinning, the damping due to the
surface spin wave occurs at a higher frequency.
With the addition of exchange, the width of the
surface spin wave attenuation peak is no longer
controlled by 1/7, where 7 is the spin relaxation
rate, but by the exchange constant. This is a
consequence of introducing exchange and pinning
into the equations of motion and boundary con-
ditions which govern surface spin waves and re-
flect a change in the nature of the surface spin
waves. The surface spin waves themselves are
damped by radiating their energy to bulk waves.
We find this radiative damping is the dominant
source of linewidth for the surface magnetoelastic
mode in the frequency range of the surface spin
waves, for the parameters explored here.

The interaction between the bulk spin waves and
Rayleigh waves is basically unaffected by the
addition of exchange and pinning. However since
the bulk spin wave band is extended by the ex-
change energy, damping due to this interaction
now occurs over a larger frequency range.

II. THEORY

We consider an elastically isotropic semi-
infinite ferromagnetic crystal. The crystal
occupies the half-space y >0. The external con-
stant magnetic field ﬁo and the magnetization ﬁs
are taken to be in the z direction which is parallel
to the surface. The wave propagates with frequen-
cy © and wave vector @, (@, is parallel to the
surface), at angle 6 relative to the x axis. This
geometry is shown in Fig. 1.

The equations of motion for the spin system in

the absence of magnetoelastic coupling are
aM - M,
T"=Y(MXH),C—-DV2M,,— Tx R (1)

FIG. 1. Propagation geometry considered in this
paper. The magnetization of the ferromagnet is paral-
lel to the surface as is the externally applied constant
magnetic field.
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am - = . M
‘#:Y(MXH)M+DV2‘MI— Ty y (2)

where vy is the gyromagnetic ratio, 7 is the trans-
verse spin relaxation time, and D is the exchange
constant. H is given by

H=H,2+h,, (3)

where H, is the applied field and h, is the de-
magnetizing field set up by the spin motion.

The field -ﬁd is calculated from Maxwell’s equa-
tions. Here we use the magnetostatic approxi-
mation for Maxwell’s equations:

‘ V-ﬁ:Vxﬁ:O. (4)

This is acceptable since in acoustical systems
the frequency is limited to a few GHz. This gives
us wave vectors on the order of 10° cm™, Thus
cQ>>Q, where ¢ is the speed of light, and retarda-
tion effects may be ignored.

The equations of motion for the elastic system
are

\

32u, ] <as<3
P atz”za—ii— aek,.)’ )

i

where u, is the kth component of the elastic dis-
placement, 3C is the Hamiltonian density for an
isotropic elastic solid, and

. ~1<3uk du;
%= 5 \ox; T ax,

are elements of the strain tensor.

We now modify these equations by including
terms resulting from the magnetoelastic coupling.
The Hamiltonian density from the coupling for a
ferromagnetic crystal with cubic symmetry in
the spin-wave regime is given by

(6)

ZC,S=(I)2/MS)[Mx(exZ+er)+My(eyz+ezy)] . (7

The term M, is the saturization magnetization;

and b, is a phenomenological coupling constant.'!

The effect of this interaction Hamiltonian density
in the spin equations of motion appears as an ef-
fective magnetic field h,;, where

'yEls =-(% bz/Ms)(exz+ezx) - 6; bg/Ms)(eyg+ezy); (8)

in the lattice equations of motion the effect of
the interaction energy is given by adding 3C, to
JC:

AM, = a - M,

—r =V [MXx(H+hy )], - DVZM, - ot 9)
am >

—_Ldi ’)’[MX(H+hIS)]y+DV M, - —*, (10)
v.B=vxH=0, (11)
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We look for solutions of these equations of mo-
tion to be surface waves. The y variation of all
dynamical variables is exponentially damped with
a rate @. Thus,

ux=uxoe-uyei(Qxx+ng) e-mt , (13)

and similar expressions hold for u,, u, M., M,,
and #,. We have chosen %, the Z component of
the demagnetizing field h,, as the sixth dynamical
variable.

Outside in the region y <0 one must only satisfy

V'E:VXﬁ:O, (14)
assuming that the wave outside varies as
|
(—iyM o . ] N
Q, sinf ~7by sinf n/szn sinf —-vb,a cosf
=M,y b.0. 5in28 0 . v
tanf ~7b,Q, sin ~7rb,Q, cos
0 (@ +cia?-clQy)  —ilc] - cpaq, 0
0 ilci-chaQ, (@ +cio’ -ciQr) 0
0 0 0 Q2+ c'faz _ cfQ,?)
L}'(Qﬁ - a?) 0 0 0

where @, =(Q2+92)'/? and ¢, and ¢, are the lon-
gitudinal and transverse sound velocities. In
obtaining these equations, we have neglected
second-order terms in the variables M,, M,, and
h, since in the spin-wave regime these variables
are small quantities. Equation (19f) is the Max-
well-equations combined into one statement.

The above set of equations has a solution only
if the determinent of the coefficients is zero.
This condition results in a polynomial of twelfth-
order in a. As it is virtually impossible to gen-
erate analytic expressions for the coefficients
of the various powers of &, we have used a com-
puter routine which, given £ and Qs numerically
finds the coefficients of each power of @. The
roots of the polynomial are then also found. Of
the twelve roots, six have real parts less than
zero. These correspond to exponentially in-
creasing solutions, and so must be discarded.
From the remaining six roots, we construct a
superposition of waves with different decay pa-
rameters. For example,
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ety pi(Qx ¥+Q; 2) e-iat’ ) (15)

one can show through Eq. (14) that a2=@Q2.
We transform the lattice displacement coordi-
nates to

U, =u; cos 6 —u, sin@, (16)
Uy=Up, (17)
u,=u,;sinf +u, cosf, (18)

where u; and «, are the longitudinal and transverse
components of displacement on the surface which
are parallel and perpendicular to @,. u, is the
component of displacement normal to the
surface. .

Making these changes one obtains the following
set of equations, arranged in matrix form:

i(eed)  ome@i-d] (n ] (9a)
i, +DQ:-0)] @+l u (19b)
ibz?o,,lvsljnze _—b;}\tzinB w Ly ’ (19¢)
0 -~ib:€§/,l,ssin9 " (19d)
ib;(i;wcsosZG —azz;aose M, (19¢)
- 4miQ? sinf cosH -47Q, a sinb J M, (191)
[

g = E u) e~y 1 @ ¥4z 2 gifit (20)

e

with similar expressions for the other variables.
The amplitudes for a particular @, are related
through the bulk equations, and we can solve for
RE, u®, u, M®, and M* in terms of u{¥.
At this point only six arbitrary amplitudes re-
main, u{" to uf®.

We now impose the boundary conditions upon
these superposed solutions. The usual electro-
magnetic conditions of conservation of the normal
components of B and the transverse components
of H can be combined into one equation:

(Z [(@2)Y2 + ) B —47iQ, sind ;M;’”) 0=0;
k

(21)
by (@2)'/2 we mean the root for which the real

part is positive. This result is a consequence
of the field decaying as exp[y(Q?2)'/?] outside the
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substrate (y <0). Note that since @, is complex,
the term (@2)'/2 is also complex.

The elastic boundary conditions are that the
surface be stress free. The relevant elements
of the stress tensor ¢;, must be set to zero at the
surface. We obtain

/o 8(3C+3Cls)

(22)

xy y=0

- 8(36 + Jcls)
e 9e,y y=0

=c,e +clz(exx+ezz)l =0, (23)

11%yy
y=0
b, M
- 2y
‘Zcqqeyz“'” i
2y y=0 s

_ 3(3C+3C15)

= 5 0; (24)

t

y=0

note that Eq. (24) contains a contribution from the
magnetoelastic interaction.

The remaining boundary condition describes
the pinning of the surface spins. We use the phe-
nomenological form '

dM =
A d—y— -M= O . (2 5)

For A =0, the spins are pinned, i.e., the boundary
condition reduces to M =0 at the surface. For
X —~oco, the boundary condition becomes dM/dy =0,
the appropriate condition for free spins at a sur-
face.

We now substitute the superposed solutions
found earlier into the boundary conditions and
obtain the following set of equations:

6
D (~a, cosbu® +iQ, cosdu® +a,singuf®), =0,

=1
(26)
6 2 2
Sli(F -gou-a (&) ur] -0, e
B=1 Ct Cy y=0

6
2 3 k 1n2 5 k
> (-ctaksmeu,‘ )+ic2Q, sindul®
k=1

b (k)
~a,c?cosful 4 -%—”-—) =0, (28)
y=0

S

6
Do+ DMP| =0, (29)
k=1 y=0
6
> (e, + DMP | =0, (30)
=0

k=1
6

DAl@)Y 2 +a, ) n® —4miQ, sind MP}, ,=0.  (31)

k=1

Since M,, M,, h,, u,, u, are uniquely known in
terms of u#,, for a given k, these equations re-
present a set of six homogeneous equations in
the variables u{" to u{?’. Setting the determinant

of the coefficients of u{* to u®’ equal to zero

provides the condition which relates @, to .

The procedure outlined above is carried out
through the use of a computer routine. To do
this, one chooses a real value for & and guesses
a value for @,. (Note that with  real, we ex-
pect @, to be complex in:order to have a damped
wave.) Given these values of @, and @ the routine
calculates the allowed values of @, the relation-
ship of u{*’ to the other dynamical variables for
each root, and computes the value of the deter-
minent D(Q,, ) of the coefficients of u{" to u{®
in the boundary conditions. The problem is thus
to find the complex values of @, for which
D(Q,, %), also complex, is zero. This search
can be efficiently done on a computer, and one
can find the zeroes of D(Q,, ) to high accuracy.
From this one can calculate the dispersion re-
lation, penetration depths, and detail the behavior
of the fields for various angles of propagation.
We discuss the results in Sec. III.

III. RESULTS

The parameters used in this calculation were
those characteristic of YIG. We take

C,;=7.21x10° cm/sec, p=5.17g/cm?,
4rM,=1750 G, (R,7)"=0.01;

C,=3.85x10° cm/sec, b,=6.4x10° erg/cm?,
y=1.759 x 10" rad/secG, D/y =4.55X 10" ¢cm?G.

The external magnetic field of 250G gives a fre-
quency of Q,=vH, of 4.4 x10° rad/sec.
In Fig. 2 we present a graph of C, Im(Q,)/Q

0.003
i NO EXCHANGE

THETA=0.3 7 \
\ EXCHANGE & UNPINNED
B

\, ) EXCHANGE 8 PINNED

0.0001

CRIm(Q“)/Q
o
(o]
o
N
T

T

0.00!

0.000 : J
o]

| 2 3 4 5
QrQy

FIG. 2. Attenuation peak for the magnetoelastic wave
when =0.37. We superimpose the results for three
cases: no exchange, exchange and unpinned, and ex-
change and pinned. In the inset we show on expanded
view of the curve near (Q5/Q,)!/2, the top of the
bulk spin-wave band in the limit of no exchange.
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vs Q/QH. Since the dispersion relation for the
Rayleigh wave is @ =czk,, the quantity CrIm(Q,)/
Q represents the relative size of Im(Q,) to the
wave vector, %, of the Rayleigh wave, and thus
the relative damping of the magnetoelastic wave.
In this graph we have superimposed the results
for conditions of no exchange, exchange and un-
pinned, and exchange and pinning. The broad peak
seen for all three conditions is largely unchanged
by the introduction of exchange and pinning. This
is because the shape of the peak is controlled by
radiation of energy to the bulk spin waves and the
position and width of the peak is dependent on their
properties. (When we say the energy is radiated
to the bulk spin waves we mean the energy is
carried off by bulk magnetoelastic waves which
have a strong admixture of spin wave character.)

In the frequency region of the peak, the exchange
energy is small compared to the dipole energy,
and the states of the bulk spin waves are not
strongly changed by the exchange interaction.
Also, one does not expect surface spin pinning to
strongly affect the interior bulk spin states. Note,
however, that for the condition of no exchange,
the damping is limited to the frequency region
where spin waves propagate. When the exchange
energy is introduced, the spin wave spectrum is
extended and the range of damping of the mag-
netoelastic wave is also extended.

In Fig. 3 we again graph C,Im(Q,)/Q for var-
ious conditions of exchange and pinning. Here
6 is 0.57 so the wave travels parallel to the applied
field. We note again that the large peak is only
slightly changed by pinning and exchange. In a
previous paper’ it was shown that in the absence

0.0020
THETA=057
1.5%1075 -
NO EXCHANGE
0.0015 -
(o] UNPINNED
~ -
<] 00010 |- o PINNED
€ 26 28 30 32
" (Rg/0m)""2
%) B/dlH
0.0005 |-
0.0000 1 1 L 4
o | 2 3 4 5
Q/70H

FIG. 3. Attenuation peak for §=0.57 for the three
cases of no exchange, exchanged and unpinned, and
exchange and pinned. In the inset we again show behav-
ior near (Q5/Q,)1/2,

0.004
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0.003} NO EXCHANGE
a UNPINNED
~
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S o.002}
€ 4.0
E
@
o
0001}
0.000 L J L
0
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FIG. 4. Attenuation peak for 0= 0.77 for the three
cases of no exchange, exchange and unpinned, and ex-
change and pinned. In the inset we show the behavior
of the attenuation constant for frequencies near the
Damon-~Esbach frequency Op5. The small peaks are
caused by the Rayleigh wave coupling to surface spin
waves.

of exchange for waves parallel to the magnetic
field one expects a large peak at Q, and a smaller
peak near (,0;)*/2. Note that in the presence of
exchange the structure at (2,92;)/? is eliminated.
Again this is due to the extension of the spin wave
band which results from the exchange interaction.

Figure 4 shows attenuation versus frequency
for 6 =0.7Tr. There are several strikingdifferences
between this graph and the previous two. First
the height of the main attenuation peak is in-
creased significantly compared to that of ‘the
wave when 6 =0.37." This is an example of the -
nonreciprocal nature of the wave; the wave trav-
eling from right to left across the magnetic field
is more severely damped than one traveling left
to right. This feature is independent of exchange
and is discussed in previous papers.®

Another interesting feature in Fig. 4 is the pres-
ence of small peaks not seen in Figs. 2 and 3.
These peaks are a result of coupling of the sur-
face elastic wave to surface spin waves. Note
that the behavior of this peak is very sensitive
to exchange and pinning conditions.

At this point we briefly recall the properties
of surface spin waves in the dipolar regime. In
the absence of exchange, the surface spin wave,
or Damon-Eshbach wave,'? propagates at a fre-
quency that is dependent only on the direction of
the wave. It propagates only for 6 in the range
T—¢,tor+¢, where

@.=cos ' [(H/B)'?]. (32)
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FIG. 5. Surface spin wave dispersion relation for 6
=0.77 as a function of pinning. The dimensionless para-
meter p is given by <7H7\/ct so that as p increases the
pinning has been decreased. Qpg is the Damon-Esbach
frequency, i.e., the frequency of the surface spin wave
in the limit of no exchange. Also shown is the dispersion
relation for the Rayleigh wave.

The dispersion relation given by
Q,(9) = -3 (R, /cosb + 8, cosb) (33)

is independent of the magnitude of @,. The factor
Qp=yB=y(H,+47 M,). Note thatat =m-¢,,
Q,(0)=y(HB)"?, which is the top of the bulk spin-
wave band. At 6=, QS(G) reaches its maximum of
32y +Q5). :

When the effects of exchange energy and the pin-
ning of surface spins are added into the sur-
face spin-wave problem, the dispersion relation
for the wave becomes dependent on the magnitude
of @ as well as 6. The single frequency allowed
before becomes a band of frequencies. The shape
of the disperison curve is strongly dependent on
surface spin pinning. The wave is damped as it
moves along the surface due to a loss of energy
to the bulk spin waves.

In Fig. 5 we present a graph of CRe(Q,)/2
vs /8, for the surface spin wave when exchange
is included. To generate this curve, we set the
magnetoelastic coupling constant to zero and apply
the methods above to only the spin system. The
graph for 6=0.7r shows the effect of various
pinning parameters. Also the dispersion relation
for the bare Rayleigh wave, uncoupled to the spins,
is drawn.

We can now explain the behavior of the peaks
in the inset of Fig. 4. The sharp peak which oc-
curs in the case of no exchange results from the
Rayleigh wave driving the spin system in a res-
onant manner. The spin damping causes a dis-
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FIG. 6. Attenuation peak due to surface spin waves
for various pinning constants. Againp= QA /c ¢+ The
peak for no exchange is independent of pinning condi-
tions.

sipation of energy (heating). Note that for the
case of no exchange, the width of the peak is
equal to 1/7. When exchange is added, the peak
is both broadened and shifted. In this case the
Rayleigh wave radiates its energy to the surface
spin system similarly to the way it radiates en-
ergy to the bulk spin system. Note from Fig. 5
that the attenuation peak in the magnetoelastic
wave occurs when the frequency and parallel wave
vector of the Rayleigh wave are close to.those

of the surface spin wave. This explains the shift
in the position of the peak. The peak is broadened
because the Rayleigh wave interacts with the sur-
face spin wave over a range of frequencies, not
just at the Damon-Eshbach frequency.

In Fig. 6 we show the shape of the attenuation
peak due to the surface spin waves as a function
of various pinning parameters for fixed exchange
constant D. We see that as pinning is increased,
the position of the peak shifts toward higher fre-
quencies and the peak is broadened. Although
this graph is for 0.7, it is typical of results at
other angles. Again these results may be under-
stood in reference to Fig. 5. In Fig. 5 we see that
the intersection of the Rayleigh wave dispersion
curve and the surface spin-wave dispersion curve
occurs at higher frequencies as pinning is in-
creased, and thus the peak is shifted.

In Fig. 7 we show the attenuation peak due to
the surface spin waves for various angles. These
results are similar to those for the case of no
exchange in that the height of the peak is large
near the critical angle and becomes smaller as
0 approaches 7.
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FIG. 7. Attenuation peak due to surface spin waves
for various angles of propagation. Note that for the
parameters used here 6., the smallest angle for which
the surface spin wave exists in the limit of no exchange,
equals 0.6237.

We explore the shape of the surface spin wave
peak as a function of the spin damping constant
in Fig. 8. The spin damping parameter used here
is I'=1/9Q,7, where T is the spin-relaxation time.
In this graph we see that the height of the peak is
sensitive to spin damping, but the width is in-
sensitive. This indicates that the energy lost to
the surface spin waves is primarily a radiative
process similar to the loss of energy to bulk spin
waves. Indeed, a similar graph made for the bulk
spin wave peak shows analogous results; the height
is sensitive to I" but the width is not. With the

0.00015

THETA =077

S 0.00010
~
S
£
L)
@
(&}
0.00005
0.00000E . .
31 32 33 34 35 36
Q/Qy ’

FIG. 8. Attenuation peak due to surface spin waves
for various values of the transverse spin relaxation time
73 6=0.77. The dimensionless parameter I'= 1/&2,,7.
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FIG. 9. Attenuation peak due to surface spinwaves as
a function of pinning constant and magnetic field
strength. Again p=Qu\/c, and 6=0.77.

addition of exchange, the width for both the bulk

spin wave p

controlled,

spin wave.
In Figs. 9

eak and the surface spin wave peak is
not by I, but by the dispersion of the

and 10 we present results on the be-

havior of both the surface and the bulk spin wave
peaks for different magnetic-field values. In

Fig. 9 at ea

ch field setting, several curves are

drawn corresponding to different surface spin
pinning conditions. We see that at each value of
the field, pinning qualitatively effects the curve

in the same

way. With increasing pinning the

peaks are shifted to higher frequencies and are
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FIG. 10. Attenuation peak due to bulk spin waves for
various magnetic field strength; 6=0.77. Although we

show only the

unpinned case here, the effect of pinning

on these graphs is virtually unnoticeable.
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TABLE I. Absolute attenuation lengths (cm).
Magnetic field Bulk waves’ Surface waves

Q) Unpinned A=4.37x 107° em A=8.75x10"% cm

500 0.0093 0.160 0.190 0.298

250 0.0109 0.246 0.303 0.488

125 0,0112 0,981 0.906 0.968
broadened. In Fig. 10 we draw only the unpinned Thus we have seen that the elastic system in-

case for the different field settings. The effect
of the pinning of surface spins is unnoticeable.

It is interesting to note that as the magnetic
field is increased, the relative height (i.e., the
wavelength compared to damping length) of the
peak due to bulk spin waves decreases, but the
relative height of the peak due to surface spin
waves increases. In Table I we compare the
absolute attenuation lengths for the various cases.
Note that even though the attenuation due to the
surface spin waves is less than that due to bulk
waves, it still damps the magnetoelastic wave
significantly. In all cases the absolute attenuation
length decreases with increasing field strength.

teracts with both bulk spin waves and surface

spin waves. In regions where the interaction is
strong the resulting magnetoelastic wave is damp-
ed. Introducing exchange interactions and pinning
of surface spins primarily effects the surface
spin wave system. This is reflected in the mag-
netoelastic wave by an increase in the width of

the attenuation peak associated with surface spin
waves.
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