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Renormalized expressions for the transport coefficients of a normal quantum fluid are derived from a
nonlocal kinetic equation. As was shown in the classical case by Forster and Martin and by Resiboie, the
expressions for the transport coefficients separate naturally into "kinetic" and "direct" parts. The kinetic
terms are proportional to matrix elements of the inverse of the kinetic kernel, and have the same general

structure as the "bare" transport coefficients obtained from a local Boltzmann equation. The direct terms are
proportional to matrix elements of the kernel itself, and have no counterpart in calculations based on a local
kinetic equation, as in the kinetic theory of gases. %'e evaluate the transport coef5cients using the weak-

coupling approximation to the kernel derived in a previous paper. Results are given, first, for both Bose and

Fermi Auids at arbitrary temperature, and then for the Fermi fluid near T = 0, where complete solutions
are obtained. It is found that the direct parts of the shear viscosity and thermal conductivity are of higher
order in T than the kinetic parts, and are therefore negligible at very low temperature. The kinetic parts
have the same leading temperature dependence as the predictions of the Landau theory, For the bulk

viscosity, however, the direct and kinetic contributions begin at the same order (T ) in the temperature.

I; INTRODUCTION

Linear-response theory provides an exact rep-
resentation of the transport coefficients of a
fluid in terms of the small wave-vector and fre-
quency limit of hydrodynamic response func-
tIons."Modern calculations of tra, nsport co-
efficients therefore focus on the problem of de-
termining the response functions. Two general
approaches are available. In the first, known as
generalized hydrodynamics, a response function
is obtained from an equation that involves con-
figuration-space variables only. The equation
contains another response function, the memory
function, which is better behaved in the hydro-
dynamic limit than the original one, and therefore
easier to approximate. If necessary, the scheme
can. be iterated, so that a hierarchy of memory-
function equations is generated. '

In the second approach, the hydrodynamic re-
sponse function is obtained from a phase-space
correlation function. This approach could be
called generalized kinetic theory, because the
phase-space function is the solution of a kinetic
equation related to the linearized Boltznzann equa-
tion. In place of the Boltzmann collision kernel,
there appears a more complicated collision ker-
nel which, in general, is the sum of two terms,
one nonlocal in space and the other nonlocal in
both space and time. For classical fluids, non-
local equations of this type have been investigated
extensively during the past decade. There has
been a great deal of progress both in the con-

struction of these equations and in their practical
use for calculating response functions and trans-
port coefficients. ' The success of the classical
theory now makes lt attractive to apply this ap-
proach to the more difficult problems of quantum-
mechanical fluids.

In a previous paper, we deri~ed a nonlocal ki-
netic equation for a normal quantum fluid with
Bose or Fermi statistics (neglecting spin) and

evaluated the collision kernel explicitly to.second
order in the interparticle potential. ' e showed
that the classical limit of. the kernel reduced to
the weak-coupling kernel derived by Akcasu and
Duderstadt' and that in the limit of small wave
vector and frequency it reduced to the kernel of
the linearized Uehling-Uhlenbeck equation' with
the Born approximation for the cross section.
In the present paper, we study the transport co-
efficients predicted by this nonlocal quantum ki-
netic equation.

Although we are concerned here with the hydro-
dynamic regime, it is important to note that such
nonlocal kinetic equations are valid for all wave
vectors and frequencies, and that a major part
of the interest in them has to do with the cal-
culation of correlations on an atomic scale. Such
a calculation for normal liquid He' at low tem-
peratures has recently been presented by Valls,
Mazenko, and Gould, ' who approximated the ker-
nel of the nonlocal equation on a partly phenom-
enological basis and calculated the dynamic struc-
ture function and the dispersion relation for zero
sound. Their investigation focused on the inter-
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mediate wave-vector and frequency regime,
rather than on the hydrodynamic regime.

An important feature of these nonlocal kinetic
equations is that they depend on only one time
(or frequency) variable, the physical time dis-
placement of the correlation function. This dis-
tinguishes them from the mult;iple-tim. e equationst

that are the natural result of quantum mechanical
Green's function techniques, such as the two-
time generalized Boltzxnann equation derived by
Kadanoff and Ba,ym. ' Some advantages of the
single-time formulation were noted by galls et
al. : it allows a natura. l separation of static and
dynamic effects; t:he criteria for preserving con-
servation laws, sum rules, and symmetries are
simpler; Rnd physically reasonable approximations
can often be int;roduced with greater ease. To
these may, be added the feature that is exploited
in this paper„namely the straightforwardness
of a low-order expansion in powers of the physical
frequency, which is necessary for the study of
the hydrodynamic regime.

It is clear that the wave-vector (k) and fre-
quency (s).dependence of the collision kernel is
essential, for describing the structure and motion
of a Quid on the atomic scale. It is less obvious,
perhaps, that the k. and z dependence of the ker-
nel also has an important effect in the hydro-
dynanllc regs. me. In facty lt has been shown M
the classical case by Foi ster and Martin" Rnd

by Besibois' that there axe contributions to the
transport coefficients from terms through second
order in the small-k and -z expansion of the ker-
neI. . The effect of the k- and z-dependent terms
can be regarded as a renormalization of the trans-
pox t para'. eters from the "bare" v,".lues given by
the local Limit of the kinetic equation, vvhere k
Rnd z are set equal to zero in the kernel. The
renormalization is what accounts for the effects
of correlations due to the interparticle int;er-
a.ctions. (Note th", t this renormalization is distinct
from the renoxmalization that one may perform
in deriving an expression for the kernel itself. )
Such correlations are present even in the low-
density classical gas, although their effects are
small ln that cRse.

As we show in thi*s paper, the transport co-
efficients of a quantum-mechanical fluid can be
obtained from the nonlocal kinet;ic equation in
essentially the same-way as in the classical case.
This is a consequence of the single-time form
of the equation. The results for the renormalized
transport coefficients —both classical and quan-
tum —have the following basic structure. There
are contributions from two types of terms, which
may be called "kinetic" and "direct. " The kinetic
terms Rre proportional to matrix elements of the

inverse of the kernel and in this respect are sixn-
ilar to the expressions for the bare transport co-
efficients. The direct terms are proportional to
matrix elements of the kernel itself, and have
no bare counterpart. In the zero density Limit,
the direct terms vanish, and the kinetic terms
reduce to the result giveil by the Bolt;zmann equa-
tion, Little ls currently known about the RctuRl
magnitudes of the various terms for dense fluids,
but it ii anticipated that as the density and inter-
action strength increase, the renormalization
corrections mill grow in importance relatj. ve to
the bare term In one case ll.qul. d argon near
the triple point, a calculation by Jhon and Forster
based on a modeled kinetic equation indicates
that the experimental viscosity and thermal dif-
fusivity are mostly accounted for by the di.rect
terms. "

We have already ment;ioned that our weak-cou-
pling equation reduces to the Uehling-Uhlenbeck
equation when the kernel is considered in the
limit. k, z-O. Another point of reference for a
quantum kinetic theory is provided by the Landau
theory of Fermi liquids. '4 &RH.s et al. have con-
s ide red the correspondence between their kine tic
equation and the Landau theory in some detail,
and have used it in formulating their phenomeno-
logical model. In it:s usual form„ the Landau
equation has a wave-vector-dependent mean-field
term, related to the static term of the nonlocal
equation, but the wave-vector and frequency de-
pendence of the Boltzmann-like collision term
is neglected. " The Landau-theory transport co-
efficient;s calculated by Abrikosov and Khalatnikov"
therefore do not contain a,ny direct terms, Rnd

the m.ean-fieM term serves mainly to change the
effective mass. Rve-vector and frequency de-
pendence of the kernel has been included in cal-
culations of higher terms in the temperature ex-
pansion of the Landau-theoxy transport coeffi-
cients, "but the methods of calculation used did
not allow for the appearance of the direct terms.
In view of the Jhon and Forster result for argon, ,
it is interesting to see whether this can be justi-
fied. Briefly, our resuLt for the weak-coupling
kernel indicates that it is proper to negLect; the
direct terms of the shear viscosity and thermal
diffusivity at low temperature, because they begin
at higher order in the temperature than the
kinetic terms. For the bulk viscosity, how-
ever„ the contributions of the kinetic Rnd direct
terms begin at the same order in the temperature.

The outline of the body of the paper is-as fol-
lows. In Sec, IIA we review our previous re-
sults for the nonlocal kinetic equation, and in-
troduce the additional definitions and notation
that are needeg for the discussion of the trans-
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port properties. In calculating the transport co-
efficients from the nonloc&al kinetic equation, we
follow the procedure developed by Forster and
Martin in their study of the classical weak-cou-
pling equation, and we refer t;o their paper for
details of the argument. A heuristic outline of
the calculation together with a discussion of the
featuxes of the renormalized expressions for the
transport coefficients is given in Sec. IIB. It is
intended that this subsection will be accessible
to the reader who does not wish to study the rest
of. the pa.per in detail. In See. III we turn to the
weak-coupling equa, tion and work out the tra.ns-
port equation expressions as fa.r as possible for
both Bose and Fermi fluids at, a.rbitrary temper-
ature. Finally, in Sec. IV, we specialize to the
case of the Fermi fluid at. low temperature, whexe
complete solutions are obtained,

II +ON LOQPI KIQETIQ TI'IEiOR

A. Kmctk squat&on and corfclatk n fmeuom

"p/e begin with a. brief summary of the notation
and definit:ions used in our previous paper. ' The
basic quantity in our description is the quantum
phase spa, ce or gf igner dens ity ope rator

f(Ipt) =-(2w) ' dr'e'"'"

x P'(r,' ~', t) (,(~+ ,' ~', t), (--1)

where $('Yt) and ( (t't) al'e tile Heisenberg field
operators sat1s fylng the usual equal-time corn
mutator or antieommutator relations, for Bose
or I ermi statistics, For simplicitly, we ignore
spin a,nd consider particles of unit ma. ss which
interact by a central potential i~(r)

=(2!I) '(dke'"'I!(k). Except where, otherwise
noted„we take Pg.= $. and use the letters k, t and P to.
IepIesell'tve'ctor q, uantltles. From f(I'pt) we fo1'nl

the anticommutator correlation function

1 (~P, I'P' It —t') =& '- (f(~Pt),f (r'P't-')I)

-&f (~at)) (f (~'j 't')), (2)

@There the anguh, r bra. ckets indicate an average
in the grand ca.nonieal ensemble with inverse
temperature P and chemicaL potential p, . Trans-
forms of E(xp, I"t!' ~t —t") and simila, r quantities
a,re given by the. convention

F(k-PP') = idt e'"-
with the imagina. ry part of z positive. The spatial
Fourier transform F(kPP') of the equal-time anti-

commutator function also plays an important role.
It is given by

E(kPP') = n(P P')—h (kP) +a(kJ P'),

where H(kPP') is the connected part of the two-
particle distribution function, and N(kP) is the
symmetrized combination

IV(kp) =--,'n(t +-,' k) n(t ,' k—)—+,'n(p-+ ,' k)n(p-——,'k)

of the one-particle momentum distribution n(P)
=(f (np)) a,nd its complement n(p) =1+e(2!I)'n(p).
& is +1 for Hosons and -1 for Fermions. For
free particles, n(p) is

n, (p) =(2v)-'(e"I't'-» e)-'.
- The factors of 2~ come from the definition of
f (rjt) in Eq. (1), which corresponds to a classical
normalization. Thus, momentum integrals are
not accompanied by a; factor of (2!I) ", and n(p)
reduoes in the classical limit to n&f (p), where
n is the density and P(P) is the Maxwellian.
E(kpp') and E(kePP') are of course closely related
(ai'ter integration over the momenta) to the static
and dynamic structure factors S(k) and S(k~)
of the fluid.

The equa. tion of motion of F(kepp') ha.s the gen-
era. l form

(e —k p) F (kepP') =F(kpP )+ dp Z(kej t )

x E'(ksjP') . (7)

The function Z, which we ca,ll the kinetic kernel,
accounts for the effects of collisions as F(kzPP')
evolves from. its imtial condition E(kPP'). The
kinetic kernel separates naturally into a sum of
two terms, a, frequency-independent or "static"
term Z"'(kPP') and a frequency-dependent or
"dynamic" terni Z'"'(kzPP'), which vanishes like
z ' at large z. The static term describes in-
stantaneous mean-Iield effects, and is the now-
familiar generalization of the term in the Landau
theory of Fermi liquids that couples an inhomo-
geneous dls'tl lbution of excitatiol'ls to the ground
state distribution of quasipartieles. -'" The dynamic
term describes the effects of collisions, and is
the generalization of the Boltzmann collision ker-
nel. To recover the linearized Boltzmann equa-
tion (either classical or quantum) from Eq. (7)
one would first evaluate Z at low density, where
only binary collisions cont:ribute, and then take
the limit of zero wa. ve vector and zero frequency
(k 0~ e 0+10 ). Tile k 0 llmlt does away wl'tll

spatial correlations, and causes the mean-field
term to vanish, while the z 0 limit does away
with memory effects. Thus in the limit k, z-0
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K(kzpp') = dp Z(kzpp') E(kpp'),

K(kzpp') =K&"(kpp') +K"'(kzpp') . (9b)

It is more convenient to deal with K than with Z

because, as discussed in our previous paper, the
two quantities [k pF(kpp') +K"'(kpp')] and
K'"'(kzpp') are symmetric in p and p'.

This completes the summary of general results
from our previous paper. Some further c'omments

on the equation are given in Sec. III in connection
with the explicit results for the weak-coupling
approximation to the kernel.

As will be discussed in Sec. IIB, the transport
coefficients are obtained from the normalized
density-density correlation function G„„(kz) and
transverse current correlation function G,(kz)
defined byes

G„„(kz)=F„„(kz)/F„„(k),

G, (kz) =F„„(kz)/F„,(k),

(io)

(11)

F„„(kz)= dP dP' F(kzPP'),

F„„(kz)= dP dP'P„F(kzPP')P„',

(i2)

(the uniform Markovian limit), the kernel reduces
to its local value

K &d)(0 f0+.PPr) fd(PPt)

where J(PP') is the standard collision kernel of
the linearized Boltzmann equation. Here we have
introduced the kernel K(kzpp'), which we obtain
from Z(kPP') by convoluting it with the initial value
F(kpp'):

(p Ia Ip &
= dpi'(kzpp)F(kpp ). (18)

With these definitions, the solution F(kzpp ) of
the kinetic equation (7) can be written

F(kzPP') =(P I[z - n(kz)] 'IP'), (19)

where the kinetic operator A(kz) is defined by

II(kz) g&o)(k)+II&s)(k) ~II&u)(kz)

with

(p In "(k) lp &
=k pF(kpp ),

(pli7, "(k) Ip) =K "(kpp )

(p IQ'z'(kz)lp') =K'~'(kzpp').

(20)

(21a)

(2ib)

(21c)

With the symmetries of K noted above, we see
that the matrix elements Qf 0' '+0"' and of 0'"'
are symmetric in p and p'. This is the reason
for the inclusion of the weighting factor E(kPP')
in the operator definition (18).

Vectors ln), lu,.&, and Ie& corresponding to
the number, momentum, and kinetic-energy den-
sities are defined by:

I.& =[F„„(k)]-& dp lp&, (22)

PF 'happ F Pppg —g -p' ].7

The vectors IP) depend implicitly on k as well
as on the thermodynamic state of the system.
The static inverse E '(kpp') can be simply ex-
pressed in terms of a momentum-dependent gen-
eralization of the classical direct correlation .

function. ' Given a functions(kzpp'), we define
the matrix elements of the corresponding operator
A by

and the normalization factors are the static cor-
relation functions F (k) = fdPdP'F(kPP'), etc.
Here we have taken k to point in the z direction.
In the calculation of the transport coefficients,
it turns out that only the k =0 values of the static
functions F„„(k)and F„„(k)are needed. These are
given by'

Iu, & =[F,, (k)] '~' dp p, Ip&, .

Ie& =[E„(k)] '~'

dpi'(kp)

lp),

where the kinetic-energy function z(kp) is

E(kp) = z p —Q~,

(23)

(26)

with

F„„(o)=n/P n, = [F„„(k)]-' dp dp' ,' p'F(kpp') . — (26)

(pip &=F(kpp ),
dpdp'lp)F '(kpp')(p'I =1

where F '(kpp') is the solution to

(i6a)

(16b)

Now we introduce a convenient operator notation,
and define the remaining quantities needed for the
discussion in Sec. IIB. Let alp&) be a set of vec-
tors satisfying

The term a, is included in (25) in order to make

Iz& orthogonal to ln). (Both Iz& and ln) are of
course orthogonal to the, lu,).) In the classical
limit, z(kp) loses its k dependence, and reduces
simply to &p'-& P '.

The vectors I")I lu&) a"" lz& span the nuII
space of the kinetic operator O. Specifically,
we have
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&n in&" (k)+n"'(kz) iP'& =0

&n, in(o, z) ip & =o,

&«in(o, fo)ip &=o.

(27)

(2S)

(29)

Equation (27), which is equivalent to the number-
conservation law, says that the zeroth moment
of the kinetic kernel vanishes for all 0 and z: (33)

ratio of specific heats. 'The argument is simpler
for the transverse mode, so we consider it first.

From Eqs. (11) and (19), we see that the nor-
malized transverse-current correlation function
can be written as the matrix element of the in-
verse kinetic operator,

~sr

C, (kz) =&i.„i[z n(k. )] i,-„).
dp [Z&"(kpp') ~Z"'(kzpp')] = 0 (30) This is to be compared with the result given by

hydrodynamics for small 0 and z, '
The moments corresponding to momentum and
kinetic energy are more complicated. We define
the momentum flux tensor T, (P) =T,'; '(P)+ T. ,'~'(P)
by

dp p,[k ~
p F (kpp') +K"'(kpp')]

=k, TI (P')+. . . (31a)

dpp, Z"'( kzp.p) =k, T,",'(p')+. .. . (31b)

and the kinetic energy flux vector q;(p) = qf"(p)
+ql" (P) by

dp «(p) [k pF(kpp')+X&"(kpp')]

=k,.q,'."(P')+. . . (32a,)

dp «(p) ff'"'(kzpp') = k,q!"(p') + zS (p') +. . .

where «(p) is the k =0 value of «(kp), and the
omitted terms in Eqs. (31) and (32) are of higher
order in k a,nd/or z (these are not needed). Note
that the z dependence of the kernel plays a role
only in Eq. (32b). It ean be shown that conserva-
tion of momentum and total energy (kinetic plus
potential) follow from the fact that Eqs. (31) and

(32) have the indicated form. "
Specific results for the quantum T;,. and Q; are

given in later sections, but it may be remarked
here that the sta, tic contributions T,.",'(p) and

q,'"(P) are very simple in the classical ease.
The combination k pF(kpp'} yK"'(happ') ap-
pearing in their definition reduces to
k ~ pnp(p)5(p -p'), and so one has TI,'(p)
=p;p, e(p) a dqI'(p)=-.'p (p' —3{3-') e(p).

B. Transport coeff'icients

The transport coefficients are obtained by for-
mally solving the kinetic equation for the density-
density and transverse-current correlation func-
tions, and comparing these functions with the
results predicted by ordinary hydrodynamics. The
calculation also gives the speed of sound and the

a",""(kz)= (z+ fk'q/n)-' (34)

P= in& &ni+ P iu,.& &n,. i+ i«&&«i, (35)

and its complement. Q = 1 —P. A straightforward
calculation based on the identity

n)-' = (z —Qq)-'+ (z —Qq)-'QS (z n)—
shows that the correlation function (33) can be
written in the form

G, (kz) = [z —q, (kz)]-', (37)

where the transverse memory function y, (kz) is
given by

i0, (kz) = p„'(kz) + y,"(k ), z

with

q~t(kz) = &u„ in(kz) q[z —qn(kz)q] 'qn(kz) iu„&,

(33b}

where q is the shear viscosity. At first glance,
one may be tempted to reach inside the matrix
element in Eq. (33) and immediately take the
k, z-0 limit of Q(kz}. Inessence, this iswhat
is done in the usual (local) kinetic theory: by
setting k, z =0 in Z(kzpp') for the low-density
gas (but keeping the k p term) and then solving
Eq. (33), one gets the Boltzmann equation result
for the shear viscosity. Although this is a good
approximatien in some circumstances (the low-
density gas, for example), it is clearly not valid
in general because of the highly singular behavior
of the correlation functions in the hydrodynamic
limit. We must therefore rearrange Eq. (33) in
such a way that the correct limit can be taken.
This can be accomplished in the following way. "

Note that singularities in Eq. (33) can arise
cause ln tile k~ 8 0 llmlt) the operator 0 van-

ishes on the subspace spanned by the densi4y,
momentum, and kinetic energy vectors in),
iu,.&, and i«&. We can handle these singularities

by separating the hydrodynamic subspace from
the rest of function space, using the projection
operator
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q ', (kz) =&u„in(kz) iu„) . (318c)

Because of the projection opera. tor q in Eq. (38b),
we are now free to take the k, z-0 limit of y, .
Comparison of Eqs. (34} and (3V) shows that the
shear viscosity is given by

y,'(k0) y y,"(k0)'O=g'+q" =zn bm
a-0

(39)

3}'=p dp T..(p)Z(p), (40)

where T„,(p) is the transverse-momentum flux
obtained from the nonlocal kinetic equation via
Eqs. (31), and g(P) is the solution to"

dp'~ pp' a p =-&„p . (41)

The'local result 3}, comes from solving Eqs. (40)

As we mentioned in Sec. I, a result equivalent
to Eq. (39) was obtained by Resibois using a dif-
ferent approach. "

In general, then, g separates into two parts,
corresponding to the two terms of the memory
function y, (kz). The "direct" term ri", propor-
tional to a matrix element of the collision oper-
ator, comes from the term of order k'z' in the
small k, z expansion of the kernel, and therefore
has no counterpart in calculations based on a
local kinetic equation. Its occurrence is the most
obvious manifestation of the renormalization pro-
duced by the nonlocal kernel. However, the "ki-
netic" part g', which is similar in form to the
result of the local theory, also contains renor-
malization effects. To show this, we write out
the expression for the kinetic part of the shear
viscosity, from Eq. (38b}, as

and (41) using the free-streaming momentum flux
T'„,(P) =P„P,n, (P)n, (P). The nonlocal contributions
to g' enter through the remaining parts of the
momentum Qux —in particular, there are con-
tributions from the potential-induced correlations
in E(kPP') a.nd from the terms of order k'z' of the
kernel.

Now we turn to the longitudinal modes. The
analysis is similar to the transverse case, al-
though the algebra is more involved. The density-
density correlation function is obtained from the
3 && 3 matrix of correlation functions

G (kz) =&a i[z —n(kz)] iP), (43)

with c}., P =1,2, 3 representing the three longi-
tudinal elements in), iud, and ie), respectively.
Using Eq. (36) a,s in the transverse case, we can
express G z as the solution to

3

Q [z5 „—y,„(kz}]G„2(kz)=5 2, (43)

where the matrix elements of the memory kernel
are given by

cp 2(kz) =cp'2(kz) ip"2(kz),

with

(44a)

q'.,(kz) =&nin(kz)q[z —qn(kz)q]-'qn(kz) iP),
(44b)

(44c)q., (kz) =&min(kz) iP) .
From the symmetries of the kernel, ' it is straight-
forward to show that p» and y» vanish identically.
By construction, y &

is symmetric in o.'and P.
Now' solving Eq. (43) for its (1, 1) matrix element,
the normalized density-density correlation func-
tion, ,we obtain

(kz) (~22+~33 z +22+33 (+23
(+22+ P )33+ (~22+33 P ~2312 ++12~33

(45a)

„„~„( )
z'+ik2(I' yDr}z k'c'(1 —y ')—

z' ik'(1" D )z' —k'c'z —ik~c'D

(45b)

where D~ is the thermal diffusivity, and

r =(y-l)D, +(1/n)( —', 3}+g) (46)

It is to be emphasized that the y matrix elements
in this equation are still functions of k and z;
Eq. (45a) is the general result for G„„(kz) de-
tei mined by the nonlocal kinetic equation. To
obtain the transport parameters, we compare the
small k, z limit of Eq. (45a) with the result de-
termined by the Navier-Stokes equations, ' which
can be written

is the sound-attenuation coefficient, which con-
tains the shear viscosity, the thermal diffusivity,
and the bulk viscosity P. The thermodynamic
parameters in these equations are the adiabatic
speed of sound e, and the ratio of specific heats
y=c, /c„.

To exhibit the k and z dependence of G„„(kz)
for small k and z, we must now expand the matrix
elements y 2(kz) appearing in Eq. (45a). Forster
and Martin show that it is sufficient to keep terms
through second order in k and z (that is, terms
through order k', kz, and z'). To this order,
the matrix elements of the memory kernel are
given by

y„(kz) =ka„, ,
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y„(ks) = -ik'a22,

y»(ks) = k a» yike 5»,
V)»(kz) =-ik'a„—sb» —fs'c„,

(47b)

(47c)

(4Vd)

0C2=+2 + 2 (48a)

where a, 5, and c denote the coefficients (chosen
to be real) belonging to the terms of order s',
z', and z2, respectively. %e now regroup the
terms in the numerator and denominator of Eq.
(45a) and compare the coefficients of powers of
z with those of the hydrodynamic formula, Eq.
(45b). To leading order ink in each coefficient,
we obtain"

netickerneIE(ksPP') and the initial condition
E(kpp'). We now carry out the calculation of the
transport coefficients using the weak-coupling
approximation for K and I'. For convenience,
we gather in the next paragraphs the pertinent
results from our previous paper.

The nonsingular part of the initial condition,
Eq. (4), is given to first order by

&,{kPP') = P[~-(k)+«(P -P')]&.(kP)&,(kP')

tanh(2 P k ~ p) —tanh(2 P k ~ p')
X (

'Pk -(p-p')
and the term N(kP) multiplying the 5 function in

Eq. (4) is determined by

02 2

(43b) n, (p) =-n, (p)~,(p )

a2 g
c 1~-b 33

(48c)
x dp peO+aep-p n, p.

The first-order term of the static kernel is
I =Q22— I+5„(I.+ b»)' c'(I+5„)' '

These formulas are general expressions for the
renormalized hydrodynamic parameters deter-
mined by the nonlocal kinetic equation, as is
Eq. (39) for the viscosity. There is a natura. l
separation of the a, b, and c coefficients into
direct and kinetic parts. In Sec. III, we show
that in the weak-coupling case, the thermal dif-
fusivity B~ and the bulk viscosity f, which is
obtained from F, also separate in this way. The
bare results for the transport parameters are
given by Eqs. (48) with coefficients a(J= ao, obtained
from t.he k, z 0 limit of the kernel, and 623,

533 and c33 set equal to zero.

III. VfEAK-COUPLING APPROXIMATION

In Sec. IIB we derived general expressions
for the transport parameters in terms of the ki-

M, (kP) =P-'[n, (P —,
' k) n, (P +-,' k)] . (52)

Note that, K,"' is odd in k. This is true of K"' in
general. The first-order term (51) involves only
one-particle functions, and can be obtained from
a mean-field or Hartree-Fock approximation to
the equation of motion. ' It should be mentioned
that higher-order terms of K"' contain two- and
three-particle correlations, and are not of the
Hartree-Fock form. In our previous paper we
evaluated E(kpp') and K") to second order, but

we do not reproduce those terms here.
The dynamic part of the kernel begins with the

second-order term, which can be written in the
symmetric form

Z, '(( kspp)= .'(3v) ' dp, d-p, dp, dp, W(1234, p) W(1334,p') &&/. ,(1334~k, s) -A, (1234~ k, s)],

where

W(1234,P) =[~(p, -p, )+«(p, p, )]5(p, p)+[~(p, -p,)+«{—p—, —p, )]&(p, -p)
-[~{p. p, )+«{p, -p, )] (p5, p-) [~(p, p, )+~~(p, —-p, )]—5(p, —p—),

-k 1

A (1234ik s)=6(p +p p p ~k)

&o(p, p, p, p, ) = 2 [s.(p, )~.(p, )N, (p, ) ~,(p, )+~,(p, ) R,(p, ) ri, (p, )N, (p,}],
E{p,p, p,p, ) =2(p', +p,'-p,'-p,')

In the local limit, this reduces to K(~)(o, io';PP') =iZ, {PP'), where

(53)

(55)

(57)
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8 (pp')==,'(2w) fd( d( d( (2w(v(( ( ) a (( (,)]'n, (()q(P,),(P,)n, ((,)l((, (, (, (,)

x 6(E(PP,P,P.)) [6(P P')-+ 6(p, P')-6(P—, P'-) 5(P, P')]}. (58)

J2 is the kernel of the linearized quantum Boltz-
mann equation with the transition probability eval-
uated in the Born approximation.

A. Shear viscosity

The two terms of the shear viscosity, q' and
tt", are obtained from Eqs. (38) and (39). With
the weak-coupling approximation for the kernel,
the appropriate value of the density in Eq. (39)
is the one that occurs in the initial value of the
transverse-current correlation function, namely,
n expanded to second order. "

The result for the kinetic part of the shear vis-
cosity, )I', is given directly by Eqs. (40) and (41)
in terms of the off-diagonal element T„,(P) of the
momentum flux. (Since this is evaluated at k=0

all the off-diagonal elements are equal. ) The
static part of the momentum flux is

T "'(P) =P; P;N.(o,P) +

d
x

dp N, (0, p) dp [v(0}y&v(p -p)]no(p)

(59)

plus a second-order contribution which we do not
write out. The zero-order term in Eq. (59) is
the free streaming momentum flux, as noted in
Sec. II. The first-order corrections come from
both k ~ pE(kpp') and K(8)(kpp'). In classical me-
chanics, the static kernel does not contribute at
all to the shear viscosity. The dynamical part
of the momentum flux is found to be

T','(P) = (2v) '6' dP, dP, dP. 5(p+P, P, P4) [E-'(pp,-p,p.)] '~Q(pp, p, p, )

x [v(P P,) + &v(p -P, )] [uo(p-P, ) + e u(y(p-P,)]- (60)

where

u, (p)= ' ' +6,v(p)p, p, dv(p)
p d~p~

(61)

I

dk dp dp' No(kp)NO(kp')
8(2v)' cosh (a Pkk ~ p)

P Pl 2

x u„g(k) + eu„, (64)
and 6'indicates the principal value of the integral.

We now consider the direct part of the shear
viscosity q". As in the classical case, only the
dynamical part of the kernel contributes. From
Eq. (39), we have

t}"= lim —,(u„(n"'(k, i 0')
~
u„),

%~0

which reduces to

(62)

n =»(*()('f &t", &t).&t,&&A.((,(.t,&.)

x 6(p &+P2 —p, -P&)6(&(p,p, p, p, ))

x [u„,(p, —p, )+au„,(p, —p, )]'. (63)

obviously, g" is positive. As noted in Sec. III,
it comes from a term of order k'z of the kernel,
and therefore does not appear in a local theory.
It can be seen that g" begins at second order in
the density, since at low density A, (p, p, p, p, )
reduces to ,'n'[ P(p, )(—P(p,)(+Q(p, )p(p, )]

It is interesting to express g' in a form that
allows us to examine the classical limit. The
inverse of the change of variables used to obtain
Eq. (4.21) in Ref. 5 gives

In the classical limit N, (kP) becomes n, (P(P), the

exchange term &u„vanishes, and we recover
the expression derived by Forster and Martin.
The classical q" has a simple density and tem-
perature dependence, but this does not carry
over to the quantum result.

B. Speed of sound and C„ /C„

In the weak-coupling approximation, the ex-
pression (48a) for the square of the speed of sound
can be reduced to

sn (p/n)x'c'=n(, )/ n
. 8- (2)BP

(65)

A = ~p 733 p +T33 p 6 p

B l' (0) — fdl lt(()l=(*„. (66b)

The relation (65), without, the implied expansions,
also applies in general. The first term on the

where the subscript (2) indicates expansion through
second order, and
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right-hand side of Eq. (65) comes from the initial
conditions F„„(k= 0), Eq. (14), and F„(k= 0)
=F„„(k=0), Eq. (15). The niomentum flux ele-
ments T»(P) are given by Eqs. (59) and (60),
while the weak-coupling result for the function
$(P) defined in Eq. (82b) is

h(P, ) =-(2v) '(P &P, dp, dp, &.(P,P,P.P.)

x[E(p,p, p.p.)] '

&«(P, +P, -P, -P,)

& [~(p, P.)+ &-~(P, -P.)]'.
Equation (65) is to be compared with the hydro-

dynamic result for the adiabatic speed of sound,
c'= (SP/Sn)z, expressed in the form

~I' P OP nc„ (68)

One can quickly verify that the first terms on
the right-hand sides of Eqs. (65) and (68) agree
to second order. The remaining terms are more
difficult. We might begin by asking whether the
numerators and denominators agree separately,
that is, whether it is true that

(69a)

&„(0)- dp &(P) kp'=' —," . (69b)

Although these conditions do hold classically, ""4
it turns out that neither of them is true in the
quantUm case. This is seen by a comparison of
the perturbation expansions of the various terms.
Of course, the disagreement vanishes in the clas-

s ical limit.
In order for the two expressions for c2 to agree,

though, it is necessary only that

8 nC„BP
be true. +le have verified this to first order in.

perturbation theory: the two stronger conditions
(69) fail at this order but the errors compensate
when the quotient is formed. The perturbation
expansion of the right-hand side is extremely
laborious, unfortunately, and we have not carried
it out to higher order. We conjecture that Eq. (70)
is correct in general.

With the expressions (48a) and (65) for c', the
value of y given by Eq. (48b) is seen to be the
square of the ratio of the adiabatic and isothermal
speeds of sound, which is, of course, identical
to the ratio C~/Cv.

C. Thermal diffusivity

From Eq. (48c), we write the thermal diffusivity

D, =a„/y(1+ 5„).
As usual, thi. s breaks up into D~ =Dz'+Dr~a Eac
of these terms can be seen to contain an overall
factor of (») '. In the classical limit this factor
becomes p'/y~Cv= p'/nC„, and one can rearrange
the formulas to obtain the thermal conductivity X

from the hydrodynamic formula Dz &(nCJ--,) ' A.
similar procedure is not evident in the quantum-
mechanical case, however, since one no longer
has the condition (69b) to give the appropriate
value of the specific heat, and therefore we work
with Dp itself,

The contribution D~z can be reduced to

' &.(P,P,P.P.)6(P, +P, P, -P.)6(E(P,P-,P,P,))

Pl+P2 & Pl P3 + Pl P4 . Pl P3 P2 ~4 + Pl P4 P2 ~3

which is positive, and which has the correct clas-
sical llmlt

The remaining contribution is given by an in-
tegral equation like the one for p' discussed in
Sec. IIB. It is

with

x'(P) = Q.(p) 8An ' &-P'&(0, PP') P! (75)

&'r = (») ' dP x (P)g'(P),

where g~ satisfies

dp'~(pp') g'(P') = -x'(P),

The term. subtracted from Q,(P) ensures the or-
thogonality of Xn(P) to the null space of J'. The
leading term in the static part of the energy flux

I

QI"(P) =&(P)p; &,(0,P)+
p d &,(0,P) &p [~(0)+&&(P-P)]s.(p) (V6)
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The dynamic part of the energy flux is

Ql"(pJ=- I &(2,'&. '[ (u, -u.)+~~(((, u. ((*-(((o, D. (. u-. )(--,
&

— »
', ' [t (P, -p.)+et (P, -p, )]6(p, +P, -p, P,)-

l 2 3 4

-2
p &o(P~Papsp. )est

Pl+P2 6 Pl P3 + P P4 + Pl P3 P2 P4 + Pl P4 P2 P3

In the classical limit this expression for Q'"'
sjmplifies greatly. The first group of terms,
which is due essentially to the k dependence of
n, (P+ —,

' hk), vanishes, while the principal-value
integral reduces to the Forster and Martin result.

D. BQlk vlscoslt'f

We obtain the bulk viscosity g from the sound
attenuation coefficient I', Eq. (46), by subtracting
the contributions from the thex mal diffusivity
and shear viscosity. From Eq (48d), we have

n 3 " i+&„(i+b„)' '

In combination with the expressions for q obtained
above, this gives a result for & = f'+ f' that can
be put, illto R DlRnlfestly posltlve form. Fox' g

we obtain

&& 6(p, +P, -P, -P.)6(E(P,P,P,P.))
Q Pl-P3 +Kg P, -P4

for the thermal diffusivity, the inhomogeneity .
'

X~ vanishes for a noninteracting system. At low
density it is of order n2, and therefore g' also
begins at order n2.

IV. LOP-TEMPERATURE FERMI SYSTEM

The weak™~coupliIlg expl e881ons of 3ec. III cRn
be applied to either a Bose or a Fermi normal
fluid, Rt Rlbltl Rx'y teDlpel ature. In th18 section,
we consldex' the special case of the Fermi fluid
in the low temperature limit, P p, -~.

We begin with the dixect contribution to ge
viscosity, q". It is convenient to put the integra, nd
in Eq. (63) in invariant form, by replacing the
final f~«» with k[~„(p, -P,) -~„(p,-P,)],
where F7;; is the traceless part of u&; and a sum
ovel CarteslRn 1ndlces 18 1Dlplled. Reducing th18
factor, we have

dPl dP2 dP3 dP4t)" =P . '80('~ ),
' ' n, (p,)n, (p,)n, (p, )

»,(P.)6(p, +p, —p, —p, )

&«(E'(P,P,P,P,))~„(P,-P„P,-P,), (84)

A 2
—z [t (P, -p, )+et (P, -p,)]. , (7~)

(80)

where [see Eq, {61)]

M(P) = 3 s;;(p) = 3 p &~(p)+t (P).

~„(pp') =-,' p'[~'(p)]'+-'. p "[v'(p')]'

p. p&)2
+ .'Pp'~'(P)~' (P') —— P P 't( )pv'( p).pp'

The x"emaining contribution. is given by

,dp x'(P)d(»,

where g (p) satisfies

dp'&(Pp')r'(P') = x'(P), -
with

{82)

( )

The right-hand side of Eq. (84) has the same
structure as the collision integral appearing in
the Landau theory, and can be evaluated (to leading
order in the temperature) by the method of Abri-
kosov and Khalatnikov. " We define three di-
mensionless energies

&=P(kp', t ), r=—P('P'. u), y=6(lP-', —t(), —

x'(P) = 3 7';g(p)+ ~ h(p)

dpi + g pE ~ O pp1
'

83

In contrast to y" for the shear viscosity and X

and three angles: 8 and Q2 are the polar and
azimuthal angles of P, with respect to P„and qb

is the angle between the planes determined by
(P„P,) and (P„P,). After the change of variables,
the low-temperature limit of Eq. (84) becomes
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PF
n 40(Z~)'p' dt dx dy Iz(t) Iz(x iy —t)[l —k(x)][1 —Iz(y)] d8 dP, sin( 8)w„(8$), (87)

where Iz(t) =(el+1) ', p~ =(2tz)' ' is the Fermi
momentum, and zv„(8$) is u „(P', —P»P, —P,)
with aIl the momenta restricted to the Fermi sur-
face, namely,

w, (8') =;'Pr w-„(z 8 -'4)

w, (n, n') = sin'o. Sin'o' [v'(2p~ sino.'Sino')]'

+ sin n cos n' [v'(2p~ sinn coso ')]z

+ sill Q slnQ cos& v (2P~ stnzz sin@ )

x v'(2pz sinn coen') .

8'/2

dn

Note that this vanishes like T' a.nd, as we shall
see, is therefore not the dominant contribution
to the low-temperature shear viscosity.

A similar analysis gives the direct, contributions
to the thermal diffusivity and bulk viscosity. The
end results are

I

Since w„depends only on 0 and Q, the Q2 inte-
gration ln Eq. (87) is trivial. The integrals in-
volving t, x9 and y 9 though not trivial, can also be
done exactly, "and give —,'-n'. Thus, the final result
for 'g ls

3 ff/2
dn'sino. w (n, o.") . (90)"-360:P . 9

2

D Ir PF
1f/2

dnzz(1-u')'t'w(u, n), (91)

3
9-IP PF

216m'P'

S/2
du d o(u1-u') 'i'

0 0
1 2

x u sinn v'(2pzu sinn) —u coso. v'(2pru cosn) i [w(u, zz)]' '
2P F

(92)

where

w(u, zx) = [v (2pz u sinn) —v(2pr u coso.')]'.

In evaluating these quantities we have used ex-
pressions for yB and A/B appropriate to the low-
temperature free gas; thus, Eqs. (91) and (92)
are correct to order v2. Since the free-particle
specific heat is (nC, ),=p~/6t3 at low temperatures,
the therma, l conductivity corresponding to D~ is
proportional to T.

We now turn to the kinetic contributions to the
transport coefficients. The task is to construct
the appropriate inhomogeneities and to solve the
three integral equations (41), (74), and (82), using

r
the low-temperature limit of the local kernel
J(P,P'). lt is evident that J(P,P') has the same
form as the collision integral that appears in the
Landau theory. Exact solutions to the Landau
theory transport equations have been obtained
by Sykes and Brooker, " and Hzjjgard Jensen,
Smith, and Wilkins. " The same methods can be
used to obtain exact solutions in our problem also.
In the next paragraph, we collect the pert. inent
tools.

First, we need the leading term of the local
kernel, which is proportional to T2. Following
Sykes and Brooker, we see that to this order the
action of J on the product of a spherical harmonic
and any function of t' =tI( —,'P" —tz) is given by

dp'J(p„p') F,.(p')l(t') =
4(2, .p—, I", (p-,-)e(t) dt' SC(t, t' ) [q(t) —~„((,(t') —x„.(t, (t')],

where P, and P, a, re the symmetric and antisymmetric parts of ijt, and

e(t) =[(e'+1)(e '+1)] ', (95)

cosh,-'-t' sinh —,'(t —t')
(96)

'The real quantities m, X„, and X„are angular integrals of the scattering probability on the Fermi surface.
I p t' l, ed
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uu)(u, o.)
(fu (fl2' '

'

2 )gp 1. 3u sill 2a
1 —u')"'

with u)(u, n) given by E(I. (93). Next, we need the integrals

q„(t)

I, = dt e(t) tq, (t)
a &gl

I~ (t' ——,w')q, (t)

where q„, q&, and q~ are solutions to

q„(t) —x q„(t')

r (tt' K(t, t') q (t) —x„q (t')
w ()o

„q&(t)—q, (t') t'

(97a}

(97b)

(97c)

(98a)

(oob)

(98c)

(99a)

(oob)

(99c)

with q„{t)and q, (t) even and q~(t) odd in t. The
integrations in Eqs. (98) remove any nonuniqueness
in the solutions, in accord'with the remarks in
Sec. III. (In this case, q„and q~ are unique, while

q1 is unique except for an additive constant. ) In
terms of the Sykes and Brooker functions

c(~) =
1 —l(. ~ (4n+3}~ (n+1)(an+1)[(n+1)(an+ I) —~]

'This has the same T ' dependence and general
form as the viscosity calculated in the I.andau
theory If the potential is scaled as $8(&), then
we hRve 'g -T 8, since X2 ls lndepend6nt of
the strength of the potential.

Similarly, the inhomogeneity for the thermal
diffuslvlty ls

X'(P,) =(2v) 'I3 'P,.«(t) .

Rnd

(100)

3 —X g (4n+5)
„, (&+ I)(3u+3)[(u+ I)(3m+3) ~] '

(101)

Note that in the low-temperature limit, the sec-
ond term on the right-hand side of Eq. (75} does
not contribute. The system determining D~ re-
duces to E(Is. (98b) and (99b), and we obtain D'r

=64m P' pI~/u), or
1

a' (m'(('O ,H(1 =){rd 'd '„(( — ') '(' (u, l) .

(108)

I„=[Z/v'(I —~ „)]c{~„),

I,= [2/(3 x„)]a(X,.), (103)

8 2
Ig 27 tt ~ (104)

The calculations for the kineti'c parts of the
transport coefficients are now straightforward.
For the weak-coupling approximation, we retain
only the leading term in the potential expansion
of the inhomogeneities. At low temperature, the
inhomogenelty fol' the 8116Rl" vlscoslty l8 then

&..(p,) = (2v)'p, .p „.e(t) . (105)

With Eq. (94) for Z, E(Is. (40) and (41) determining
1}' reduce to the system (98a) and (99a). We then
have 1I'=64m p'p'p„l„/15u), or,

x dQdQQ I —R sin 2G'N R Q

(106)

Again, we have the characteristic T ' dependence
of the Landau theory result. (With the free gas
specific heRt, the thernlR1 conductlvlty goes like
rp-1 )

The corresponding contribution to the bulk vis-
cosity is considerably more difficult to evaluate
since its inhomogeneity vanishes in a noninter-
acting system. After a, rather lengthy calculation,
we find that to leading order in perturbation theory
lt lS

x'() ) = -: ))~ (o ) ) r~( ' ~( "
() (( - ) )

No

~.(P)~,(P'))(.((), )')
)I"'„(0)

g ~{pt pit)l)t (Q p)l)(pl/2 p/i pll)

(109)

whez'e 1)(p) =g(0) +ev(p) and gl&
——J dpi(to(Q) p). E(lua-

tlon (109) llolds fox' e1'tlle1' statlstlcs. Tile low-
temperature limit of this in a Fermi system is,
after much reduction,
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1
du u[(1 —2u') v(2P~u) —P~u(l —u') v'(2PFu)

32

243ppp'
dudou(1- u)2'~'w(u, o.)

(112)

which vanishes at T'
Summarizing the results of this section, we

note that the dominant contributions to the shear
viscosity and the thermal diffusivity are the kinetic
terms. These diverge at zero temperature like
T ' and have the same form as the results pre-
dicted by the Landau theory. The direct contribu-
tions to the shear viscosity and thermal diffusivity
are proportional to T' and To, respectively. The
bulk viscosity is down by a factor of 7' with re-
spect to the shear viscosity and therefore con-
tributes negligibly to sound attenuation. An in-
teresting point, though, is that the kinetic and
direct contributions to the bulk viscosity have the
same T' temperature dependence.

V. DISCUSSION

In conclusion, we present a qualitative discussion
of the renormalization corrections to the transport
coefficients, emphasizing the idea that these cor-
rections will eventually dominate as the density
and interaction strength of the fluid increase. As
we have noted, the general form of the quantum
transport coefficients is the same as for classical
fluids, so most of the following comments apply
to both cases. Let us suppose that the kernel
scales roughly like cr, which is some combination
of density and interaction strength. From Eqs.
(38) and (39), we see that the kinetic part of the
shear viscosity has a term which begins at order
0 '. This is the bare result, which would be ob-
tained if we calculated the viscosity directly from
a local kinetic equation as in the kinetic theory of
gases. " However, the renormalized kinetic
part also has terms of order cr and 0', coming
from collisional contributions to the stress ten-
sor. The direct part of the shear viscosity, Eq,
(62), clearly goes like o'. Thus, for sufficiently
low densities or weak interactions, where o is
very small, only the bare a ' term of the kinetic

+2P'u'v" (2P u)] .
With this result, the equations for &' reduce to

the system (98c) and (99c). The final result for
this part of the bulk viscosity is then t' = 4P~='Iz/
9s3p'p'sv, or

part will be important, while for very large 0,
the direct part and the 0' term of the kinetic part
will dominate. In the Fermi liquid at low tem-
perature, however, the effective strength of the
interaction is curtailed by the exclusion principle.
This is of course the basis of the Landau theory.
If 0 is measured by the quasiparticle scattering
rate, it is proportional to T' at low temperature.
Thus, no matter how large the interaction, there
is always a. temperature low enough so that the
bare term dominates the shear viscosity. It is
also known from the calculations of Emery and
of Dy and Pethick, "based on the Landau theory,
that the leading corrections to the shear viscosity
come from the kinetic part rather than the direct
part, and this also is what we expect. (However,
this oversimplified argument would lead us to
guess that the correction is proportional to T'
rather than to T ' as is in fact the cise. )

The thermal diffusivity behaves like the shear
viscosity as a function of interaction strength,
but the bulk viscosity is qualitatively different
because of the fact that the noninteracting part of
the inhomogeneity y~ vanishes. Thus, there is
no bare contribution to the bulk viscosity, in ac-
cord with a result from the kinetic theory of mon-
atomic gases. The direct term goes like 0 ' as
usual. For the weakly coupled Fermi liquid, we
found that the kinetic term begins at order v' and
the direct term at order v'.

Finally, it is interesting to ask whether the
kinetic and direct parts of the transport coeffi-
cients reflect different physical mechanisms. We
have pointed out that the kinetic part reduces to
the bare result in the low-density or weak-inter-
action limit, where the dominant transport mech-
anism is the streaming of free particles, and the
role of collisions is mainly to establish local
equilibrium. In a dense fluid, in which free-par-
ticle motion is greatly suppressed, the dominarit
transport mechanism is the collisional transfer
of momentum and energy. It is tempting to specu-
late that collisional transfer is mainly accounted
for by the direct term, and that the kinetic term
describes the contribution of particle transport,
including the effects of collisions on the motion.
This correlates with the result of Jhon and For-
ster, which we have already quoted, that for liquid
argon near the triple point, the direct terms are
much larger than the kinetic terms. It should be
remembered, though, that there are renormaliza-
tion contributions to both the direct and the kinetic
terms, and it is possible that there is no clean
separation of the different mechanisms. We sug-
gest that systematic studies of the density and
interaction strength dependence of the direct and
kinetic terms would be very worthwhile.



KINETIC THEORY OF A NORMAL QUANTUM FLUID. II. . . . 4273

ACKNOWLEDGMENTS

This work was begun when the authors were at
the California Institute of Technology, under the
support of NSF Grant No. GP 9626. We would like
to thank Professor N. H. Corngold for providing

this support and for offering criticism of the man-
uscript. One of us (J.B.S.) held an NSF Energy-
Related postdoctoral fellowship at Harvard.
He would like to thank Professor P. C.
Martin for a discussion of the manuscript
and Professor H. Ehrenreich for support (under
NSF Grant No. DMR 77-10210).

*Present address: Physics Dept. , Carnegie-Mellon Uni-
versity, Pittsburgh, Pa. 15213.

~B. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
L. P. Kadanoff and P. C. Martin, Ann. Phys. (N.Y.) 24,
419 (1963).

3See, for example, J.Bosse, W. G'otze, and M. L'ucke,
Phys. Rev. A 17, 434 (1978),

4There is an enormous literature on generalizations of
the Boltzmann equation. We cite below only those
papers having a close connection with the present.
work. Additional references are given in our earlier
paper, Bef. 5.

5C. D. Holey and J.B.Smith, Phys. Rev. A 12, 661
(1975). In this pape'r, Eq. (2.24) should read

f (Pfp)P3P4) =p[v (P& -P3) + &(P& -P4)l

&& &p(P(P2P3P4)~2P(Pi+P2-P3-P4)

w'here

+p{P&P2P3P4) =np{Pi)np{P2)"p(Ps&"p(t 4)

8 p (P g ) n p (P 2 )n p (P 3)n p {P4) ~

Also, the factor d(P -P') should be deleted from the
second term on the right-hand side of Eq. (4.7); in
Eq. (4.13), the argument of coth{ ) should. be

zp(p -2p); Eq. (4.10) shouM read n~{P)
= np(P)og(P)np {P)~

6A. Z. Akcasu and J.J.Duderstadt, Phys. Rev. 188,
479 (1969).

7E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43,
552 (1933).

80. T. Valls, G. F. Mazenko, and H. Gould, Phys. Rev.
B (to be published).

9L. P. Kadanoff and G. Baym, Quantum Statistical
Mechanics (Benjamin, New York, 1962);
D. Forster and P. C. Martin, Phys. Bev. A 2, 1575
(1970).

~~P. Rbsibois, J. Chem. Phys. 41, 2979 (1964);J.Stat.
Phys. 2, 21 (1970).
G. F. Mazenko, Phys. Rev. A 3, 2121 (1971); 5, 2545
(1972); C. D. Holey, ibid. 5, S86 (1972). The effects
for moderately dense gases are discussed by C. D.
Boley and B. C. Desai, Phys. Rev. A 7, 1700 (1973);
7, 2192 (1973).

~3M. S. Jhon and D. Forster, Phys. Rev. A 12, 254
(1S75).

4L. D. Landau, Zh. Eksp. Teor. Fiz. 30, 1058 (1956)

[Sov. Phys. -JETP 3, 920 (1957)]; 32, 59 (1957)
[5, 101 (1957)].

~5D. Pines and P. Nozieres, The Theory of Quantum
Liquids (Benjamin, New York, 1966), Vol. I, Sec. 1.4.

~6A. A. Abrikosov and I. M. Khalatnikov, Zh. Eksp. Teor.
Fiz. 32, 1083 (1957) [Sov. Phys. -JETP 5, 887 {1957)];
Rep. Prog. Phys. 22, 329 (1959).

~~V. J.Emery, Phys. Bev. 170, 205 (1968); 175, 251
(1968); C. J. Pethick, ibid. 177, 391 (1968); K. S. Dy
and C'. J. Pethick, ibid. 185, 373 {1969);J. C. Rain-
water and F. Mohling, J. Low Temp. Phys. 23, 519
{1976).
The transport coefficients are usually expressed in

terms of the linear-response function or Kubo function.
our reasons for choosing to work with the anticommu-
tator correlation function are discussed in our previ-
ous paper (Bef. 5). For the calculation of the transport
coefficients, it is sufficient to note that, in the hydro-
dynamic limit, G«(kz) and G~(kz) are equal to the
analogous linear response functions.

~98ee Ref. 10 for details. The same projection operator
device was used in a study of the linearized Boltzmann
equation by M. Bixon, J. R. Dorfman, and K. C. Mo,
Phys. Fluids 14, 1049 (1971). Ip their problem, how-
ever, the quantity corresponding to yP (kz) is identi-
cally zero.
The general solution to Eq. (41) contains both a partic-
ular part and a homogeneous part, but the latter drops
out when the integral in Eq. (40) is taken, since the
inhomogeneity T„» is orthogonal to the null space ofJ.
The terms of order z in the numerator and z in the
denominator are eliminated if we divide through by
1+izc33(1+b33) ~.

2A t fixed, chemical potential.
G. F. Mazenko, Phys. Bev. A 9, 360 (1974); D. Forster,
ibid. 9, 943 (1974).
Note that F«(0) = 3n/2 p classically.
P. Morel and P. Nozihres, Phys. Rev. 126, 1909
(1962), Appendix A.

~6J. Sykes and G. A. Brooker, Ann. Phys. {¹Y.) 56, 1
(1970).

2TH. Hdjgard Jensen, H. Smith, and J. W. Wilkins,
Phys. Lett. A 27, 532 (1968).
S. Chapman and T. G. Cowling, The Mathematical
Theory of ¹n-Uniform Gases, : 3rd. ed. (Cambridge
University, London, 1970).


