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One-dimensional Kapitza conductance: Comparison of the phonon mismatch theory with
computer experiments
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We present the analog of the Khalatnikov theory for the Kapitza conductance h„at the boundary between
two dissimilar classical one-dimensional harmonic chains of atoms. We then perform steady-state molecular-
dynamics computer experiments to determine h„directly. The phonon mismatch theory gives'only order-of-
magnitude agreement with the computer experiments. Preliminary calculations indicate that anharmonicity
increases the Kapitza conductance.

I. INTRODUCTION

In 1941, while performing experiments on liquid
helium II, Kapitza' observed that a finite-tempera-
ture discontinuity appears between liquid helium
and a metal when a heat flux is maintained across
the interface. This temperature discontinuity is
the result of an interfacial thermal resistance now
called the Kapitza resistance 8„. Although the
name "Kapitza resistance" originally applied only
to liquid helium-solid interfaces, its use to de-
scribe any thermal boundary resistance is general-
ly accepted.

Theoretical explanations of the Kapitza conduc-
tance k„(h„=-ft„') have failed whenever a quantum
liquid or quantum solid is present on one side of
the interface, ' indicating that for these cases the
fundamental mechanisms are not well understood.
Even for classical systems, however, there are
reasons for doubting the usual theoretical explana-
tions, as will be pointed out in Secs. II and III.
%e have therefore undertaken a study of the Kapit-
za conductance for simple systems by using mo-
lecular-dynamics computer experiments. (By
molecular dynamics we mean a computer experi-
ment in which the behavior of a system of particles
is analyzed by numerical integration of the equa-
tions of motion. ) Using molecular dynamics, one
may vary the particle masses, the lattice con-
stants, the interatomic forces, and the tempera-
tures of and the interactions with thermal reser-
voirs. Hence, one may determine which proper-
ties of the lattices most influence the Kapitza con-
ductance. Moreover, one may study how the an-
harmonic terms in the interactions (which are es-
sential to the theories of the thermal conductivity
and thermal expansion of solids) affect the magni-
tude of h„; these terms render analytic approaches
relatively intractable. It is possible that the large
anharmonicity of quantum systems, not their quan-

turn nature per se, is the element missing from
previous theoretical work.

There are a number of disadvantages in using
molecular dynamics. One of these is the cost in
terms of computer time. A typical computer cal-
culation for a 35-particle lattice and for 10' fourth-
order Runge-Kutta integration step's takes approxi-
mately 50 min on an IBM 360/65. Straightforward
calculations of h„ for two-dimensional lattices
might prove to be prohibitively expensive. There-
fore, the present study is restricted to one-dimen-
sional systems, and one must be cautious about ex-.

trapolating the results. Moreover, the calcula-"
tions are necessarily classical and therefore can-
not generate any intrinsically quantum-mechanical
effects.

It is clear that our results cannot be applied di-
rectly to any real systems. The major objective
of the present study is to compare the k„calculated
from computer experiments with that from the
Khalatnikov acoustic mismatch theory which we
extend to shorter wavelengths (hence phonon mis-
match theory). We find only order-of-magnitude
agreement between these two approaches.

A short review of the previous theoretical work
on the Kapitza conductance problem is presented
in Sec. II. Section III contains a presentation of
the Khalatnikov (phonon) mismatch theory for the
one-dimensional case. In Sec. IV, the direct
steady-state molecular-dynamics (SSMD) calcula-
tions of h„ for various lattices is presented. Sec.
V contains a summary and discussion.

II. REVIEW OF THEORETICAL WORK ON h,

Although a sizable amount of theoretical work
'has been done in the last 25 years, no satisfactory
treatment of the Kapitza problem has been given;
theoretical values of h„are often smaller than ex-
perimental ones by an order of magnitude or
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more. 4 Khalatnikov' and, independently, Mazo'
developed an acoustic mismatch theory to describe
the Kapitza conductance for the specific case of a
solid-liquid helium interface. Although the Khalat-
nikov theory appears to be satisfactory for inter-
faces between classical solids and classical liq'-
uids, the theory fails whenever a quantum solid or
quantum liquid is present, except at temperatures
below 0.1 K.'~

Early in the history of this problem, Littlev
pointed out a serious difficulty with the Khalatni-
kov theory —that when the two materials become
identical, so there is no interface, the Khalatnikov
theory does not predict an infinite Kapitza conduc-
tance. However, he provided no alternative to the
Khalatnikov theory.

Simons' and, independently, Visscher' subse-
quently modified the Khalatnikov theory to include,
on each side of the interface, phonon distribution
functions which have bvo components. The first
is the Bose-Einstein equilibrium distribution as-
sumed by Khalatnikov which can support no heat
current (we shall call this assumption the Khalat-
nikov ansatz). The second term is a nonequilibrium
distribution which is responsible for the heat cur-
rent. Although the resulting correction to the
Kapitza conductance is in the right direction to
lessen the discrepancy with experiment, its mag-
nitude is generally inadequate. " This modified
Khalatnikov theory, however, does have the de-
sirable property that if. the materials on each side
of the interface become identical, then A„does
indeed diverge. We will apply it in the next sec-
tion to the one-dlrQeQslonal pl obleDl.

Haug and gneiss" and Peterson and Anderson"
have attempted to explain the experimental values
for k, at a 'He-solid interface in the 0.1~T ~1.0'K
regime by taking into account the phonon absorption
in the solid as caused, for instance, by scattering
off surface dislocations. Vuorio" has observed
that these theories, which attempt to account for
phonon attenuation, suffer from three important
defects. First, they do not satisfy the principle of
detailed balance in thermal equilibrium. Second,
the complex wave vector introduces dissipation
into the system, but the question of where the en-
ergy goes and how that affects the transmission is
neglected. Third, a complex wave vector does not .

properly describe the attenuation (due to scatter-
ing) of a phonon. Such an approach may be used
for electromagnetic radiation in a metal, where
the scattering is delocalized, but not for phonons
of thermal energies where the scattering centers
are well separated compared to the phonon wave-
length.

Other attempts on the Kapitza conductance prob-
lem have been initiated within the framework of

transport theory. Budd and Vannimenus" used a
simple Boltzmann equation approach to provide a
phenomenological desc ription of thermal transport
across a metal-insulator interface, using this to
calculate the spatial variation of the temperature.
Erdos and Haley also have used a simplified
Boltzmann equation in a related study. '4 Later,
Saslow formulated the Kapitza conductance prob-
lem within the framework of transport theory in
a more general and rigorous manner, utilizing
the surface solutions of the Boltzrnann equation to
match the boundary conditions at the interface. "'
Unfortunately, the complexity of the transport the-
ory approach has prevented its application in
specific calculations. It should be noted that
acoustic mismatch and related theories omit the
surface solutions of the Boltzmann equation (which
are included in the transport theory approaches),
thus neglecting volume scattering in the vicinity
of the interfac e.

The transmission coefficient at the interface is
of fundamental importance in the Khalatnikov theo-
ry of the Kapitza conductance, and an adequate
explanation for its magnitude, at least when a
quantum system is present, does not exist. It is
interesting to note that, in at least one case, a
simple classical theory has had unusual success.
Sluckin" proposed a classical billiard ball cou-
pling across the interface as a model for the en-
ergy transport mechanism. The resulting trans-
mission coefficients for interfaces between liquid
helium and various solids (with atomic weights be-
tween 30 and 210) agree surprisingly well with ex-
perimental results.

Although this review of previous theoretical
work on the Kapitza conductance problem is by no

means complete„ two facts do emerge: (i) There
is no general agreement on the form of the trans-
mission coefficient G when a quantum system is
present, and (ii) there is no general agreement on
how to calculate h„even if o! is known (e.g. , is the
Khalatnikov ansatz correct, will a heat current
correction suffice, is a full transport theory ap-
proach required'P) Additional references may be
found in the review articles by Pollack, ' Challis, "
and Snyder. Note that we have completely ig-
nored the h„problem when the energy transport
is mediated primarily by spin systems. This re-
cent area of research may be traced through the
references contained in Maki et al.'0

HI. KHAI.ATNIKOV THEORY IN ONE DIMENSION

%'e shall now present the Khalatnikov theory for
the classical one-dimensional case." We will also
include modifications to allow for the presence of
a heat current. Our model is illustrated in Fig. 1.
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FIG. l. One-dimensional model for the calculation of
the Kapitza conductance h„.

It consists of two semi-infinite harmonic chains,
each with lattice constant a and length I, connected
at the origin. The chain on the left-hand side
(n —0) is composed of atoms with mass M, nearest
neighbors interacting with harmonic force con-
stant I". On the right-hand side (1~n), the chain
has atoms of mass m and force constant y. The
two chains are connected by a harmonic force be-
tween atoms 0 and 1 with a force constantg. To
find the transmission coefficient, one assumes a
wave incident from the left, a reflected wave of
amplitude 8, and transmitted wave with amplitude
T on the rlgllt:

&ikna+ ft& ikna
(&

-m 0)

T&ia(n k)a
(&

-m 1)

(3.1a)

(3.1b)

Equations (3.1) give the displacement of the nth
particle from equilibrium; not explicitly shown is
a factor e '"' where ~ satisfies

(o' = (2I'/M)(1 —coska)
= (2y/m)(I -cosqa} . (3.2)

A tedious but straightforward algebraic manipula-
tion of the equations of motion yields

ng ngt+ np (3.7)

Rnd RssUmlng that the even pRlt n~ ls R Bose-Ein-
stein equilibrium distribution. (The distribution
n, is treated the same way. ) The odd part nk= nk-
is entirely responsible for the heat current since
in the bulk,

Q = Q tlk5kek= 2 + vkek8k ——2 Q v e n
q&0

(3.6)

If we now assume that there is a, small tempera-
ture difference ~T = T~ —T~ between the two sides
Rnd note that ln the high-temperature. 11mlt the pho-
non densities become

satisfies the Khalatnikov ansatz if the phonon dis-
tribution functions n~ and n, are replaced by the
Bose-Einstein equilibrium distribution functions
F7k and n, ) has a certain intuitive appeal. It is, in
fact, correct if the phonon density matrix is dia-
gonal, and forces are harmonic everywhere, allow-
ing no inelastic scattering. In the solid-liquid
situation, neither of these conditions is close to
being satisfied; in the solid-solid case the forces
may be nearly harmonic, but due to boundary con-
ditions the density matrix near the interface is
not expected to be diagonal. Nevertheless, the
Khalatnikov ansatz does, in some situations at
least, give fairly accurate results for the Kapitza
conductance, as we will show in the following.

We proceed to evaluate (3.6) by splitting nk into
an even part and an odd part in k, viz. ,

ft = —(8'kk -gk)/(Bb -gk),

where

fI =I"(1-e '")-g,

(3.3)

(3.4a)

ask =ksT~/L&k,

n, =ksT„/Le, ,

then (3.6) becomes

(3.9a)

(3.R)

k =y(1 —e '") -g. (3.4b)

2 Sink@ siBQG

1 —cos(ka+qa) '

At the heart of the Khalatnikov theory is the as-
sumption that

0

Q = Q klk5kek&k+ Q n opik.
x&o q&0

(3.6)

The ratio of transmitted power to incident power at
this frequency is, for l =y=g,

(3;10)

k~ET
@n '

L Q+k k

k&0

(3.12)

9 =Q.+-.Q(~, +~s) .
0

Here Q, is the heat current in the Khal3tnikov
ansatz, given by

for the net heat transferred per unit time across
the boundary, where n„and n, are the number of
phonons per unit volume (length in one dimension)
on the left- and right-hand sides of the interface,
respectively. The phonon group velocities on the
left and right sides are given by v~ and v, . The
energy per phonon is given by e~= Sm~ and &,
=k~„and nk(= ik, for ~k= &u, ) is the transmission
coefficient given by (3.5). Equation (3.6) (which .

k»0

n~ = nvNE, nv&, .
q&0

If we now define o. by

ik = k (Q~ + ClS) ~

then

(3.13)

(3.14}
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We identify the Kapitza conductance h„= Q/r T and
find .

Q((d) d(d .k~ o

2m
(3.17)

(3.16)

where the superscript c signifies that the conduc-
tance has been "corrected" to account for the heat
current and where h"„ is the conductance in the
Khalatnikov ansatz given by
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FIG. 2. Kapitza conductance
versus mass ratio for harmonic
lattices. The one-dimensional
Khalatnikov conductance h„" is
represented by the solid line.
The "corrected" Khalatnikov
conductance h„ is represented
by the dashed line. The data
points (e) represent )g„'" values
found from SSMD calculations.

~+k ~T
n, = -~v, ' —(n, »n, ),~X

(3.18)

where vk is the phonon-group velocity. However,
this leads to a divergent integral in the one-dimen-
sional case. An alternate expression for nk may
be found with the drift-velocity approximation.
In the drift-velocity approximation, we write the
phonon distribution as

n, =(exp[(e, —rikv, )/u, T I —1f ', (3.19)
'I

where v„ is the phonon drift velocity responsible
for the heat current. Expanding (3.19) in the form
of (3.7), one finds

&k = &a»@v.&k' (3.20)

We have numerically evaluated n by using (3.12),
(3.13), (3.14), and (3.20), and h„" by using (3.17).
The Khalatnikov and "corrected" conductances, k,
and h„', are plotted in Fig. 2 as a function of the
mass mismatch across the boundary (the values
m =1.0 x 10 "

g and y = 8 2556 x 102 erg/cm2, ap-
propriate to Ar, were used in the calculations).

IV. STEADY STATE MOLECULAR DYNAMICS (SSMD)

In this section we report calculations of the
Kapitza conductance based on computer experi-
ments which track the behavior of the lattice until
steady-state behavior is achieved. The model

Clearly if the two materials become identical,
o.'(~) and o' approach unity and I).„'- ~, meaning
that a nonexistent boundary cannot support a tem-
perature difference. In situations where the trans-
mission coefficient is large, the factor (1-o) ',
which has been omitted from most discussions of
thermal boundary resistance, becomes important.

In order to evaluate (3.12) and (3.13) one must
determine an expression for nk. A natural thing
would be to consider the momentum-independent
relaxation time approximation, in which nk is
given by"

e

I II I I

0 2 4 6 8 IO

used for the calculations is essentially the same
as that described by Payton et al. ' The primary
difference between these models is that we divide
the one-dimensional lattice into two parts with
different masses and (harmonic and anharmonic)
forces. This is a model for two dissimilar con-
tiguous crystals. By a mechanism to be discussed
later, one end of the chain interacts with a hot
thermal reservoir, the other with a cold reser-
voir; this results in a flow of heat through the
chain which finally assumes steady-state behavior.
The measured Kapitza conductance is

I „=(j)/~T, (4.1)

where Q is the net heat current at some point in
the chain, the brackets denote a time average, and
~T is the temperature discontinuity at the inter-
face. We evaluate Q by keeping track of energy ex-
change with the thermal reservoirs.

The integration of the equations of motion of the
lattice for each time step is performed by using a
fourth-order Bunge-Kutta integration technique.
To monitor the accuracy of the integrations, the
initial energy of the lattice is calculated immedi-
ately after the initial positions and velocities have
been chosen. During the calculations, a record of
the energy flow at each end is stored. At regular
intervals, the total energy of the lattice is calcu-
lated, the net energy flow into the lattice from the
reservoirs is subtracted from it, and the result
is compared with the initial energy. This check
of energy conservation is a measure of the accu-
racy of the numerical integration which, in turn,
depends on the integration step size. For a lattice
containing 60 particles (m =1.0 x10 2'

g, y= 8.2556
x 10' erg/cm'), for T ~ 3 'K, and for 10' time
steps (we have chosen our time step size to be
2.67 x 10 '4 sec, which is about 1/40 of the mini-
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mum phonon period) the error in the energy is
found to be less than 0.3k.

To monitor the progress of the system toward
the steady state, the temperature profile of the
lattice is calculated at regular intervals, the local
temperature being the time-averaged kinetic en-
ergy of the ith atom:

(Our choice of the interval for the time averaging
is discussed later. ) A typical temperature profile
is plotted in Fig. 3. In order to determine the
magnitude of the temperature discontinuity ~T,
least-squares fits to straight lines are performed
for the local temperatures on each side of the in-

FIG. 3. Typical temperature profile after 10~ integra-
tions. Atoms i=1 through i =10 have mass M, and atoms
i =ll through i=30 have mass nz where M/m =4; the
lattice is harmonic. The points on the abscissa labeled
by H and C are plotted to show the temperatures of the
hot and cold reservoirs, respectively.

terface. The resulting straight lines are extra-
polated to the interface and the difference between
them there is called ~T, the temperature discon-
tinuity. Figure 3 also shows temperature jumps
at the interfaces between each end of the chain and
its respective reservoir (also observed by Payton
et al.'). To insure that the straight-line fits con-
tain only bulk-temperature information, atoms
adjacent to the reservoir or to the interface are
omitted from the analysis.

In order that the conductance is calculated when
the system is in the steady state, we erriploy the
empirical observation (noted by Payton et al. ' and

supported by the present work) that after 10' time
steps the heat current into the, lattice is approxi-
mately equal to the heat current out. We typically
follow the behavior of the lattice through 3 & 10'
time steps and then perform a statistical analysis
on the information from each of the time-aver-
aging intervals, which are chosen to be 10' time
steps.

Because of thermal fluctuations, the value of
(Q,.„) and (Q,„,), the time-averaged heat flow at the
hot and cold ends of the lattice, are different for
any finite time interval. Therefore, in order to
determine the magnitude of the thermal fluctua-
tions, two Kapitza conductances, h.„'" and h,„'"', are
calculated for each lattice using (Q,.„) and (Q,„,) in

Eq. (4.1). The results are summa. rized in Table
I, which shows a considerable increase in the pre-
cision of the conductance values in going from an
average for ten intervals (each interval consists of
10 time steps) to a,n average for 30 time inter-
vals. For all mass ratios, the values of h.„'" and

A,
"' are approximately equal at 3 && 10' time steps;

we consider this to be sufficient evidence'that the
system is exhibiting steady-state behavior.

As in the approach of Payton et at. , energy en-
ters and leaves the lattice through impulsive col-
lisions of the end atoms with atoms from their re-

TABLE I. Steady-state molecular-dynamics conductance values for various mass ratios
and for three time durations. The values of IQ, K have the units 10 erg/sec K. .The lattices
are harmonic.

Integrations
M/m

6 10

lx ].05

hm 51;67+27.38 5.39+ 1.02 4.37+ 0.57 2.14+ 0.29 1.32+ 0.30

hK"' 47.97+ 23.02 5.73+ 1.32 4.51+ 0.86 1.95+ 0.25 1.32+ 0.29

2x 10'
p

in
K

fgOUt
K

35.58+ 14.23 5.08+ 0.71 3.68+ 0.40 1.94+ 0.19 1.20+ 0.23

33.64+ 12.11 5.33+ 0.80 3.83+ 0.54 1.81+ 0.16 1.18+ 0.18

3x 10'
33.45+ 10.37 5.19+ 0.57 3.44+ 0.31 1.77+ 0.14 1.11+0.22

31.76+ 8.89 5.32+ 0.58 3.50+ 0.38 1.73+ 0.12 1.17+ 0.18
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spective thermal reservoirs. The tmo end atoms
are each connected to a fixed mall. To couple the
lattice to the reservoirs, me allom each end atom
to suffer an instantaneous elastic collision with a
reservoir atom whose velocity has been chosen
mith a Gaussian random-number generator corre-
sponding to the. reservoir temperature. Instead of
periodically allowing a collision between each end
atom and its reservoir (for instance, once every
few time steps), collisions are attempted every
time step with a probability A. of success. As
mould be expected from the work of Bieder et al. ,

"
me found that the effici. ency of the coupling betmeen
the thermal reservoirs and the bulk lattice is
strongly dependent on A.. For example, for A. = 1
the coupling is extremely poor because the bulk-
lattice atoms never have the time to respond to
tI1e rapid discontinuous velocity changes of the
end atoms; the system (the lattice) is being driven
(by the reservoirs) principally at frequencies far
above any resonant frequency of the system. The
optimum value of X mas found to be given by A.

'
= 15 time steps; larger values of X degraded the
reservoir-lattice coupling, and smaller values of
A. made Q unacceptably small. This is actually an
"experimental" verification of a prediction of
Bef. 23 that the heat current is maximized for the
maximum frequency hl mhell A. = 2M3E0. US1Qg M

= (y/m)'~' where y= 8.2558 &10 erg/cm' and m
=1.0 &10"g, the resulting value for X is 2.5
&& 10" sec '. For a step size of 2.67 && 10 "see,
th'is means that A. 1= 15.05 time steps, which is
very close to the value found "experimentally. "

The kinetic temperature which we observe in.

our harmonic lattices changes rapidly near each
reservoir Rnd is then more or less constant until
the interface is approached. The rapid tempera-
ture variations in the vicinity of the reservoirs
mould seem to suggest that surface solutions of
the Boltzmann equation are present. "" A har-
monic lattice, however, has no phonon collisions
2nd, therefore, no Boltzmann equation associated
mith it. It is interesting to note that random com-
puter round-off error and errors produced by the
Bunge-Kutta integrations have the effect that each
atom in the lattice is subjected to a very meak
stochastic force mhich simulates collisions. A
model mhich explicitly i.ncorporates such a sto-
ehastie force, in the form of a reservoir at each
site, has been studied by Bolsterli et al. '4 Note
that Bieder et al."have made an analytical study
of heat f lorn across a one-dimensional harmonic
chain, finding rapid variations in the kinetic tem-
peratures in the vicinity of the reservoirs. In
their model, collisions do occur with the reser-
voirs and this ls suffle1ent to produce expollentiRI
temperature profiles at the interfaces with the

reservoirs. They found, however, a peculiar tem-
perature variation whfch drops (rises) as the hot
(cold) reservoir is approached. Most likely this
is an artifact of their model, having to do with the
reservoir coupling. This reservoir coupling si01-
ulates collisions mith the end atoms only on the
average; the computer experiments explicitly ac-
count for the rapidly fluctuating nature of the in-
teractions with the reservoirs, as mell as their
average behavior.

We now discuss our SSMD results for k„. For
30 time intervals and various mass ratios, A„'" is
plotted in Fig. 2. The SSMD conductance h„'" for
the mass ratio of 2 is, mithin statistical error, in
agreement with k„', the conductance corrected for
the heat flux, The large error bars for this mass
ratio occur because of large X' in the least-squares
fit to the temperature profile; the values of (Q,.„)
and (Q,„,) are equal to within 0.2%. For mass
ratios of 4 and 6, however, the k,"values are in
agreement mith the h„" values. For the largest
mass ratios of 8 and 10, the h„" values are about
twice the h„'" values. The behavior of the SSMD
conductances suggests tmo things. First, the
"corrected" conductance k„' is too big at the larger
mass mismatehes. Second, the Khalatnikov pre-
diction, h„, is probably unreliable because it signi-
ficancy overestimates A.„at large mismatch; no
particular significance can be attributed to the fact
that the Khalatnikov values agree with the SSMD val-
ues for mass ratios of 4 and 6, because their curves
must cross somemhere. Since most systems of ex-
perimental interest correspond to very large mass
mismatches, our results sug'gest that the Khalatni-
kov theo ry may be unacc eptable in these cases.

In order to check the size dependence of the
SSMD conductance values for large mass ratios,
me performed a second calculation of h„" and h„'"'

for M/m = 8 with a lattice twice as large as the
lattice used for the M/m = 8 values in Table I.
The size dependence, if any, is less than the sta-
tlstleRl e1101.

We have also performed some preliminary SSMD
studies of the dependence of k„on the anharmonic
coefficients in the interatomic potentials for vari-
ous mass ratios. Payton et al. ' wrote down the
first four terms of the Taylor-series expansion
of the I ennard-Jones potential as

(4 8)

mhere co is the potential depth, x, is the equilibri-
Um sepRlRtlon cIlstRQce, Rnd py p. ~

Rnd P Rl e given
by
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y = 72&,/r'„

p =756eo/ro, (4.4b)

v = 4452eo/xo . (4.4c)

So far we have studied only anharmonic lattices
for which the forces are the same on both sides of
the interface (the only: mismatch being in the
masses). Preliminary calculations of the Kapitza,
conductance for M/m =4 which include the cubic
and quartic anharmonic terms are presented in
Table II. The values labeled "anharmonicitp= 1"
employ the following potential coefficients (which
are similar to those for argon):

y =8.2555 x10' erg/cm',

}j, =2.2714 x 10" erg/cm',

v =3.5048 x10" erg/cm'.

(4.5a)

(4.5c)

In order to study the effects of different anharmon-
icity we keep the same value of y and scale p, and
v according to Eq. (4.4); i.e. , if p, is changed to
np, , then v is changed to n'v. (This corresponds
to keeping e,/r', constant and decreasing r, to
x,/n. ) We describe the resultant potential as
having "anharmonicity =n." The values labeled

RnhRlmonicity = 0 Rl 6 of course the harmonic
results for the same number of time steps. As
seen in Table II, increased anharmonic strengths
increase A„above the Khalatnikov value and in the
right direction (1f the same holds true for labora-
tory systems) to lessen the disagreement with ex-
perimental results.

In order to test the validity of the Khalatnikov
ansatz, we have calculated the Kapitza conductance
h„of one-dimensional harmonic lattices for vari-
ous mass ratios by several methods. First, the
one-dlmenslonal RQRlog of the KhR1Rtnlkov Rcoustlc
mismatch theory was developed. Second, the
Khalatnikov theory was modified to account for the
presence of a heat current through the lattice.
Third, k„was calculated for these harmonic lat-
tices by using steady-state molecular-dynamics
computer experiments.

To be brief, the Khalatnikov ansatz is not sup-
ported by the results of our computer experiments.
Note that we have treated only the case of classi-
cal systems with phonons described by classical
statistics as opposed to the case of classical sys-
tems with phonons described by quantum statistics,

TABLE H. SSMD conductance values for different an-
harmonicities. The mass. ratio is M/n =-4 and the values
are for 105 integrations. The Khalatnikov value is hK

=5.05&& 10 ~ ergs/sec K and the "corrected" Khalatnikov
value is k„=12.00~ 10 ' erg/sec'K for the harmonic
lattice.

Anharmonicity
A„(10 5 erg/sec'K)
Q lII @out

5.39+ 1.00
5.38+ 0.77

11.47+ 2.34

5.73+ 1,30
5.82+ 1.15

10.86+ 1.94

%6 gratefully acknowledge Professor H. E. Hor-
schach, Jr., for a seminal discussion on tempera-
ture jumps at an interface. We also tha, nk Pro-
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for which experimental evidence already exists~'25

to support the Khalatnikov ansatz. Because of the
classical statistics, phonons of large wavevector
make an important nonacoustic contribution to k„,
and in this way the computer experiments differ
from 1Rbox'Rtory experiments.

In addition to the studies of hax'monic lattices,
we have also performed prelimina, ry SSMD calcu-
lations of h, for Rnharmonic lattices. The calcu-
lated conductances are larger than those for har-
monic lattices and are in the right direction (al-
though insufficient in magnitude) to lessen the dis-
agreement with experimental results. We are
pl esently conducting more detRlled studies of the
effects of anharmonicity.

To conclude, it cannot be overemphasized that
the pxesent xesults constitute the flxst KRpltzR
conductance experiments (computer or otherwisi )
on a "clean" system. It is clear that the phonon
mismatch theory for this system (where the phonon
transmission coefficient is well understood) does
not agree with the computer experiments. How-

ever, it does give better than order-of-magnitude
agreement for the cases we have studied so far.
(Recall that we have not yet studied the effect of
force-constant mismatch. ) It may be that the pres-
ent disagreement between the acoustic mismatch
theory and laboratory experiments arises not so
much from the Khalatnikov ansatz as from the fact
that the phonon transmission coefficient is poorly
understood. '~"
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