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Crossover near the fluctuation-induced first-order transition in superconductors is studied to first order in

e = 4—d. %e find that the effective exponent y, tt for the susceptibibty of type-II systems falls from its
value for the chargeless system to the mean-field value unity well before the first-order transition occurs.
Although such effects are probably unobservable in real superconductors, these calculations may have some

relevance to the nematic to smectic-A transition in liquid crystals.

I. INTRODUCTION

Several years ago, a combination of a fluctua-
tion-corrected mean-field theory and an expansion
in e =4 —d were used to show' that phase tx'ansl-
tions in superconductors and liquid crystals' may
actually be the first order in character. Indepen-
dent field-theoretic investigations of massless
scRlRr electx'odynRIQlcs ln foux' dlnlenslons 16Rd

to the equivalent conclusion that both the scalar .

meson and the photon in this theory acquire a
mass. ' The crucial feature which led to these
predictions was the coupling of the order parame-
ter to a gauge field such as the vector potential in

a superconductor, or the director in a liquid cry-
stal.

In Ref. 1, the ratio'of the latent heat to the mean-
fleld Specific-heRt jump was Used to chRI'Rcterlze
the first-order nature of this transition. Here, we

use Rn alternate, but equivalent characterization.
I et To be the fluctuation-induced fix'st-Gx'dex'

transition temperature of such a system, Rnd let
T* be the temperature at the limit of metastabili-
ty of the disordered phase. Then, the extent to
which the tx'Rnsltlon differs from the coQtlnuous
transition can be measured by the quantity 4T
=T, —T*& 0. For type-I systems (i.e., a=A/$
& 1/v2, where A is the London penetration depth
and t' is the coherence length), n.T was found to
lie outside the critical region associated with T*,
so that mean-field critical behavior was predicted
as T approached T, from above. Fox type-II sys-
tems (s «1/W2), however, b.T was found to lie in-
side the critical region associated with T*, so that
nonclassical effective critical exponents were to
be expected as the first-order transition was ap-
proached. For stxongly-type-II systems, it was
assumed that experimentally observed effective
cx'ltlcRl exponents would b6 approximately the
same as for the gaugeless system (i.e., the same

as fox the A. tra, nsition in 486 for both the normal-
to-superconducing and nematic-smectic-. A transi-
tions).

It is possible, at least in the vicinity of four di-
mensions, to make quantitative computations which
illuminate and check the qualitative picture de-
scribed above. In this paper, we present detailed
calculations of cross-over functions and AT for
the normal to superconducting transition, correct
to first ordex in e =4 —d. The calculations mere
performed Using techniques dev61oped for compUt
ing the crossover scaling functions which arise in
multicritical phenomena, and make use of recur-
sion relations derived from the c expansion. ' %Ye

find that the effective exponents are nonuniversal,
and that the effective susceptibility exponent falls
from a value near that associated with the. ~
transition to the mean-field result of unity as much

as decade before the first-order transition occurs.
This changeover is also reflected in the renor-

mallzatlon-group flowsq which (Ref. i) gradually
map type-II into type-I Superconductors. Such be-
havior has recently been observed experimentally
ln the QeIQRtlc to smectlc-+ tlRDsltlon. A gx'Rplll-

cal summary of our results for effective critical
expoDents 1.8 px'esented ln Flg. 1.

There exist several demonstrations that run-
Rw'Rys Rt some second-ol del fixed, :points lead to
first-order transitions. ' As a result of these cal-
culations, lt ls common practice to a.ssoclate t e
absence of fixed points within the e expansion with
fix'st-ol dex' trRnsltloI18. Such RssoclRtlons Rre
however„on shaky ground in the absence of de-
tRlled calculRtions of thermodynamic functions.
Indeed, there are examples of runaways in random
systemsq RQd ln Rnisotroplc systems ln 2 + & di-
mensions' that do not correspond to first-order
transitions. The most-detailed calculations of
thermodynamic -functlon8 lndlcatlDg the existence
of a first-ordex transition in systems where naive
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provides an adequate description for experiments
that can be performed even on extreme type-II
systems, and effects associated with the fluctua-
tion induced first-order transition discussed in
this paper have very little direct experimental
relevance. Nevertheless, we feel that the calcula-
tions presented here are of some interest. First,
it is important to understand. phase transitions
that cannot be described even qualitatively by stan-
dard Landau theory in as much detail and in as
wide a variety of systems as possible. Second,
the normal-to-superconducting (N-S) transition
described here is similar in many respects to the
nematic-to- smectic-A. transition in liquid cry-
sta].s."'" Unlike the Ã-8 transition, nematic-to-
smectic-A. the transition seems to have an experi-
mentally accessible critical region. e'4'" Although
such transitions are very complicated and as yet
incompletely understood, calculations based on the
e expansion"' suggest that they should be in the
same universality class as the N-S transition very
close to T, . One might hope that the unusual
crossover from nonclassical to mean-field expon-
ents as T -. T, (rather than the other way around)
found in this paper for superconductors would
have some relevance to liquid crystals. At the
very least, the calculations presented here are a
necessary prelude to the computation of the more
complicated and experimentally more interesting
crossover functions for the nematic-to-smectic-
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FIG. 1. (a) Curve a is the log-log plot of the order
parameter susceptibility vs temperature for a two-com-
ponent system with u(0) = 0.5u~, where u„* is the value of
u at the Heisenberg fixed point, and f(0) =10 ~f*. Curves
6 and c are effective exponent curves for two component-
systems with u(0) = 0.5H and f (0) = 10 f * and f (0) = 0,
respectively. (b) a susceptibility and b effective expo-
nent curves for an extreme type-II system. The curves
terminate at t, (0) calculated from Eq. (55).

Landau theory would predict a second-order trans-
ition are those of Rudnick" on xy systems with
large cubic anisotropy. Preliminary versions of
this work, in fact, inspired and set the stage for
the present work. Bergman and Halperin' also
present careful calculations of thermodynamic
functions for first-order transitions! in compres-
sible Ising ferromagnets.

The estimated values for AT in superconductors
are exceedingly small: of order 10 ''K in alum-
inum, the "best" type-I case and even smaller
for type-II systems. Furthermore, the critical
region is never reached in real experiments on
bulk superconductors. Thus, mean-field theory

A. transition. Finally, some of the technical de-
tails in this paper are of interest in their own
right.

The techniques employed in this paper have
been applied with some success to tricritical' and
bicritical points, "and are, in principle, quite
straightforward. Near a critical point, standard
perturbation theory cannot be applied, because
various terms in the usual diagrammatic expansion
are nonanalytic and divergent. Far from a critical
point, however, calculations can be carried out
using standard techniques (e.g. , high-tempera-
ture series expansions). The renormalization
group maps Hamiltonians in the critical region into
a more tractable region far from T, . Thus, one
can calculate quantities near a critical point by
mapping the Hamiltonians along a trajectory deter-
mined by the recursion relations into a noncritical
region where calculations can be performed using
standard techniques.

For the superconducting problem considered
here, the Hamiltonian space can be parametrized
to order e by the temperature f —= (T —T*)/T*, the
quartic coupling u, and a parameter f, which mea-
sures the coupling of the order parameter to the
gauge field. The quantity f is proportional to
4m@.e', where e is the charge and p, is the magne-
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tic permeability. Our principal interest will be
in calculating the critical value f, = dT/T* & 0 of f

at which the first-order transition occurs and the
order-parameter susceptibility

)(( t, u, f) = lim ( l p(q)l '),
where p(q) is Fourier component of the order
parameter. The vector-potential correlation func-
tion

and the specific heat C„are also of some interest
but are more difficult to calculate, and will be
given little attention in this paper. Indeed, it ap-
pears that a calculation to at least second order in
c is necessary befoze meaningful statements about
the crossover behavior of D;, can be made; We
will also calculate lg, l, the value of the order
parameter at t = t, , and the ratio y(t, )/y(t', ).

This paper is divided into five sections. In Sec. II,
Hamiltonian flows are calculated from differential
recursion relations valid to first order in e. In Sec.
III, the crossover behavior of the susceptibility g is
calculated. In Sec. IV, the first-order transition
temperature t„ the value of the order parameter just
below t„and the ratio of the susceptibility just
above and just below t, are determined. Finally, in
Sec. V, there is a brief summary of results. In
the appendices, recursion relations are explicitly
integrated and the crossover function for the spe-
cific heat is evaluated.

+ 3q'(l)4v p, (l)C„
dp. '(l) = -q&(f) p '(l) + , n4vq'(l)C—, ,

(2a)

(2b)

—6[4v p.(l) q'(1)]' C~, (2c)

numbers cannot be introduced arbitrarily in Eq.
(1) without destroying gauge invariance. To first
order in c, however, gauge invariance may be
successfully restored' merely by ignoring any fin-
ite mass for the A field that is generated by the
removal of degrees of freedom with the magnitude
of momentum between A and A/b. To obtain con-
sistent equations to second order in ~, it is prob-
ably necessary to employ the Callan-Symanzik
formulation' of the renormalization group which
is manifestly gauge invariant. (We have verified
that the Callan-Symanzik approach and that pre-
sented here give identical results to first order in
e for the quantities we calculate here. ) Thus to obtain
recursion relations, we simply remove degrees of
freedom with wave number q satisfying b '& lq l

& 1 (setting A =1) and-rescale wave number and
fields via q -& q, P - b~ " " 'g, and A - b """~ '
A. To obtain differential recursion relations, let
b = e' and eliminate an infinitesimal shell at each
iteration. The resulting recursion relations are

dr(l) = [2 —g(l)]r(l) +-,' (n+2)u(l) C~
1

II. RECURSION RELATIONS

dq(l) = —'. [e —rid(l)] q'(1), (2d)

Our starting point is the Landau-Qinzburg free-
energy functional F(P, A) for a generalized super-
conductor with order parameter tII) consisting of
—,
'

n complex components and vector potential A. '
Let Tp* be the mean-field transition temperature
and fo =(T —T~*)/Tg be the corresponding reduced
temperature. Then the reduced free-energy func-
tional K —= H/ksT, where T is the temperature is
given by

X= dg r g + V —ig

+-,'u, lpl'+ (ix A")'),
p

where ro =ato (a is a constant), qo =2e/kc, and uo
is the magnetic permeability of a normal metal
which is close to unity. The Coulomb gauge with
V' ~ A =0 will be used throughout this paper.

In this paper, we employ the differential" form
of the original finite cutoff formulation of the re-
normalization group. ' This formulation pre-
sents problems in that a finite cutoff A in wave

q(f) =-3[4vu(f)q'(f)]C. {1/[1+r(1)]f, (2e)

= ef(l) =, nf '(l) C„.

The 0 subscript has been removed in all quantities to
indicate renormalization. Note that q„does not ap-
pear in this equation or in the equation for u. Thus the
fixed-point structure is completely independent of
q&, and q~ can be chosen arbitrarily. We will
choose g& = e so that the charge remains unchanged
under renormalization. Another choice that is
often convenient is q~ =0.

Equations (2) and (3) and the initial conditions
r(0) =ro, u(0) =uo, f(0) =4vu, q', completely deter-
mine the fixed-point structure and renormaliza-
tion trajectories to first order in e. To find the
fixed points, we set the left-hand sides of Eqs.

where C„' =2' 'v" 'I'(2d). Since q(l) represents an
odd vertex (it connects two )('s and one D;~ propa-
gator) it always appears to an even power. We,
therefore, introduce the quantity f(E) =4vp(l)q'(l)
which satisfies the recursion relation
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(2) and (3) equal to iero and solve for u*, f*, and
%'e then linearize the equations about the

fixed points to obtain the eigenfunctions g; and
associated eigenvalues ~, Vfe will denote the ei-
genvalue associated with r by &, =-1/v, where v is
the correlation-length exponent. Crossover expon-
eizts" for the fields g; are by the definition y~,
= v&~, and Eqs. (2) and (3) have the following fixed
point s:

(i} Gaussian: u* =f*= 0; A„= Az = e, X, = 2; this
fixed point describes mean-field behavior with

P ~

(ii) Heisenberg: f*=0, u*= [2/(n+8) C~]e;
=-e; Xz = e; X, =2 —[(n+2)/(n+8)] e, where g=u
-2e/(n+8)C~ —[6/(n+8)]f. When n=2, this fixed
point describes the ~ transition in helium.

(iii) Superconducting: In general there are two
new fixed points (denoted by subscripts "+"and
"-")associated with a finite value of the charge.
They are characterized by'

f ~ = 6 ejnC~, (4a)

(4b)u,*= [e/(n+ 8) C„][(1+36/n) +(1/n) n, ]

X,, =2+(18/n)e ——,'(n+2)u,"C~,

X~, = veA/n,

(5a)

(5b)

(5c)Af =-e,
where n =(n —360n —2160)', f'=f —f*, and
g, =(1 + ~/ ) n/8u—[(33n+180 +Sn)/4n( +n8)]f. & is
lmaglnar y fox n + nc 365 9 Thus fol n ~

ncaa + l
complex for both fixedpoints andphysically inac-
cessible. The only accessible fixed points for
n& n, are the Gaussian and Heisenberg fixed
points, both of which are unstable with respect to
f (i.e. , with reapect to turning ori charge). There
is therefore, a "runawray' ' which was interpreted
in Ref. 2 to correspond to a first-order transition.
%e will pursue this question in greater detail in
Sec. IV. For n& n„ these fixed points have real
values for u* arid are physically accessible. Both
are stable with respect to f' (X& & 0). The "plus"
fixed point (i.e., the one with the larger value for
u~, u*=u,*) is stable with respect to g, whereas
the "minus"'fixed point is unstable with respect
to g . At n=n„4=0, and the "plus" and "minus"
fixed points merge to a single marginally stable
fixed point with

Fixed points and renormalization trajectories are
depicted in Figs. 2(a}, 2(b), 2(c}; arid 2(d). Note
that for n& n„ the line joining the Gaussian and
3uperconducting minus" fixed point divides the
f-u plane into two parts: points to the right of
this line flow to the stable "plus" fixed point and
points to the left flow towar'ds negative u and a
first-ox'del transltlon.

The Hamiltonian flows, shown in Fig. 2 were
obtained by solving Eqs. (2) and (3) analytically to
first order in er The results (see Appendix A)
can be exprisse. d in terms of f(E), u(E) and a tem-
perature variable

E(E) = r(E) + ,' f(E)C„+—,'—(n+2)u(E)C,

+r(E) In[1+r(E)][—,
'
f(E) C, ——,'(n+2)u(E) C,].

(E)

The solution for f(E) is independent of the other
variables

E=e' e"f(0)
I+(n/6e)f(0)C ( "—1) '

while the solution for u(E) is best expressed as

u(E) = EE(E)f(E), {8
where EE(E) is given below. From Eq. (1) it
is easy to see that the renormalized correla-
tion lengths and London penetration depths are,
respectively, g =r, ' and I, ' =2(f,/u, )r, . We
therefore have

EE(0) =2~',

where Ir is the Gin@burg parameter &/$. Finally,
we write

t(E) =P(E)t(0).

The precise forms of EE(E) and P(E) depend on
whether n & n„n & n, , or n = n„and we consider
the three cases separately:

{i) n& n, :
EE{E}=(I/X){f1+ lnl tan[6, —g(E)] ),

f(0) & cos[e, —e(E)]
f(E) cos sp

=0, A~i =-q

36 6&
e(E) =(l~l /2 )»[f(0)/f(E)],

e, =tan-'{[&Et(0) —fE]/l~l],

A =6(n+8}, B=n+36,

(14)

(15)

(16)
18 & n +2

X, =2+ & ——' 1+
n, 2 n+8 n,

-n —2@+216 n+2g
2n(n+8) ' ' n+8 '
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/where

e' = t»h[[All(0) —&)/I& I); (19)0

A —ll (1/2n) 1u[f(0)/f l1 + (AR(0) —&

(2o)

(22a)

(22b)

1 —(n/Ge) C~f
( /«)C. f (22c)

used to obtain nonlinearq
'

7 —16) can be usEquation (7)- us
'

ld "for n=n, . re

f — -- f

X

=(n/6e) C,C f [1 —(n/6 e) C~f
h /(a))(w/2)-eo) 1 fe(2 /

and

1 1„ f(o)0)-~~
2

1P(l) =e" 1+

(21)

which sat) sfy

a =2 —[(n+, (l) =g, (0)«, , — +

elr/(1) =a/(0)e,

g, (1) =g, (0)e ".
(22b)

(23c)
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Note that as f -0, g, and g, reduce to the Heisen-
berg scaling fields [Eqs. (2)-(36) of Ref. 4j

g, -t{u/up) e2, (24a)

g2 ~1 ue/u~ (24b)

where u& is the value of u at the Heisenberg fixed
point.

The 4 Rnd A susceptibilities satisfy the following
homogeneity relations:

)
x X(r(/), u(/), f(/)), (2»)

D;, (q, r„u. „f,) =et' "'D;, (e'q, r{/), u.(/), f(l)),
(25b)

y(r„uo, f,) = exp 2/ — 0(/') dl '

where &;,(q) =(6;,—q; q,'/q')D(q), and where we
have set 7/„.= e. , By gauge invariance &(q) = 1/&q '
for small q, where %=1/4vu~ far from t=0. Eq.
(25b) can then be expressed in terms of K,

K(r„u„f,}= e"K(r(/), u(l), f(l)). (26)

This equation implies that K satisfies the Jo.-
sephson" relation K - t "near any fixed point.
Since the exponent is explicitly of order &, no

meaningful crossover behavior can be calculated
for K to first order in e. %'6 will„ therefore, not
give further consideration to this function. To
determine crossover functions Rnd effective criti-
cal exponen'ts, we use the solutions to the recur-
sion relations of Sec. II to map the Hamiltonian
out of the critical regime. Once out of the critical
regime, X can be calculated using standard per-
turbation theory to first order in u and f The re-.
sult of this calculation is

X '(/) = t{/) —-'-f(/) C.t(/)»[1+ /(/)j

+—,'{u+2)u(/) C~ t(/) lnt(l) .

Combining Eqs. (25), (26), and (27), we obtain

ya /tf

)t{r„u„f,) = — 1+. f(0)C~(e"*-1)—
x [1--4(m+2)u(/~) C~lnt(l*)j, (28)

I

where /* is some suitably chosen value of / to be
discussed below. Explicit differentiation of Eq.
(28) with respect to l shows that X is independent
of the precise choice of /* up to order ~' as re-
quired. ' Equation (28) reduces to Eq. (2.26) of
Ref. 4 when f =0.

We now consider the choice of /*. Calculations
of y are particularly simple when u(l*) lnt (E~}=0.
We therefore introduce /, and /2 via, the conditions

u(l, ) =0, t(l, ) =1, (29)

and define'/* =min(E„ /, ). By stopping the integra-
tion of the renormalization group equations at this
value of E, we ensure that u(l*) lnt(l*) =0, and that
u(l*) never becomes negative. This definition of
/* leads to a "matching" temperature t,: if t& t„
E*=l„ if t& t„ /*=/, . Since t(E) =P(/)t(0) and
P(/) behaves roughly like e", it is easy to see
thRt t~ must ex1st. %That 18 Qot 80 obvious 18 thRt

is greater than t„ the value of the reduced
temperature at the first-order transition. In the
next section we will verify -explicitly thRt this 18
so for all trajectories when e is small and for
most trajectories of interest when e is set equal
to unity in the first-order solutions of this paper.
Using Eqs. (9) and (12), we can solve for /, in
closed forIQ

(32)

Explicit differentiation of Eq. (28) with respect to
Jnt yields

'1+—,
'

(n 2)+C„u(l*), t& t, ,

1 t
(33)

The discontinuity in slope of y«Rt t& presumably
would disappear if a calculation to all orders in
e could be one. This artifact of the two distinct
matching conditions [Eq. (29)j is easily removed
by numerical differentiation of the function )E(t).
X and y «are plotted in Fig. I for tyro initial val-
ues of u and f. These curves are terminated at
the first-order transition temperatures approp-
riate to the initial values of u and f. This temp-
erature is calculated in Sec.' IV. Note that y,«
assumes the mean-fieldvalue of unity for I,,& I;

~ t, . Furthermore, t, is a factor of 2 or more
greater than t, for starting points in the vicinity
of the Heisenberg fixed point, so that this mean-
field behavior should in principle be observable
prior to the actual transition.

(30)
This formula will be of some use in Sec. IV. A
closed form analytic solution for /, is not pos-
sible; in practice, it is evaluated numerically
for given initial conditions.

Equations (28), (29), and(30) fully determine y, (t)
to fi'rst order in &. The critical exponent y can
be defined iQ th6 vicinity of Rny fixed point

{31)

More generally ari effective exponent can be
defined via
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1.30—
I

1.20

I I I I I I Thus, if t, calculated by ignoring spatial variation
in g is greater than t~, it is correct and self-con-
sistent. If, on the other hand, t, &t~, other tech-
niques must be employed.

Ignoring the spatial variations in g, we obtain

(36)

1.10

I I I

o o.o2 o.o~ o.o6 o.oe o.1o o.12 0.1~ o.16 o.1e o.2o
-1/2

. FIG. 3. Critical susceptibility scaling functions
4(x, y=o) (cf. end of Sec. III) in the disordered phase.
This function crosses over from constant behavior at
large t to critical behavior governed by the first-order
tr ansition.

A scaling prediction for j near the Heisenberg
fixed point expressed as a function of the rionlinear
scaling fields g„g&, and g, follows from (25a),
namely

X (Z2 & g y 2 82) =82@(g 'y/g 2 2 gP Z2' )

for gz small. A plot of 2k(x, y =0) is shown in Fig.
3.

IV. CALCULATION OF t,

Halperin, Lubensky, and Ma' (HLM) sliowed that
t, could be calculated in type-I systems using a
modified mean-field theory. We begiri this section
with a review of this calculation valid for all di-
mensions between three and four, indicating ex-
plicitly the region in the f-u plane for which the
cutoff independent solution is applicable. We will
then use the recursion relations of the previous
sections to derive t, for an arbitrary point in the
f uplain (subject to l-imitations to be discussed).

where 0 is the volume of the system and

d-1 ~ d~k 1A', (221)" k'+k' '

The quantity k, is the inverse of the London pene-
tration depth X:

k = x = (2q /A) I r/J I
= 2f I q I (36)

Q')„can be evaluated by first calculating d(24'}~/
dk2:

d —1 ~ d~k 1A', (211)" (k'+ k', )'

d-1 "dk 1E, (2n) (lP+ k,')'

dk 1" . (222' (2*.2.*)*) (39)

—„36.«=1'141'+ ~ (~.—~ C,f') I l I'

Note that the first term in Eq. (39) is completely
independent of the cutoff ~~, whereas the second
term depends on ~i and can be expanded in analytic
power series in k', if k, &i~. In four dimensions,
we find

A. Mean-field theory in the type-I region (q((1)
An effective Hamiltonian involving P only can be

obtained by removing the vector potential

,-&e~~«& = g)Ap-«& A&

fg = 2 1 I g 7l/sin(alee)]c~Q] (35)

In general the evaluation of this expression is very
difficult. When spatial variations in ~t) can be ig-
riored, as is the case in type-I super-conductors
it can, however, be evaluated exactly. Spatial
vIariations in g are unimportant for reduced tem-
peratures t greater than the Ginzburg reduced tem-
perature t~. Ginzburg's three-dimensional calcu-
lation" of t~ can easily be generalized to arbitrary
dimension less than four to obtain

(40)

for 0 («1, Eq. (36) can be used to give

(I/Il)ff„, =~lel'-~lel''+2~I&I'+ (41)~
where

r =1 +1(3—e)/(2 —~)]fC„A' ', (42a)

12 =1(3—e)/(4 —&)][@/2sin(a ve)]c~(2f)' ' ', (42b)

u =u+ [2(3 —e)/e]C, f'A'. (42c)

The neglected terms in Eq. (41) are small as k',
«A. just below the transition. The x appearing in
Eq. (40) is the ~ =0 version of Eq. (42a). It differs
from f [Eq. (7)] by a term of order u which is small
in type-I systems and terms of order f' which are
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small in an e expansion near four dimensions.
Neglecting higher-order terms in Eq. (41), we

find the first-order transition temperature

r, = [~/(2 —e)](u/2)[(2 —~)v/u]"', (43)

and the value of g just below the transition

ly. l= [(2 e)v/u]'/'. (44)

When eu/f' «/1', u can be replaced by u, and x,
is asymptotically - cutoff independent

( —' ~)( —~)
(4- e)

This result, when evaluated at & = 1, is identical
to that obtained by HLM. It is easy to verify that
k', = 2f l P, l' «/1' as long as eu/f' «/L'. In order for
x, to be greater than tG and have mean-field theory
be valid, z '=f/2u must be greater than unity.
Thus, the simple cutoff-independent, mean field ap-
plies only in the small shaded region of Fig. 4
where f'/i. '/e «u«f. We stress that this theory is
valid in all dimensions between two and four. Such
a cutoff-independent mean-field theory exists to
our knowledge only in systems with gaugelike coup-
lings to massless fields. It does not exist, for ex-
ample, for the xy model with strong cubic anisotropy
discussed by Rudnick. "

B. Calculations for type-II superconductors |l~:)1)

When ~ &1, x, is less than tG, and we cannot use
the treatment just described. In Ref. 1, it was
predicted that the first-order transition temper-.
ature satisfied

t II g (+ R)l/ eu//
C

f 1/(/ -2).(4-e )/6 (4V)

where the superscripts I and II refer to type-I and
type-II systems, respectively. In this section, we
will give a concrete estimate of Z to lowest order
in &.

We begin with the recursion relations of Sec. III
which map the Hamiltonian'out of the critical re-
gime. If we follow a trajectory until l =1* such
that the Hamiltonian lies in a region where we can
calculate t, (l*) by the HLM technique, we find the
original transition temperature by mapping back-
wal ds:

4 gt g 2/vg
c 9; G

in the extreme type-II case, where v„ is the cor-
relation-length exponent of the chargeless n-, com-
ponent transition. The constant of proportionality
Z in the above transition (that was estimated to be
of order unity in Ref. 1) canbe defined in a manner
that permits convenient extrapolation from four to
three dimensions by exploiting the existence of a
cutoff-independent mean= field theory

f,(0) = P '(l*)t, (f ~), (48)

(b)

FIG. 4. Diagr'ams con-
tributing to recursion re-
lation Eq. (49) for the six
point function

~ g ~6. Solid
lines indicate order para-
meter propagators; wavy
lines indicate gauge propa-
gator s.

where P(f*) is given by Eq. (13). The most con-
venient choice of I* is f*=l, such that u(l, ) =0,
t,(l,); however, it cannot be calculated directly in
the mariner just described because the effective
free energy in Eq. (39) tends to negative infinity
for large l Pl below some critical temperature
when u=0. This unphysical feature is due to the
neglect of higher-order potentials that are gener-
ated by recursion relations even if they are init-
ially zero. Consider for example the recursion

n" 2

(c)
fC, ~
0.025 C4-

UuO. tf

$2 ~

0 0.0025 Cd

I

0,2
uCd

FIG. 5. Shaded region is the region where a cutoff-
independent HLM mean-field theory is valid.
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relations for the coefficient of u, of iIC) i' to lowest
order (one loop order) in u and f resulting from
the diagrams shown in Fig. 5:

du, (l) = -[2 —2c —3)I(l)]u,(l)

+ [4f'(i)C, + C,u'(l)

=6@/'nC, . From Eq. (30), we have

e"i= —,', nf »'R(0)/f(0),

I (I,) = [—.'. nf *R(0)/f(0)]"'.

Inserting this into Eq. (55), we obtain

t, (0)=etc( ', nc, —f*/e)' "' (»e ")» "» '"'

(56a)

(56b)

+ C,u(l)u, (l)+ Cf(l)t), (l))A» ', (49)

2flgl' & 2f lpga'
A' 2 A'

This exactly cancels the last term in Eq. (40) leav-
ing

I/fia. „=~ I q I' C, f' I y I'

+ —,
'

C» f' I)t) I'ln(2f I(/r I /A, (53)

which leads immediately to predictions for t, (l, )
and (t),(l, ),

t, (l, ) = —,
' e "f'(l,)C„

I(l),(l, ) I' = [A'/2f(l, )]e ". (54a)

(54b)

These are the q = 0 limits of Eqs. (43) and (44) with
u= 0. We note that these results are similar to
those obtained by Rudnick" for the XY model with
a strong cubic anisotropy. He calculated the free
energy directly by using trajectory integrals rath-
er than summing an. infinite sequence of one loop
diagrams as we have done. We therefore have

t, (0) =P '(l, )» e "C,f(l„).

We first show that this formula reproduces the
correct form for t,(0) in the shaded region of Fig.
4. In this region, R «I and u»f'/f*, where f*

where C„C„and C, are constants which we do
flot need in the fol, lowing calculations. 86 ls the
coefficient of X A ii() I'. Equation (49) can be in-
tegrated to yield

u, (l) = —,
' [4f'(l)C»+ C,u'(l)]A'

+ e "[u,(0) —2f'(0)C~- —,
' C,u'(0)]A~ '.

(50)

Thus if we choose l* such that u(l*) =0, and if e "*
or its coefficient in the above is much less than
one, u, (l*) depends only on f(l*). Similar consid-
erations apply to u, (l*), we find

x 2m' 1»)»1
(I») ( f»)(l»)C A»-2m

4m(m 2)

The series 2",u2 (l*) I(t) l2™can be summed explic-
itly g ivlng

gu, „l()')i' = —,
' A»C„, 1 ln 1+ 2f lgl'

...„...(9(()-())'-*'

n + 8 2
Q g

g /o

12 (60)

Note that this expression contains no explicit de-
pendence on f'*. For a two component system at
& = 1, we take the experimental value of 3- for vH

and obtain. Z= 0.30. Alternatively, we may use
values for ( „preceding Eq. (59) to first order in

e; from this, we obtain v~= —,
' for n=2 and q=1,

and Z=0.25. Z depends on n. At n=n„Q becomes
infinite, and Z goes to zero indicating a continuous
transition. . It is expected that n, is a decreasing
function of &." It is, therefore likely that Q is
larger in three dimensions than our estimate
based on the first-order expansion in &. If this is
so, Z could well be smaller than. 0.3.

We can also estimate the jump of the order para-
meter at the first=order transition g, for both types
of superconductors by the following scaling re-
lation:

I(l.(0) I'= p(-(2 —()),~ »())»)]It.(),) I'. (6()
0

It is easy to see from Eq. (43) that order &' contri-
butions from f(l, ) and u(l, ) will change the overall
factor &e

"in this result. Because of this fact,
t,(0) in Eq. (57) differs from the correct value giv-
en by the small & limit of Eq. (45) by a constant
factor e'~'. Nevertheless, it is encouraging that
the dependence on» is correctly given by Eq. (57).
In the extreme type-II case, R=2~'»1, and we
have

t.(o) = «,[(0- 1)C, f*/e]' "'
I -j. / 6V&

x [—,', (n+8)] ', (-,'e ")» '~'", (58)
+ (]

where E, and E, are given by Eq. (16), I/v»= 2
—&E2, and

Q = exp[(2n/ In I)[-.'v+ tan '(a/ In I)]]. (59)

Again, an order & calculation w'ould be necessary
to obtain the correct prefactor in Eq. (58). Be-
cause of its potential importance to experimen-
talists, we will nevertheless attempt to estimate
Z by using Eqs. (57) and (58) in Eq. (46). We ob-
tain
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We obtain

-0. 5
-2/ 6

lg, (0) lf=
2f(0)

e 36f(0)&(0)

for systems in the shaded region, an.d

(62)

Itti (Q) I
= [A /2f(0)]e-o. 5@z+18in

x(0-1) "'[f"/f(P)] "' (63)

for extreme type-II systems. The ratio I g, (0) I'»/
lg, (0) I', is related to the Ginzburg parameter w,

lg, (0) I'„/ly, (0) I', = z,&"', (64)

with Zi= Q
' "(Q —1) '(i~n) i'. For n= 2, Z|

=2.01 at &= 1. Another quantity which is of inter-
est is the ratio between the order-parameter sus-
ceptibilities right above and below t„

x-/x, = —.+ o(e ). (65)

This can be derived directly from Eqs. (27) and

(53).
One can easily verify that lnt, (0) and lnl $,(0) I

are independent of l up to order & by including the
u-dependentterms in Eqs. (54), (55), and (61). It
remains to be shown that t, is always less than t,
for any values of u(0) and f(0). By definition of t„
we have t, (l, ) = 1. However, t, (l, ) is of order e

[Eq. (54)]. Near four dimensions, then t, (l,) ( t, (l, )
and t, &t, :

lnt, lnt, = In[4e "f(l,)C,]. (66)

At three dimensions f(f,) is order unity, thus there
are trajectories for which t, &t,. However, as can
be seen by Fig. 2(b), all trajectories that pass any-
where near the Heisenberg fixed point have t, (l,)
&1 so that tg)E for most trajectories of interest.

type-II systems in terms of the same quantities in
the type-I systems (cf. Fig. 5) since these quan-
tities are known for type-I systems for all dimen-
sions between two and four. Thus, we have t,"/t,'
=ZK-2/'"K24 6)/', where v is the correlation length
exponent for the xy transition in the absence of
coupling to A and lg, l»/Ig, l', =Z, v'i'. We find Z,
=2.01 and Z=0.30 at q =1 if the experimental value
of v„ is used and Z= 0.25 if the first order in q val-
ue of r„ is used.
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APPENDIX A: SOLUTION OF RENORMALIZATION-

RECURSION RELATIONS

In this Appendix we show how to solve Eqs. (2)
and (3). Equation (3) is decoupled from the others
and depends only on f(t) whose solution is immed-
iately

V. SUMMARY

e "f(0)
1+ (n/«)f(0) C,(e"—1) (A1)

In this paper, we have presented detailed calcu-
lations to first order in & = 4 —d of thermodynamic
functions in the vicinity of the fluctuations induced
first-order normal to superconducting transition.

, In particula, r, we calculated the order-parameter
susceptibility y and its associated effective crit-
ical exponent y,«. A particularly interesting fea-
ture of this calculation (cf. Fig. 1) is that y„, de-
creases from a value of order that of the pure xy
system to unity a.s much as a decade before the
transition takes place, A modified mean-field the-
ory introduced in Ref. 1 provides an adequate de-
scription in all dimensions between two and four
of the first- order super conducting transition in

type-I systems as long as the Londern penetration
depth at t = t, is much larger than the inverse mo-
mentum cutoff A '. Quantities for such systems,
fluctuation effects become important. It is conven-
ient to express quantities such as t, and P, in the

Since we choose q~ = q such that q, remains con-
stant in the recursion relations Eq. (Al) tells us

e"V(0)
1+ (n/6e) 4v p, (0)q', C~(e" —1)

(A2)

To solve for u(l), we first naively neglect r(f) in

Eq. (2c) and the remaining equation becomes

du(l) = [q+ 6f(l) C,]u(f) ——,
' (n+ 8)u'(l)C,

(A4)

6f'(t)C~+ O(r(t)u', r—(l)f(l)u(l)). (A3)

Making the changes of variables u(l) = e"G(l) and

f(l) = e"f(I), we obtain

du (I) = e"[6f(I)N(t) ——,(n+ 8)u'(I) —6f (l) ]C, .
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du(l) du(l)
( „) n

C
-,

(l)df(l)

Thus, we have

(A6)

df(l) „n
dl 6

Using Eq. (A5) we can express the left-hand side
oi Eq. (A4) as

n, . Using the above result as a starting point for
a perturbation solution ot u(l), we can show that,
as long as r(l) is less than one, the contribution
of the neglected terms in Eq. (A3) is of order e2

and can be neglected.
To solve Eq. (2a) we write 1/[1+ r(l)] as

1/[1+ r(l) ]= 1 —r(l) + r'(1)/[1+ r(l) ].
Equation (2a) then becomes

du(l) 6 u, u6~- ~(n+8) = 6dfl n- f '. f
which can be expl essed as

(A7) — = [2+ 3f(l)C„——,
' (n+ 2)u(l)C, ]r(l)

+ 3f(l)C, +-.' (u+ 2)u(1)C,

(A8)

'
A = 6(n+ 8), B= n+ 36,

n = (n' —360n —2160)'/2,

e, =tan-'( [AZ(0) -B]/~ ~~ j,
e(l) = (~&

~
j2n) 1n[f(0)jf(l)].

For n&n„we have

B(l) = (1/A)[B+ & tanh[eo)]],

where

tanhe, = [~Z(0) B]/~,

and finally, for n=n.„we have

(A 1oa)

. (A11)

1 AB(0) -B'
&'[[&&(&)—&1/2 ] & [/(0]//(o]]).

(A13)

- dB(l) 3, n+ 36 36f —= —-(n+ 8)R' — —R+ —,
df(l) n n

where A(l) =u(l)/f(l). The solution of Eq. (A8) is
straightforward. For n &n„we have

B(1)=(1/A)1B+
~

A
~

tan[e, e(l)]], (A9)

x [ 3f(l)+-,'(u+2)u(l)]C, . (A14)
r'(l)

(A15)

The equation for 7(l) is then

=P '(l)(3/(AG, +-', ( ~ 2) (t)c

l C,r'(1), u(l)C, H(l)
1+r(1) ' 1+~(1)

(A'16)

Equation (A16) can be integrated by parts. Keeping
terms up to order q, we obtain

. r(1)=~(0)+1-2f(1)C,—l (u+ 2)u(l)C,

—,
' f(l)C,r(l) 1n[1+ r(l)]

+ —,'(u+ 2)u(l)c, r(l) in[1+~(i)]]J'-'(1).

(A11)

Equation (A12) is the limit of (A9) as n approaches Thus, we have

~(l) = --,'f (l)C, ——,
' (n+ 2)u(l)C, + [-,

' (n+ 2)u(l) —4f(l) ]C,r(l) 1n[1+r(l)]

+p(l)(~(0) + kf(0)C, + ,' (n+ 2)u(0)C, —[—,
'—(u+2)u(0) —zf(0)]C,r(0) 1n[1 + r(0) ]J.

I'his equation is more conveniently expressed as

l(i) =l (l)l(0), (A19)

where

l(l) = ~(l)+-.'f(l)C, + —,
' (u+ 2)u(l)C,

—[-,'-(n+ 2)u(l) —g f(l) ]C,(l) 1n[1+r(l) ]. (A20)

APPENDIX 8: CROSSOVER FUNCTION FOR THE SPECIFIC
HEAT

We first discuss the free energy, which satisfies
the following modified homogeneity relation:

+Qln[1+r(l)]--', ]e~'

+3[1 [4 (t)]' ——,']e "}at

+ e~'F(r(l), u(l), f(l)).

The trajectory integral represents the contribution
to the free energy coming from rescaling and trac-
ing over the degrees of freedom in an infinitesimal
momentum shell at each iteration. %e will eval-
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uate Eq. (Bl), at a particular 1, /= min(l,*, lo~) such
that F(i(l), u(l), f(l)}may be calculated by Landau
theory. Taking into account the first fluctuation
correction, wle find

C,(x, u,f) = —,'eC~

- —' e 't'1nt(l)

E(o (1),u(l), f(1))=
2 C, q' 1nl[o (1)+q']dq Explicitly differentiating C, vrith respect to E, we

fgnd

+ &C„ lnK l q' q'dq. (B2)

The specific heat C(o, u, f) is then obtained by dit'-

ferentiating Eq. (Bl) with reepect to temperature ' ~'(l)e-" () O( )

C( ) 2
S'E(o', u, f)

6~C, ' f(i)C,H(l)
„&

o [& + ) (~)'

nC , ' . r'(l)e~'
y'

o [1+r(l) ]'

(B3)

This shows C, is independent of the precise choice
of the snatching condition ip leading order.

From Eq. (B6b) we are able to calculate the ef-
fective exponent for the specific heat

8 lnC,
off 8 lnt'd

+ ' r'( )le~'
. , ~ (B4)

o [o.(l) + q']'
2

The first two integrals in Eq. (B4) can be evaluated
by integration by p'arts. The third intregral is stan-
dard. After evaluating these integrals Cn(o, n, f)
decomposes into a regular part alnd a singular part:

C(r, u, f)=C„(r,u, f)+ C,(~, u, f), (B6)

where

C,(r;,f) = ~' —r+ 2' ln(l + r))
nC,
22 1+x

If P, &t&t„ l =l, is independent of t, and

1e-((tp2(1)

e "D'O)d! — e "O'O) lnl(l))

as t &t„ l = /„ t(l) = 1,

g .
' w]

a =-' e "'P'(1) e "P'(l) dl
0

(Bsb)

(B6a)

as t = t„ 1, = l„ t(E") = l. Equation (86a) cdincides
with Eq. (BBb). Thus n, « is continuous at t = t, ,
Note a,« is pbsitive in the high-temperature phase.
Unfortunately, the integral in Eqs. (86a) and Eq.
(BB) cannot be integnrated analyticdally.
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