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A new method for the calculation of the excitation spectrum of liquid 'He is developed based on the wave

function }( (x„x2) = (0~ Tpt(x, )Q(x,)~a) that is directly related to and completely determines the

dynamic structure factor S(k, co) of liquid He, and then employing this method a calculation of the sound

spectrum of liquid He is performed taking explicitly into account the depletion effect although it is based on
the McMillan's data for the ground-state momentum distribution of liquid "He. First, by employing the
exponential-decay and effective-mass approximation for the single-particle Greens function, the two-time

Bethe-Salpeter integral equation for y (x„x2) is transformed into the one-time Schrodinger equation. This is

thus an approximate Schrodinger equation the solutions of which give S(k, eo) of liquid "He, In the
exponential-decay approximation, the numerators of the single-particle Green's function are the true
momentum distribution Nq of the ground state of liquid 'He, which then enters into the Schrodinger

, equation in an essential way. Through this N"~, both the presence of a condensate and the large depletion of
particles from the zero-momentum state in He can be properly taken into account, And the effective mass of
a helium atom is determined using the McMillan s data and the Lennard-Jones potential. The Schrodinger
equation is then solved in the limit k~0 using the McMillan's data, and an excitation spectrum of 'He of
the form [ek& + 2anv(k)e&/(1+D)]'" in the limit k~0 is obtained, which differs from the Bogoliubov
form by the factor (1+D) ' and the replacement of the bare mass m by the effective mass m*. D, being

proportional to (1—a)n, represents the depletion effect. The expansion of the above expression gives for the
sound velocity of liquid He c = 190 m/sec and verifies the positive phonon dispersion.

I. INTRODUCTION

The excitation spectrum of liquid 4He is just
the singularities of the dynamic structure factor
S(k, tc) of sHe at T =0 K, which is the Fourier
transform of

s(x, x') =2 (4c Ig'(x)g(x)g (x')g(x') I@c),~ = 1

where x=(x, f), I4'c) denotes the ground state of
the N-particle 4He and we use the normalization
V= 1, where V is the volume. Let the complete-
ness relation for S(x, x') read as

2 I+a, z&&+s, z I
=1

s(k, ~) =—g 0(~ (z —z,)) I}{~z(o,o)I',

}{-„z(x„x,) =- (@cIT& (x,)g(x,) l@r,z), (1.4)

E, denotes the ground-state energy, and T the
time-ordering operator. From this expression

where a state is labeled by total momentum k,
energy E (and other quantum number rr; for sim-
plicity, however, the index E will be understood
to include the index n). S(k, &c) can then be written
in the form

we see that S(k, tc) is directly related to and com-
pletely determined by the wave function X~z(x„x,).
Therefore, the problem of determining S(k, tc) and
the excitation spectrum of 'He reduces to deter-
mining the wave function }{.„z(x„,x,).

Vfe also note that the ordinary t-matrix formal-
ism is not concerned with this wave function. This
is because, while the dynamic structure factor
S(x, x') is a particular case of the propagation
(4c I Tgt(x, )g(x )g s( t)gx(sx )I4s'e) with f„ fs)f„ f, [which
will be referred to as the (0, t) propagation], the
ordinary t-matrix formalism is associated with
the propagation (4'c

I TP(x, )g(x,)gt(x, )$'(xs)
I 4c}with

f„ fs) t„ l, [which will be referred to as the (0, t)
propagation]

There exist many calculations of the excitation
spectrum of 4He. ' To the best of our knowledge,
however, none of these takes explicitly into ac-
count, through the actual ground-state momentum
distribution of 'He, the effect of the (very large)
depletion of particles from the zero-momentum
state as a consequence of the strong helium inter-
action. It is obvious that taking explicitly into ac-

. count the depletion effect through the ground-state
momentum distribution is of decisive importance
in the determination of the excitation spectrum.

Motivated by the above observations, we here
attempt first to develop a new method for calcu-
lating the excitation spectrum of He based on the
wave function }(-„z(x„xs)that is, as shown above,
directly related to and completely determines
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S(k, &u) (whereas the Brueckner-Sawada method'
is based on the t-matrix which has been one of the
major methods for calculating the excitation spec-

' trum of -He) and then by employing tilts method
to perform a calculation of the excitation spectrum
of 4He taking expljcitly into accopnt the depletion
effect through the ground-state momentum dis-
tribution of ~He, although j.t is based on the Me-
MiH. an's data' for the ground-state momentum
distribution.

We apply to the single-particle Green's function
(q',

~
a;(t)a-„~4',) the exponential-decay law together

w jth the effective-, mass approximation for the en-
ergy denominq, tor. With the use of this exponenti-
al-decay. and effective-mass approximation for the
single. -particle Greens's function, we were a/le
to transform the two-time Bethe-. Salpeter integral
equation for the wave function X1 s(x„x,) into the
one-time Schrodinger equation. This is thus an
approximate Schrodinger equation the solutions
of which give S(k, ur). In the exponential-decay
approximation, the numerators of tQe single-
particle Green's function are the "true" momen-
tum distribution R; of the ground state of ~He,

which then enters into the Schrodinger equation
in aq essential way. Through this A; both the pres-
ence of a condensate and the large depletion Of

particles from the zero'-momentum state in 4He

can be properly taken into account. And the ef-
fective mass of a helium atom is determined using
thy .McMillan'g data and the Lennard-Jones po-
tential. The Schrodinger equatiop is then solved
in the limit k-0 (using McMillan's data} and the
results as given in the abstract are obtained. In
Seg. II, the Schrodinger equation is derived and
tQe effective mass is determined. In Sec. III the
Schrodinger equation is solved, Finally, in Sge.
VI a discussion of the results is given.

relative wave function

y-'„s(x) =Xmas(x, f=0}

X&~(e) = [G(C+ k&)G(e —-'&) 1

dq' [iv(k)+ iv(q- q')]XI, s(q'),

(2.5)

where q =(q, &u), dq denotes the four-volume ele-
ment, v(q), X-„~(q) and G(q) are Fourier transforms
of the interparticle potential e(x), X-„s(x), and
the single-particle Qreen's function

G(x„x,) =-(-i)'(4,
~
Tg(x, )$'( )x~ @,), (2.6)

respectively. In (2.5), the first term arises from
the annihilation interaction and the second term
the direct interaction. Equation (2.5) is the starti' equation for our theory. In terms of the

Schrodinger wave function in momentum space
def lned by

=(4, ~g (—,'x, 0)g(-—,'x, 0) ~+I z) (2.4)

associated with the pair (4, t) propagation. We
shall hereafter omit the primes on X' and p'. e
now introduce the equation for X; s(x„x,) usually
known as the Bethe-Salpeter (BS) equation. " In
general, the complete set of states in (1.2) is,
for each k, composed of discrete elements plus
continuous elements. The former are the solutions
to the homogeneous integral equation ~bile the
Latter the inhomogeneous integral equation. But
this paper is concerned only with the discrete
elements. We also approximate the interaction
kernel associated with the (0, t) propagation, as
usual, by the annihilabon interaction plus ge di-
rect interaction in lowest order. "Our BS equa-

- tion in momentum space is then

II. DERIVATION OF TgE SCHRODINGER EQUATION

DETERMINING S(k,u)

A. Bethe-Salpeter equation

Separating the center-of-mass remotion and in
relative motion, the wave function X&~(x„x2) (1.4)
can be written in the form

y-„~(q) = d'xe ""y-„~(x)

j-
d~X&x(e), ~=(q, ~),

the BS equation (2.5} further becomes

(2 7)

XfryE(xlt x2) -:: XQE( )rx

X~z(x) = &q',
I
&0'(ax)4(-ax) I+~,s)

where

(2.1)

(2.2)

p-„s(q) =— d~ G(q+-,'Z)G(q --,' Jf)

x g [v (k) + v(q - q') ]41,~ (q') . (2.8)

SC-=(k, z 8,), X-=-,'(x, +x,), x-=x, -x, , (2.2)

and a. b dqnotgs the usual scalar product of four-
vectors a and b Wave func. tionX&s(x), when t=0,
becomes exactly thy corresponding Schrodinger

B. ExponentialMecay and effective-mass approximation
for the single-particle Green's function

The 'BS equation (2.5) contains the single-particle
Green's functions G and hence in order to do any
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where 7-„, denotes some real number and I'&, de-
notes the decay rate constant. The exponential-
decay approximation for the single-particle
Green's function is then

G, (k, f) = -i(1+A'-„) exp(-iE;, i), f & 0, (2.11)

G, (k, (u) = (1+fi;)/((o —E-„,), (2.12)

A'-„=- (e, I
a-'„a; Ie,&,

E~, —=&~, —qQ ~„ ImE~, 0,
(2.13)

(2.14)

calculations we first have to choose an approxima-
tion for G. The, single-particle Green's function in
momentum. .space is given by

G(k, f) = G, (k, f)+G (k, t),
G, (k, f) = -18(t)(4, Ia;(f)a1~ I4,&, (2.9)

G (k, f) =--io(-t)(%, Ia-„a-„(f) I%',& .

(We here consider only the boson systems. ) The
amplitude exp(-iE, t)(4',

I
a-„(t)a-„IC,&, apart from

a multiplicative constant, represents precisely
t,he probability ampl. itude that the system will re-
main in its initial state at a later time t& 0 when
an extra particle of momentum k is added at I;= 0.'
We apply to this amplitude the exponential decay
law which has been widely used in physics. Our
amplitude (O', I aI(t)a-„ I 0,& will. then have the form

(+. I
a-.(f&aa I +0& = (~o I

a1a~a
I ~o&

x exp(-i&&, t ——,'I'&,f), f ~ 0,
(2.10)

dence of the single-particle energy by a quadratic
function, which gives rise to the concept of the
effective mass m~. Thus, in such an effective-
mass approximation, me have

Ef =gy+ v —$c q (2.19)

where d„=k'/2m*, v is a constant, and e-0+.
The exponential-decay and effective-mass ap-

proximation for the single-particle Qreen's
function is then

G(k, (o) =
—4.~ —&+ $& QP —6 —P —i&

k k

(2.20)

It should be noted that iV;, being given by (2.13), is
the "true" momentum distribution of the ground
state of the system and therefore the existence of
a condensate in 4He poses no additional difficulties,
since it mill be properly taken into account through
th Ng. . Some justification for employing the simple
effective-mass approximation in the single-part-
icle Green's functions in the BS equation mill be
made at the end of the present section;

We nom turn to the determination of the effective
mass of a, helium atom. A simple approximation
for the single-particle potential U(k) in a system
with a hard-core potential can be obtained quite
simply by inserting a cutoff into the Hartree-Fock
single-particle self-energy and, in addition, by
replacing the Hartree-Fock momentum distribu-
tion by the true momentum distribution. This
cutoff of course arises from the fact that the part-
icles can never penetrate each 'other's hard cores.
We thus have

and slmllarlyq

G (k, f) = -iE-„exp(-iE~ f), f ~ 0,
G (k, &o) = -N",/(&u —E.„),

(2.15)

(2;16)

U(k) =n d'xv(x) + d'xp, (x)v(x)8 '"'",
l%l&~o lxl &"o

(2.21)

E- =—&" + 'iF" ImE" ~ 0 . (2.17)

Further, the two propagations described by G,(k, f)
are precisely the time-reversed conjugate of each
other and then invariance under time reversal
implies thaF

p, (x) =Z e"*Ã; (2.22)

where n denotes the particle density, xo is the
hard-core radius, and p, (x) the true single-part-
icle density matrix of the ground state defined by

BeE&,= Berg

ImE@,= -ImEg
(2.18)

The effective mass defined by m*=m(1+ 2mb/8') '
with the expansion U(k) = U(0)+ bk' is, then

For the energy denominator E&„me choose the
single-particle energy in accordance with the
Brueckner-Sawada theory; in the Brueckner-
Samada method, the single'-particle energy is
chosen for the energy denominator of the propa-
gator in the t-matrix equation. Further, it is
customary to approximate the momentum depen-

m+=m I-, d~~'p, ~ v ~ . 2.233@2, j.

This integration mas carried out numerically for
three different values of the hard-core radius,
r, =2.3, 2.556, 2.8A, up to r„=10200A(instead of
r„=~), by using the I ennard-Jones potential and



2.3
2.556
2.8

0.241 147 93
0.217 283 68
0.224 762 76

TABLE I. Effective xnass of a helium atom for three
1Ml d-cox'e 1"adil

differential equation (just as the ordinary f-matrix
integral equation i.s transformed into a differential
equation, the Bethe-Goldstone equation"); This
is possible by use of the exponential-decay and
effective-mass approximation for the single-parti-
cle Green's function (2.20). Employing that ap-
proximation, it is easy to show that

the following Gaussian fit" to the McMillan data
for the momentum distribution or the single-
particle density matrix of the ground state of 4He:

p, (r) = an+ (1 —o.)ne "'~'+, (2.24)

where the condensate fraction o. = 0.11, n = 2.20
x10~ atoms/A', and a=1.35 A. Results are given
in Table I. They exhibit a surprisingly remarkable
feature: they are not sensitive to changes in the
hard-core radius about the value xo=o =2.556 A.
Therefore o may be taken to be the hard-core
radius x and then from Table I,

(2.25)

It can be easily shown that the error made in re-
placing the upper limit@„= ~ by r„=10200 A (for
the case r, = o) is less than 0.03/0.

dt's G g+2K Qg-&+

(1+%~,ii)Ai; i-„

A useful formula here is, for any real X,"
X/X+ i& =1.

Proof:

(2.27)

C. Schrodinger equation determining S(k,u)

For practical solution, it is convenient if the
integral equation (2.8) can be transformed into a

But, since c-0, we have I~'=I=0, Q.E.D. Ap-
plying this formula to (2.8 and (2.26), we obtain

(& -E.—&;.—, + &';--; )4'.-, (q) = [(1+&;, ;)N;; &;, -„(1+At- -&-„) Q [v(k)+v(q —q')]y;, (q')

(2.28)

In other words, when (2.8) with (2.26) is trans-
formed into the corresponding differential equa-
tion, a difference in the boundary condition (sf')

. no longer comes into effect and the two residues
(1+At)ÃZ [u+v] and -At(1+X)Z [v+ e] are summed
algebraically. Physically, the former represents
the effective interaction kernel associated with
the (0, 0) propagation in the intermediate state
while the latter the (t, t) propagation. Then, the
total interaction kernel that appears in the cor-
responding Schrodinger equation shouM be their
algebraic sum. In configuration space, the above
equation becomes (k here denotes momentum
rather than wave number)

k ~ x-x'
=2i d'x'sin p z-z'

& [v(k)6(x')+ v(x')]&1 s(x') .

(2.29)

Note that v, a constant displacement in the energy
denominator (2.19), does not enter into the equa-
tion as is evident from (2.26). Expression(1. 3) can
also be written in the form
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S(k, +) =—g 5((d —(E —E,))
~ Q& s (0)

~

' . (2.30)

(i) Result (2.29) is an approximate Schrodinger
equation, the solutions of which give, through ex-
pression (2.30), the discrete part (i.e., the pho-
non-roton spectrum) of the dynamic structure
factor S(k, v) of ~He."

(ii) We have chosen, based on the exponential-
decay law, the "true" momentum distribution R;
of the ground state for the numerators of the
single-particle Green's functions in the BS equa-
tion. As a result, the N; or the true single-part-
icle density matrix p, (x) of the ground state en-
ters, in an essential way, into the Schrodinger
equation determining S(k, (d). This is in accord
with our earlier observation that a proper con-
sideration of the distribution of particles in the
ground state should be of decisive importance in
the determination of the excitation spectrum of
4He. Through this p, (x), both the existence of the
condensate and the (very large) depletion of part-
icles from the zero-momentum state as a con-
sequence of the strong helium interaction, can be
taken explicitly into account.

(iii) We have chosen the effective-mass approx-
imation (2.19) for the energy denominators of the
single-particle Green's function, which corres-
ponds only to an independent particle model and
may be valid only for high k. As will be seen
below, however, even the bare-pole approxima-
tion E&, = &I —is where eI —= &&,'//2m which com-
pletely ignores the effect of the interactions, al-
ready leads to a random-phase approximation (RPA)
when employed in the single-particle Green's func-
tions in the BS integral equation (by some authors,
RPA has previously been applied"~ to 'He). This,
in some degree, justifies employing such simple
effective-mass approximation in the single-part-
icle Green's function in the BS integral equation.
The effective-mass approximation leads to an im-
proved form of RPA which differs from RPA by a
replacement of the bare mass I by the effective
mass m~ (approximately equal to the mass of an
atom inside the medium).

(iv) It is easy to show that, if only the annihilation
interaction term is retained, the Schrodinger
equation (2.29) becomes the RPA dispersion re-
lation (apart from the replacement of m by m*).

Eq. (28) of Ref. 6 indicates. These two interac-
tions compete with each other. For helium po-
tential, in the limit k-0, the annihilation inter-
action is much more important than the direct
interaction, whereas as k increases, the direct
interaction is equally important and even much
more important than the annihilation interaction
for sufficiently high k; the relative importance
of these two interactions may be inferred from
the factor on the right-hand side of (2.8):

(3.1)

where the first term arises from the annihilation
interaction and the second tecum the direct inter-
action. The recent numerical calculations" in-
dicate that Fourier transform of helium potential
(i) should have a very large (infinite) maximum
at k =0 (which is obvious), and (ii) should decrease
monotonically with increasing k. It is then evident
that in (3.1), in the limit k -0, the annihilation
interaction term is much more important than the
direct interaction term. (The same argument has
been used for other eases. ') As k increases, how-
ever, because of (ii), the direct interaction term
will be equally important. Further, for sufficiently
high k, it will even be much more important than
the annihilation interaction term.

The limit k-0 is the main objective of this
work, however, so we retain only the annihilation
term and the SchrMinger equation (2.29)
becomes

+ k' gx = 2/v k (1)&) 0
A-+ p

k ~ x
&& sin p, (x), (3.2)

with ~ =—E —E„where we have omitted the index
E on the wave function because it turns out that
this equation possesses only one solution for each
k. Taking k=kx [x=(x, y, z)] and using an integra;
ting factor e " "/""'", (3.2) can easily be trans-
formed to

e-Nn+ ca /&&((1&y (x) — i &(k)y„(0)Sk

(s-((I+/M&(&o (L&x-
k

III. SOLUTION IN THE LIMIT k~ 0

We now wish to solve the Schrodinger equation
(2.29). The two basic interactions associated with
the (0, t) propagation are the annihilation inter-
action (&(k)5(x) and the direct interaction (&(x) as

e ((m /(t&(co+e' &x)-p (x)+ con.s

(3.3)

where f dx indicates an indefinite integral. But
for ~ to be an "eigenvalue, " the constant must
vanish and then (3.3) can be integrated by inserting
(2.24) for p, (x):



e Qh/an)~ e-Hk/2a)x
( x ) = v(i()p (0) aug (' (1 (()k(g I (( ae((~+&a/kk)x- (@2+ kk)/kak

k~0 (d —6» QP +Q ~
k k

x apl+x e- ((km*/~g k k)(cv - s1 l] erf + f ( ~ p)
v2 a M2kk

am*
+ & — — (d+c~, k =Ax

2 a l/2 5'k (3.4)

where we have used the relation

2 2t /3g ibt

2 a 2

F(0.25) = 0.25,
whereas"

F(0.25) =0.24 .

(3.11)

(3.12)

with the error function erft=—(2/Mw) fo(dte ' . To
find the eigenvalue we put x=0 in (3.4) and then
we obtain the eigenvalue equation

1 26f M2 am+
c(n, , „+(1 —a)n

. v(1() k~ 0 (d

Note that the argument in (3.10) is actually depen-
dent only on e. Then (3.6) becomes

1 26~ F2 am+
(„-) = c(n, " „+(1—n)n

kam*, am+x ((d —c1)— ((o+c-')
2kk ' 2ak

(3.13)

mn*—F — ((u+ k1)
M2Kk

(3.5)
A somewhat different derivation of this relation is
given in the Appendix. This relation gives (if
o(x 0),

where F(t) is defined by

-t2 tF(t)-=4~& e ' erf(if)=e " dte' . (3 'f)

2nnv(k) (3.14)

We now use the self-consistency method to solve
this eigenvalue equation. F(t) has the following
behavior

D= (1 —n)na% '-m*v(k), k-0 .
Since v(k 0) ok, lt. follows thai

(3.15)

F(t) = t, for 0 ~ t s 0.2 .
As will be seen below,

c
am(', am'k

(dW &
k(2 hk ' ' 'v2 kk

(3.8)

(3.9)

and thus finally have

2nnv(k)
QJ = 6» +6»k~0 D k

leads to the following solution of the eigenvalue
equation:

ck with c =vQ /0 1 —Q (lf/am*),

which in turn permits the above relation (3.9)
since it satisfies the condition in (3.8) that the
argument should not exceed =0.2; with n =0.11,

with

Q 5 ~~ 1
1 —e am+ 4'+~

= ck(1+yk'),

a '" @ 1 —a a'
1 —G aM* Q 8S

(3.1V)

(3.19)

(am*/v 2 i(k)((dye') = (amk'/l/2 5'k)ck
k~0

=(1/v 2 ) Mn/v'1 —o( =0.25,
(3.10)

more precisely, we are here making the approxi-

~en Mclgillan's results [n =0.11 and a=1.35 A,
see (2.24)] and our calculated effective mass [m*
=0.21Vm, see (2.25)] are inserted, (3.18) gives

c =190 m sec '

y =16,6x10"g 'cm 'sec', at T=O K, (3.19)
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to be compared with the experimental values"

e =238 m sec '

y=8-15&&1037 g 'cm 'sec', at T=0.3'K .
(3.20)

IV. MSCUSSION

(i) D glvell by (3.15) being propOrtional io
(1 —n)n represents the depletion effect. (ii) Our
result (3.1'l) verifies the positive phonon disper-
sion of 'He proposed only recently. " (iii) With
the value n = 0.11'0 the first term of the eigen-
value equation {3.6) does not vanish. The form of
the spectrum (3.1V) in which the sound velocity is
proportional to the condensate fraction comes from
this first term, as can be seen from (3.6). Sup-
pose we now consider the case that the interaction
is so strong that there is no condensate, j..e. ,
n =0. In that case (assuming the momentum dis-
tribution remains a Gaussian with different values
of a and I*), this first term disappears, which
means that, for the case n =0, the spectrum is
determ'ined from an entirely different eigenvalue
equation ae compared with the case e 10. There-
fore, one cannot argue, based on t'he extension of
the result (3.1"l) to the limit n =0, that a spectrum
of that type gives an unsatisfactory result that the
sound spectrum cannot exist without condensate.
{lv) Tile 1'eslllt (3.1V) ls Obtained by taklllg lllto
account only the annihilation interaction and ig-

noringg

the direct iQteractlon w1Hch may be per-
mitted only in the limit k 0 as already pointed out.
This means that the spectrum (3.1'I) or a spec-
trum of Bogoliubov type [with D =0 (3.14) becomes
the Bogoliubov type] is valid only in the limit k =0
so that the term &.„" serves only as a perturbation
to the other term, with v(k) =v(0) as k-0. (v)
For finite k, the direct interaction may no longer
be ignored. , We thus call attention to the im-
portance of the direct interaction for finite k which
has been ignored in obtaining a spectrum of
Bogoliubov type. (vi) For high k, the direct in-
teraction even dominates the dynamics. Let k„
be the onset momentum of the dominance of the
direct interaction. For k - k„, the Schroddinger
equation to solve is thus

(
@,, '{t ~ (x- x'),

++ k e V Q-„(X)—= 2i d'x' sin
me

x p, (z- x')v(z')&f&-„(x'),

k~k~ . (4.1)

Using the same technique as in the case k-0 and

taking into account only the condensate [i.e., with

p, (z) = an)], it is easy to show that this equation
gives

(u= f[& +nnv(0)]' —(nn)'v(k)'j'~'

= e.„' + o.nv(0), k ~ k~ (4.2)

since v(0)»v(k) for high k. This spectrum ex-
hibits the essential features of the roton spectrum:
)here occurs a gap and the spectrum is quadratic
in k. The gogoliubov spectrum reduces to the
form constk 3,s k-0 and hence provides a model
for the phonon spectrum of 4He. Similarly, there
is.a possibility that the spectrum (4.2) may also
be a primitive form of the roton spectrum. The
speculation is then that k„=k„, i.e., the roton
minimum corresponds to the onset of the domi-
nance of the direct interaction (whereas the an-
nihilation interaction is most important in the
limit k-0). In other words, while phonons arise
primarily from the repeated annihilation interac-
tions or HPA, there is a possibility that rotons
may arise primarily from the repeated direct in-
teractions or ladder diagrams associated with the (f,4)

[ llot (0, t)] PI'OPRgRtlo11.

APPENDIX

If the solution v is of the form

0. '" eck(1+yk'), with c =
1 —n am*

where y is not specified, then the second term
(—= I) in the eigenvalue equation (3.6) becomes

I= const(l/k)[F(X —pk+ vk') —E( X+ p k+ vk')],

(A2)
where

const -=(1—n)n(&2 am+/8)

o. "' a=0.25, p, =—— v=yX,
ZM2k

'

E(Xv jlk+ vk') = E(X)+ (p jlk+ vk')E'{X)+ ~ ~ ~

(A4)

where E'(X) denotes the first derivative of F(X)
with respect to X. If we use the approximation
[see {3.6), (3.11) and (3.12)]

E'(X) =E'(0 25) = 1,
then the I becomes in the limit k 0

I = const(-2 p, )E'(X) = —(1 —o.)n a'm+/k ',
k~a k o

(A6)

which is the same as the second term jn (3.13).
The important point is that, because of the k
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present in the denominator of the I, one must
keep the first two terms [rather than just the
first term E(X)] in the etpansion of (A4). Keeping
only the first term would make the I vanish and

lead to an entirely incorrect result .Now, (A8)
or (3.13) leads to the solution (3.1V) and (3.18).
Thus the solution to is indeed of the form (Al)
as we assumed.
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