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Spectral diffusion in a one-dimensional percolation model
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Spectral diffusion on a one-dimensional chain with a random distribution of interruptions is considered. An

exact solution for the time decay of the initial excitation is computed. The solution exhibits an exponential

behavior initially, diffusion (t ") behavior at intermediate times, and a long time decay —expI' —(Xt)'"].
The relationship of this problem to the vibrating chain with some infinite masses, and to a related band-

structure problem, is discussed. The possibility of observing the predicted behavior in fluorescent-line-

narrowing experiments is also discussed, and some limits on the relevant parameters are given.

I. INTRODUCTION

There has been considerable interest recently
in one-dimensional diffusion problems in disor-
dered systems. ' ' In part, this reflects the inten-
sive Iexperimental work on quasi-one-dimensional
systems to which these studies are directly applic-
able. From a theoretical point of view, one hopes
that the simpler one-dimensional situation will
produce some insight into the more complicated
situations of higher dimensionality. Our purpose
here is to investigate spectral diffusion in a one-
dimensional percolation model. Most of the ques-
tions one usually asks in studying percolation do of
course become trivial in one dimension. It is ob-
vious, for example, that all states are localized,
and there is no spatial diffusion to infinity. We
shall show, however, that one can obtain interest-
ing and in a way surprising results by studying
spectral diffusion in such a model. Also, the re-
sults are probably relevant to fluorescent-line-
narrowing (FLN) experiments in suitable systems. 4

To motivate the quantity we want to.calculate,
we first discuss the physical model briefly. Con-
sider excitations, which, in a perfect system,
would form an exciton band. In physical systems
the individual site energies are not all equal but

rather spread out over an energy range referred
to as the inhomogeneous broadening. It is usually
a good approximation to regard these shifts as un-
correlated in spatial position. If the inhomogeneous
broadening is small compared to the near-neighbor
transfer integral, the elementary excitations are
exciton-like, with the site energy randomness act-
ing only as a small scattering perturbation. If the
reverse is true (i.e. , if random vacancies were
present) coherent propagation would not occur.
The chain would be broken into segments, the
length of each segment being a random variable.
This is the model we shall deal with shortly.

Consider now a FLN experiment. - These experi-
ments involve exciting the system with a pulse of

narrow-band (e.g. , laser) light considerably
narrower than the excitation. spectrum of the sys-
tem (e.g. , the inhomogeneous broadening). Thus,
only states whose excitation energy coincides with
the pulse frequency are initially excited. After
the initial pulse the profile of the emission spec-
trum is monitored as a function of time. Initially
it coincides with the excitation profile. As a re-
sult of the transfer of excitations to other states
whose energy' is different, the profile will grad-
ually decay tea'rds the equilibrium density of
states associated with the full system. This trans-
fer of excitations to other energies is termed spec-
tral diffusion. Spatial transfer is clearly involved,
but the distance traveled is not directly relevant.

When the transfer Hamiltonian is weak, com-
pared to the inhomogeneous broadening, excita-
tions are localized. A single-state representation
is u seful, and tran sfer from one site to another
proceeds by means of (incoherent) phonon-assisted
energy transfer. ' This essentially classical trans-
fer obeys a classical diffusion equation for the
case of those transfer processes where the trans-
fer rate is independent of energy mismatch be-
tvpeen initial and final sites. Reference 5 displays
one such process. ' These conditions lead to our
model, which we hope, therefore, may be relevant
to physical systems.

Our model consists of a linear chain of sites with
random energies with nearest-neighbor transfer
rates (W„„+,= W+, „) distributed independently ac-
cording to

p(w) -p&(w)+(l -p)d(w- w,).
%'e thus, neglect any dependence of the transfer
rates on energy mismatch as discussed above. We
also note that one obtains a completely equivalent
model if the disconnections (W=O) are due to the
presence of impurities on the chain. %e define
an excitable site as a site whose energy is in the
initially excited (FLN) range. The density of such
sites is designated by p. The probability that the
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site is actually excited is designated by c. We cal-
culate the density of excitations on the FLN sites
as a function of time [P(t)]. We are able to cal-
culate this quantity exactly. The interesting re-
sults relate to the long-time behavior (Wot» 1).
We obtain

malized to give the (average) probability per site
in the chain. Now, because of the distribution of
bonds (1), the chain is actually separated into seg-
ments of different lengths. The probability of find-
ing a segment of length N is'

R(N) =P(1-P)" ',
1P(t) = cq[q+P(1 —q)]+cq(l —q)

(4 vW, t) 2t2

x [1+(1).t)' ']exp[- —,'(At)'t'], (2)

where A=-,' v'o. 'W, and o. "--ln(l —p). This result
has curious consequences. For small P (nearly
all bonds connected) there is a time regime where
the amplitude falls as expected for the diffusion
equation

P(t) —P (")" 1 1«2wot«4/v'o)'.
(4vwot)' '

and we can write

P(t) = Q R(N)NP„(t)/ Q R(N)N,
N=]. N=z

where P„(t) is defined a,s in Eq. (6), but for a
finite segment of length N:

PE(t) Q QNNCMLPNNL(t) )

where

(6)

()
For longer times the decay is again exponential

P(t) —P(~) CC exp[- gXt)'t') . (4)

This latter regime reflects a situation where
(rare) large clusters dominate the time dependence
of the correlation function. We note that for large
P (P ~0.2) the diffusion regime (t ' ') disappears

A second feature of importance is that, from
the nature of the model, all excitations are spa-
tially trapped. This enhances the constant term
in E)ll. (2) over the simple average which one
might expect for the full system.

We present the model and calculations in Sec. II.
We discuss the significance of the results and their
possible generalization iri Sec. III. We also briefly
discuss some other problems to which these re-
sults are applicable.

(10)

is the probability of having I excitable sites on the
chain segment and

C221. =
i

i

c (1, —c)

(L)
is the probability of having I. excitations on these
M sites. P„«(t) is the probability that excitations
are on excitable sites for segments of length N
with M excitable sites and I. initial excitations,
averaged over all configurations of the (M) sites
and L initial excitations on the segment.

A direct computation using the eigenfunctions of
Eci. (5) for a finite segment gives

LM L(N- M)
NA'L( ) N2 N2(N 1)

II. CALCULATION OF ~{&)

N-1

x P exp 2wot(cos —1)N (12)

for any initial distribution and degree of excita-
tion. ' We denote the set of excitable sites by fn)
We want to calculate the probability that excita-
tions which were initially on fn] are still on this
set at time t,

P(t)= + + P.(t)P. (0),
nC(nJ n 'gfn)

(6)

where the averaging is over all (equally probably)
configurations of initially excited sites and is nor-

We consider a linear chain with nearest-neighbor
transfer rates distributed according to (1). The
site occupation probabilities obey the linear rate
equations

dp„" =W„„„(P„„—P„)+W„,„(P„,—P„), (6)

Substitution of (12) into (9) and carrying out the
sum on M and 1. gives

I2', )))= —.2I) 2' )) ))-2)-
&& ~ exp 2W, t cos —1

l= 1.

Finally, substitution into (8) yields

P(t) =cqf)q+p(l —q)[1+f(t)]),
where

(14)

l(t) = Q ))(22) Q 2 222tcos —)] . ,N
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It will be convenient to rewrite (15) as a Laplace
transform

(()) ()) =f'Xpx( )xexp( x)—x(),,
0

(16)

where p(e) is the density of states of the eigen-
values of (5) (except for the delta function which
we have removed at e =0). Domb et al. ' have dis-
cussed the analogous problem of lattice vibrations,
and Rice and Bernasconi' the electronic density
of states for interrupted chains. Both problems
are mathematically equivalent to our problem.
Rice and Bernasconi find an expression for the
density of states, "

1
P( )= 2,~

(vn/2 vV)'
[exp(vo. /2v e) —1][1—exp(-vo. /2v e)]

(17)

The quantity exhibited in (17) is "smoothed"; Ref.
9 shows that the true density of states is highly
irregular. We require only integrals of p(e) so
that use of a smoothed density of states is justified.

The expression (17) inserted into (16) is very
complicated, though it can be examined in the
long-time limit. Vfe prefer to use an integral ap-
proximation for the sum in (15) which will enable
us to pass continuously between two limiting be-
haviors in the long-time limit (see below). The
more correct result, Eq. (17), is too complicated
to allow a similar calculation, though we shall use
it for comparison.

Vfe are interested in the long-time behavior of
I(t), where W, t» 1. Thus, the lowest eigenvalues
in (15) will dominate. These correspond to small
q = vl /N, so that one can expand the exponent in

(15). The dominant effect for the density of states
is the fact that a finite cluster has a finite lowest
eigenvalue (at (I = v/N) If one de.scribes this by a
cutoff in an otherwise continuous cluster density
of states (proportional to 1/)) e ), one finds,

p(e) =(c(/4e) exp(-vu/2'), (22)

while the more exact expression (17) reduces to

p(e) =(vn'/8e't. ') exp(-mo/2') . (23)

This has the effect of changing the exponent of
the coefficient of the exponential in (20) from t ' '
to t' '. This has no significant impact on the time
dependence because of the dominance of the expon-
ential in (20).

III. DISCUSSIONS

The percolation model discussed in this paper is
formally equivalent to that discussed by Domb
et al. ' and by Rice and Bernasconi. ' The essential
difference is the measurable quantities one com-
putes and, therefore, the physical system to which
the model relates. For example, the effects we
predict may be observable in suitable FLN experi-
ments.

Summarizing our own results, we find three
time regimes for I(t). An initial exponential decay
[-exp(-Wot)] for 2Wot& 1. In the vicinity of 2Wot
-1, this crosses over into a diffusion regime
[(W,t) ' '] for the interval

where & =
&

m' e'5' .
The advantage of this procedure is that it exhibits

the crossover from a diffusive (t 't') regime to
the exponential (exp[- (At)' ']) long-time behavior
in closed form. Unfortunately, the combination
of approximating the sum in (15) by an integral,
and the approximation contained in the saddle-
point method, does induce some errors into our
final result [Eq. (20)]. For the diffusive regime,
A. t& 1, one should have

pf(t) =(4vw, t)". (21)

This differs from (20) by the numerical coefficient
(-,')' '. Note that one would obtain the correct re-
sult, (21), if one puts @=0 in (19) directly, and
then evaluates the integral. In the exponential
regime, another error enters, also in the pre-
factor. For e«a', (19) becomes

'p(e) = NdNe ™x
2 W E fr/2~g

(18) 4/v'u'» 2W, t » l. (24)

for sufficiently small e(e«-,'v'). Integrating (18)
yields

p(e) =(I/2vv e)[l +(vu/2vV)] exp(-vn/2v e ) .

Substituting (19) into (16), and evaluating the inte-
gral by the method of saddle points, gives

Pf(t)=,/, [I+(~t)"] exp[ —R~t)' '], (20)
(SvWot)

n =P&0.2, (25)

i.e., an average segment size of at least five con-
nected bonds. For these values, the crossover to

Finally, at long times, we predict the time depen-
dence of Eq. (20).

The diffusion regime can only be observed if P
(i.e., a) is sufficiently small so that the time inter-
val for which it is valid becomes reasonably long.
To obtain a decade in the requirement (24) results
in a subsidiary condition,
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the exponential regime occurs when

(26)

appropriate to which the crossover amplitude is
reasonably large

To evaluate the feasibility of an experiment, t,.,
should be compared with the radiative lifetime
T„d and with the spatial trapping time of an excita-
tion in a segment (r„,„), which is finite in any
physical system though infinite in our model. One
requires

(28)

to observe the two regimes. This should be feas-
ible. The contiriuum approximation we have used
assumes large N(=P ') and may still be rather
poor at the crossover for values of P as high as
0.2. This would tend to make the conditions (28)
somewhat more stringent.

For less idealized linear-chain systems, with a
general (continuous) distribution p(W) of nearest-
neighbor transfer rates, the long-time behavior

can become much more complex and will be dis-
cussed in a future publication. " We can expect,

t

however, that the most prominent features of our
present result will remain. The long-time expon-
ential decay (20) to an enhanced constant term
P(~) will govern the long-time behavior of systems
with a large fraction of very small transfer rates.
If no real interruptions are present, the enhanced
constant term will, of course, eventually also de-
cay. Depending on the form of p(W) for W-O,
this final decay can be much slower than ordinary
diffusion (f '~')."
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