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The theory of spontaneous splittings of impurity levels in magneiic insulators below their order-
ing temperatures has been examined, with particular consnderanon of the anisotropies of the in-
teractions and possible collective excitation effects. Under appropnate realistic conditioris these
splittings are accurately described by a first-order analysis, with the result that the contribution of
the exchange interaction may be isolated and its orbital anisotropy determined empirically. As an
illustration of the effectiveness of this method for studying the nature of the exchange interaction,
the splittings of isolated Er3* impurities have been investigated in ferromagnetic Tb(OH) 3. This is
a system for which a number of the simplifying conditions can be shown to apply quite accurately,
so that the exchange contribution can be isolated unambiguously from the competing ;&ﬁects of
the crystal field, electric multipole, virtual phonon exchange, and magnetic dipole-dipole interac-
tions. An effective exchange operator for the Er®* ion has been derived-in terms of single-
electron spherical tensor operators which are applicable to all levels of the gro'uhd 41
configuration. A least-squares fit of 11 observed splittings using eight parameters has provided a
good description of both the signs and magnitudes of the splittings. The resulis show that the
contributions of the anisotropic terms are generally one order of magnitude larger than the contri-
bution of the isotropic term, indicating that any realistic analysis of ion-ion interaction effects in-
volving ions with large orbital admixtures must consider the effects of anisotropy-in the exchange

interaction as a major factor.

1. INTRODUCTION

It is well known that the exchange interaction which
arises from the quantum-mechanical treatment of the
electrostatic interaction between electrons can be con-
sidered as an effective spin-spin interaction.! For ions
in pure orbitally nondegenerate S states or orbitally
quenched states the form is?

x'exch =_2']§l ) _§2 » V (1)

where J is a linear combination of "two-electron" ex-
change integrals and S, and S, are the real ionic spins
of the individual ions. Such an interaction is valid for
the ground states of a number of transition-metal ions
in appropriate symmetries; but among all of the.
lanthanide ions, it provides a complete description of
the exchange interaction only for the ground states of
Gd** and Eu?*, which have no orbital angular
momentum.

Although a number of early investigators®~’ were
.aware that the individual "two-electron" exchange in-
tegrals® depended on the orbital states of the elec-
trons, and that this orbital dependence could result in
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a considerable amount of anisotropy for nonsinglet or-
bital states, the simple isotropic form above has been
widely used in the analysis of data. Throughout the
past few years, however, a considerable amount of ex-
perimental evidence has accumulated for a significantly
anisotropic exchange interaction in cases where orbital
angular momentum is not quenchéd. The first strik-
ing illustration was found in the anisotropy. of the ex-
change splittings of Yb** levels in Yb iron garnet by
Wickersheim and White.”~!! Other examples have
been provided by Ce’* pair interactions in LaCl,!2"!5
Er* splittings in Er iron garnet,'¢™!® Eu’*—Cr’* and
Eu’* —Fe’* interactions in the garnets,'9~2

Ho** —Fe’* interactions in yttrium iron garnet,?*
Eu’* —Eu’* interactions,” and Cr** and V?* pair in-
teractions in several hosts.2° More extensive lists
have been given by Wolf*! and Baker.*?

- While the results cited above have clearly shown the
preserice of anisotropic exchange in a wide range of
systems, detailed treatment of these effects is difficult.
Whether the theory is formulated in terms of "two-
electron” exchange integrals,? 27723 or the generally
more convenient two-electron tensor-operator expan-
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sions of Levy,** 3 Elliot and Thorpe,*® Huang and
Van Vleck,?*? Nikiforov et al.,*° or Copland and
Newman,*” as many as 1225 different parameters are
required for a general description of rare-earth ex-
change.® (A model which describes interactions of
this type has been given by Stevens.’®) The analysis
of experimental results is further complicated by com-
'peting effects from other interactions, such as the
electric multipole interaction, which are often hard to
distinguish from those due to exchange.*®

The problem is thus to find a system for which the
properties of the electronic states and the symmetry
operations of the ions can be used to limit the number

of parameters required to characterize the anisotropic °

exchange interaction in-a completely general way. At
the same time, it must be possible to isolate the
effects of the exchange interaction from those of other
interactions.

The purpose of the present paper is to demonstrate
that a detailed analysis of anisotropic exchange effects
is possible for the exchange splittings of isolated doub-
let energy levels of impurity ions in a magnetically or-
dered crystal and thus to provide information on the
nature of the exchange anisotropy. The method of
analysis employed here is also applicable to the ex-
change splitting of exciton.levels in pure systems
when the resonant energy transfer between neighbor-
ing ions and the resulting dispersion are known.*®

In Sec. II, we consider systems for which an excita-
tion is highly localized on the impurity ion and use the
tensor operator description of the exchange interaction
to derive a unique exchange potential*' which is appli-
cable to all levels in the 4" configuration of the im-
purity ion under such circumstances. The number of
unknown parameters in this potential is determined by
the magnetic point symmetry of the impurity site,
resulting in a much greater reduction in the number
of parameters than can be obtained on the basis of
ion-pair symmetry alone. Moreover, if the magnetic
system is chosen so that the splittings of the impurity
ion are a first-order effect, with higher-order terms
negligible,*? the splittings of the impurity doublets will
be due only to the exchange interaction and the mag-
netic dipole-dipole interaction. The magnetic-dipole
contributions to the splittings may then be calculated
and directly subtracted from the experimental split-
tings to yield the exchange contributions. It thus be-
comes feasible to isolate the exchange effects for a
number of states of -the impurity ion, and to gain
enough information from optical studies of the split-
tings to completely determine the parameters in the
theory.

It should be emphasized that the system is chosen to
have the simple properties described above, not just
assumed to. have.them. The validity of.this approach
is discussed in detail in.Sec. II, and it will be shown
that a number of real systems should meet the ap-
propriate conditions.

The splittings of the Er’** impurity levels in the
Ising-like ferromagnet Tb(OH); can be shown to fulfill
all the necessary conditions, and measurements on
this system are analyzed in detail in Sec. III. Both the
signs and magnitudes of the experimental splittings
are determined, and fitting them to a Hamiltonian of
the appropriate form provides a rigorous test of the
theory. The results illustrate dramatically the impor-
tance of anisotropic terms in the exchange interaction,
as one might expect for ions with large orbital mo-
ments. A preliminary report of this work has been
given earlier.®

II. THEORY OF IMPURITY SPECTRA IN
MAGNETICALLY ORDERED CRYSTALS

Although the single-ion picture using an effective
field to represent the spin-spin interactions has been
fairly successful in explaining the results of optical ex-
periments in magnetic insulators;* a rather more-
detailed analysis is required to explain all features
which are observed in some spectra.

Two kinds of refinements may be considered. One
involves improvements in the statistical approxima-
tions used to represent the effects of the interactions
and the possible effects of collective excitations. The
other type of refinement involves improved characteri-
zation of the microscopic interactions, including con-
tributions from the magnetic dipole-dipole interac-
tion, the electric multipole interaction, and virtual
phonon exchange, as well as possible anisotropic con-
tributions to the electronic exchange interaction.

In the past, most of the emphasis has been placed
on the cooperative effects, assuming the microscopic
interactions to be represented adequately by the
Heisenberg form of Eq. (1). This was often quite ap-
propriate since ions with either orbital S states or
quenched orbital angular momentum were involved,
but in many cases possible anisotropy effects were
neglected without any reasonable justification.

In the sections below, we shall consider the
different interactions in more detail and describe the
simplifications which can be made in the case of high-
ly localized excitations involving impurities without
reducing the generality of the interactions or invoking
molecular-field theory. In particular, in Sec. I A we
shall consider the types of excitations which can occur
when an impurity ion is added to a magnetic crystal,
and we shall describe briefly the general complexities
of localized exciton and magnon modes. In Sec. I[IB
we shall then discuss the physical conditions under
which highly localized excitations may be expected
and readily observed. Under these conditions a simple
analysis of the impurity spectrum in terms of an
effective single-ion Hamiltonian allows the isolation of
the exchange contribution and the determination of
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the exchange anisotropy. Section II C will describe the
single-ion Hamiltonian approach in more detail and
discuss the contributions to it by the four types of
electronic interactions mentioned above. The analysis
is carried out in terms of spherical tensor operators
acting on individual electrons, so that the Hamiltonian
will be applicable to all electronic states of the impuri-
ty ion arising from a given electronic configuration
and not just the lowest term. To complete the discus-
sion of the general theory, we shall describe in Sec.

II D the evaluation of the matrix elements of the
relevant spherical tensor operators.

Many of the results of this section are directly appli-
cable also to pure concentrated magnetic materials in
which anisotropic interagtions are important. However
in such systems the excitations are generally not local-
ized and the additional effects of exciton dispersion
due to resonant energy transfer and translational sym-
metry must be included.*

A. Excitations involving impurity ions

A significant amount of work has been done on the
collective excitations associated with impurity ions in a
magnetic crystal, and reviews have been given by
Dietz and Misetich,* Svensson et al.,* and by Cow-
ley and Buyers.*” Three general classes of excitations
may exist: (a) excitations which are highly localized
on the impurity, (b) so-called shell modes where the
excitation spreads over a shell of the magnetic "host"
ions surrounding the impurity, and (c) propagating
modes where the excitation extends over a range com-
parable to the distance between impurities.

The propagating modes occur only for relatively
high concentrations of impurity ions, so that for dilute
systems of the type with which we shall be concerned
only the first two classes of localized modes are impor-
tant. Analysis of even these more localized modes
may in genéral be quite complicated, however, due to
energy transfer effects which require a collective exci-
tation treatment. Both cluster calculations and
Green’s-function techniques have been used to
describe these effects in transition metal compounds
where the exchange interaction is of the isotropic
Heisenberg form (for example, Mn-Ni exchange).#~#
There is no reason to believe that similar effects
would not also be important for rare-earth systems.

Since the main emphasis of the present work was a
detailed study of the nature of the anisotropic ex-
change, it was desirable to choose systems for which
the additional complexities of the collective or shell
modes can be avoided. Under the conditions given in
Sec. II B, the shell modes can be shown to be distinct
from the highly localized modes and not appreciably
excited, so that they will not be important in the
analysis of the spectra which lead to information con-
cerning the exchange interactions of interest.

B. Requirements for a simple analysis
of impurity-ion exchange splittings

As we pointed out in Sec. I, one of the simplest
cases to analyze in order to obtain information regard-
ing the anisotropic nature of the exchange interaction
is the so-called exchange splitting of isolated
Kramers-doublet levels of a magnetic ion in a fixed
environment of magnetically ordered neighbors. Such
a simple description is generally only a first approxi-
mation in a real case, due to complications from col-
lective effects. However, as we shall show, it may in
fact be an excellent description of certain chosen sys-
tems under appropriate conditions without any uncer-
tainty involving unjustified approximations.

1. Highly localized excitations involving
only the impurity ion

In order for the highly localized excitation picture to
be valid, we must ensure that such excitations are dis-
tinct from the shell modes, that is, that they are
eigenstates of the system. The first and most impor-
tant requirement is that the excited levels of the im-
purity ion to be studied are not degenerate with excit-
ed levels of the magnetic host. In such a case it
would clearly be unreasonable to expect highly local-
ized excitations, since resonant coupling would occur
between the impurity ion and its magnetic neighbors.

In considering further requirements, it is useful to
construct a basis of product states involving various
states of the magnetic host crystal and zeroth-order
(crystal-field) states of the impurity ion. Such product
states may be constructed involving (a) the impurity
and completely ordered magnetic host ions, (b) excita-
tions of host ions only, and (c) excitations involving
both the impurity and host ions. In general, all of
these product states will be coupled by the interactions
between the magnetic host ions and the impurity ion,
and the resulting eigenstates will be linear combina-
tions. In order for a product state labeled / involving
the impurity in a completely ordered magnetic host to
be regarded as an eigenstate of the crystal the condi-
tion

V' << 8Ej )

must be satisfied for all j, where 8E; is the zeroth-
order energy difference between the highly localized
excitation / of the impurity [type (a) above] and one
of the product states labeled j involving an excitation
of magnetic host ions [types (b) and (c) above], and
where V), represents the off-diagonal terms in the in-
teraction potential coupling these states.

If condition (2) is not satisfied, "feedback" to neigh-
bors occurs; the magnetic neighbors then "adjust" to
the state of the impurity, and the excitation is thus
not completely localized on the impurity ion. Any
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effective single-ion operator used to describe such a si-
tuation would then depend on the state of the impuri-
ty; that is, a universal operator would not be obtained.

If, on the other hand (2) is satisfied, highly local-
ized excitations will approximate to the eigenstates of
the system as required for a simple analysis. Even if
this is the case, however, we must still ensure that the
optical transitions observed between these states are
separable from those involving thermally populated
shell modes. In constructing the shell modes, two
types of magnetic host states need to be considered:
low-lying magnetic excitations and highear crystal-field
states. Shell modes involving higher crystal-field
states of the magnetic host ions will generally be at
sufficiently higher energies to have negligible thermal
populations compared to those involving only excita-
tions of the magnetic ground state. We can thus con-
centrate on the shell modes arising from magnetic ex-
citation of the magnetic host ions.

If, as is frequently the case, the low-lying magnetic
excitations in the pure host lattice have an energy gap
A above the ground state, and if the coupling between
the impurity and the host is not significantly greater
than the coupling between the host lattice ions, it is
reasonable to estimate the energy of the shell modes
to be also of the order of A. If experiments are now
performed at temperatures such that

kT << A 3)

the shell modes will not be appreciably populated,
and hence they will not give rise to additional contri-
butions to the absorption spectrum which might con-
fuse the analysis of the highly localized excitations.
‘Conditions (2) and (3) are in fact reasonable for
real systems. We shall see in Sec. IIC that the in-
teractions may be expressed in terms of spherical ten-
sor operators, and that for f electrons, the rank of the
operators is less than or equal to seven. Within isolat-
ed doublet ground states for rare-earth ions described
by |J, £J.) for which J. =4, all off-diagonal elements
of the interactions will be zero, and (2) will be
satisfied with ¥'=0. Thus, an Ising-like material such
as Tb(OH);, which has a ground state closely approxi-
mated by |J. =+6), may provide an ideal choice for
the magnetic host satisfying (2). In a highly anisotro-
pic system such as this, condition (3) is roughly
equivalent to

T << T¢ , 3"

which can generally be satisfied. For Tb(OH);,
T-=3.72 K,*® and with our apparatus experiments
could be performed down to 1.3 K, so that thermal
population effects could readily be avoided.

For many other systems in which the off-diagonal
coupling by V' is not identically zero, the energy gap
A might be made sufficiently large to satisfy condition
(2) by the application of a large external field.**3!

In the above discussion, possible effects of the
probe on the ground state of the magnetic crystal were
assumed to be negligible. Such effects could arise
from distortion of the crystal field at the neighboring
magnetic host-ion sites or disruption of the magnetic
order. If, as is usually the case, the impurity has the
same electrical charge as that of the magnetic host

‘ions and a similar ionic radius, crystal-field distortion

should be relatively small. Unless some of the
crystal-field splittings in the unperturbed host ions are
accidentally small only a small amount of mixing will
occur and changes in the ground-state wave function
may be expected to have a negligible effect. As we
shall discuss in Sec. III, Tb(OH); is far from such a
near-degenerate situation while Er** is only slightly
smaller than Tb>*. We may thus expect negligible
changes in the host-lattice crystal-field ground state

~for that system. Similarly, the effect of a small con-

centration of impurities (<1%) should not affect the
magnetic order of the host lattice significantly, espe-
cially if the system has no relatively low-lying excita-
tions, i.e., if (2) is satisfied. This will certainly apply
in our case of Tb(OH);:Er’*, but each system must be
considered individually since local perturbations of the
host-lattice order may occur in some cases.

2. Determination of the exchange contribution
to the observed splittings

Under the conditions (2) and (3) discussed above,
corrections to the zeroth-order (crystal-field) energies
of the impurity due to its presence in a magnetically
ordered crystal will be a first-order effect, with all
higher-order terms negligible to a good approximation.
Moreover, the effects of the four different types of in-
teraction will be simply additive. If the impurity is an
odd electron ion with Kramers-doublet crystal-field
levels there is a further simplification in that neither
the electric multipole interaction nor the virtual pho-
non exchange will produce a first-order splitting of
such a doublet, (due to time-reversal symmetry),
while higher-order splittings may be expected to be
quite small. The experimental splittings will thus be
due only to the exchange interaction and magnetic
dipole-dipole interaction. Since the contribution of
the magnetic dipole-dipole interaction can be calculat-
ed accurately, the contributions of the exchange in-
teraction to the splittings can be readily isolated.

For a rigorous comparisor. of the observed exchange
splittings with the theory described in Sec. IIC, we
néed to know both the magnitude and sign of the ob-
served splittings. This gives rise to a practical con-
sideration regarding the choice of a magnetic-host cry-
stal. In the general case of two split doublets, four
transitions are possible. If the probe-ion site sym-
metry results in selection rules for linearly polarized
light, these can readily be used in conjunction with the
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line intensities to determine both the magnitudes and
relative signs for the splittings of each doublet. While
in principle, these could also be determined using the
relative intensities of absorption of positive and nega-
tive circularly polarized light in cases where selection
rules for linear polarization do not exist, this requires
fairly detailed knowledge of the various wave func-
tions involved which is not always available. In cases
in which the relative signs of the splittings cannot be
determined the analysis is very much more complicat-
ed, since all possible permutations of signs must then
be considered in fitting the measured splittings to the
theoretical model. Such difficulties were experienced,
for example, by Orlich and Hiifner in their very de-
tailed work on erbium iron garnet.!” Even though
they were able to find a reasonable fit to their data,
there was no conciusive way to show that the particu-
lar choices of signs which produced the fit actually
corresponded to the physical situation.

C. Contributions of the individual impurity-host pair
interactions to the effective single-ion Hamiltonian for
the impurity

When the excitation is completely localized on the
impurity ion, an effective single-ion Hamiitonian may
be obtained for the impurity ion by evaluation of the
matrix elements of the operators on the host-ion sites:
We shall first discuss some general aspects of this pro-
cedure and shall then consider the contributions of the
individual interactions. While it may seem that the
same form of effective Hamiltonian could also be writ-
ten phenomenologically using symmetry arguments, it
is in fact desirable to relate the effective Hamiltonian
to the microscopic nature of the interactions for three
reasons. First, it is necessary to consider the interac-
tions individually to ensure that the assumption of
highly localized excitations is valid. Second, a micros-
copic approach provides justification for assuming the
effective single-ion interaction parameters to be the
same for different J manifolds of the impurity; and
third, it will allow us to eliminate some terms in the
Hamiltonian, using properties of the host ion states.
The latter reason turns out to be quite important in
practice, as we shall see in Sec. III.

1. Effective single-ion Hamiltonian approximation

The interaction of an impurity or "probe" ion with
the crystal can be written as a sum over ion-pair in-
teractions between the impurity ion (a) and the indi-
vidual magnetic host lattice ions (5):

Vinl = E Vinl (a,b) . (4)
b .
Concentrating on a single term in this sum, the in-

teraction of ions a and b may be written as a sum over
products of operators acting on ion a (the impurity)

and operators acting on ion b (a magnetic host ion):.

Viala,b) = 3 4.4(a,b) V. (a) V,(b) , )
c,d

where the subscripts ¢ and d indicate possibly different
operators ¥ and the A, (a,b) are arbitrary coefficients.

If an excitation involves only the impurity ion a, the
operators ¥,{(b) may be replaced by their diagonal ma-
trix elements for the ground state (g|V,(b)|g),
resulting in an effective single-ion Hamiltonian acting
on the impurity ion a. (The exchange contribution
will be called the exchange potential.) That is,

Vim_.HeIT= Ed(- V<(a) ’ (6)
where
a('=2A('(I(arb) (glV(l(b)|g> . (7)
b.d

In replacing the operators V;(b) by their matrix ele-
ments in the ground state, we also implicitly neglect
virtual excitations of the b-type ions, that is the possi-
ble effects of off-diagonal matrix elements of V,. The
condition for this to be valid is condition (2) given
above, and it can be satisfied in practice by ensuring
either that the effective interactions are weak relative
to the b-site excitation energies, or that selection rules
for the b-site states make the corresponding matrix
elements zero or small.

The operator H.4 obtained in this way must be in-
variant under the magnetic symmetry operations of
the crystal at the impurity site, that is H.; must
transform like the T or 4, (identity) representation
of the magnetic point group at the impurity site. The
number of possible coefficients «, is thus drastically
limited by the site symmetry. As we shall illustrate in
Sec. III, some significant additional reductions in the
number of aliowed coefficients o, may occur when the
matrix elements of Eq. (7) are evaluated for a specific
system. It thus becomes feasible to determine the
parameters a,. experimentally.

2. Contributions of the individual interactions

When interactions are considered between a pair of
ions, one or both of which may be in an excited state,
it is desirable to describe the interionic pair interac-
tions in terms of the more fundamental interactions
between pairs of electrons on the two centers. A par-
ticular set of interaction constants should then be ap-
plicable to any ionic excited states arising from the
ground electronic configurations of the individual ions.
This allows experimental data from a number of states
to be used to empirically determine the interaction
constants and allows the exchange effects for different
states to be related.

a. Electronic exchange and the exchange potential.
The exchange interaction® between two ions labeled a
and b may be written?>3%3¢
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Hewn(ah) = 3, — k%Fq"",j‘l'(ab)uq("’)(i)u,,‘“ WG +255) (8)

Ll
4.4’

where the summations over /and j are over the elec-
trons on ion a and ion b, respectively. The u,* (i)
and 4% (j) are unit spherical tensor operators which
act on the orbital angular momenta of the individual
electrons,” while the §, and §; are the spin angular
momentum operators for the individual electrons.
The [ %' (ab) contain the radial dependence of the ex-
change integrals and are treated as parameters. The
relationship of the ['A%'(ab) to the equal number of
independent exchange integrals for pairs of electrons
on the two ions has been discussed earlier,?* 64053
The I'{Y term represents the isotopic exchange, while
terms with either k or k' nonzero represent the orbital
anisotropy present in the exchange interaction.

For the operator of Eq. (8) to be Hermitian,

(L (ab)]* = (1) 9T (ab) . 9)

The requirement of invariance under tirae reversal
gives

[DA (ab)]* = (1A 4 +0+¢TH'_ (ab) . (10)

This implies that & + k' must be even.

The orbital operators #,*) have nonzero matrix ele-
ments only for &k =2/, These conditions limit the to-
tal number of terms required in Eq. (8), but for the
general case of an ion with f electrons this number
still turns out to be rather large,*> namely, 1225. The
symmetry of the pairs of ions under consideration
generally limits the values of ¢ and ¢’ and hence the
number of independent parameters, but large
numbers of potentially nonzero contributions usually
remain.>®> One of the main purposes of the present
paper is to demonstrate that the number of parameters
required to describe the highly localized impurity exci-
tations is significantly less than that for the ion-pair
interactions. ‘

When the operator of Eq. (8) is summed over the
magnetic neighbors and the host matrix elements are
evaluated, the result is

Hoxen = E Xpym lzuq(k)(i)sﬂ(ll)(i)]

Agm
+2bkqlzu;wi>] - (an
kg i

where**

Qpgm = 2 2 - ?(_1)"'F(4A(j\"(ab)

b k'q'

x (8] Zu* ()s80)e) (12)

and

bu=3 3 -Lri@) el Tud Wl . (3
. b

k'gq'

Using Egs. (9) and (10) and the properties of the
spherical tensor operators, it may readily be shown
that

(a/\'qm) ¥ = ('_1 )q +m(ak —q —m) (14)
and
(Bi)* = (=B ) . (15)

The values of k, g, and m for which the parameters
g, and By, may be nonzero are determined by the
magnetic symmetry at the impurity site and the
transformation properties of the operators u(,“"’ and
sV, For proper rotations, the transformation proper-
ties are determined by the representations D%’ of the
full rotation group, while under inversion, both the
operators %) and s,! are even. The reflection
o, =IC, thus reduces to C,, and improper rotations
S, = o,C, reduce to C,C;° We note, in particular, *
that if there is an n-fold axis, allowed values of ¢ +m
are 0, tn, £ 2n, +3n,..., and that if there is a hor-
izontal reflection plane, odd values of g + m are not
allowed. These symmetry considerations provide no
restrictions on the allowed values of k. Detailed
results for C;, symmetry are given in Sec. 1Il.

For felectrons the spin and orbital operators in Eq.
(11) may be coupled to give operators of rank r <7
acting on the total angular momentum J. In Sec. IID
it will be shown that only terms with odd r contribute
to the splitting of Kramers doublets in first order.
Those with even r are "cryvstal-field-like," in that they
shift both components of a Kramers doublet equally.
Such shifts are generally not observable since they
tend to be small and difficult to separate from the true
crystal-field shifts of energy levels.

b. Magnetic dipole-dipole interaction. The general
form of the magnetic dipole-dipole interaction is well
known

(/_‘za ) Fub) ( Mb '?ab)

|rahl2

Hpao@,b) = — |y i —3
‘rul»i
(16)

where

ﬁa = E‘LB(Tt +gs§")

and an

=3 ns(l, +25) .
j
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and the vector T,, relates the b lattice site to the im-
purity site a. This interaction is the best understood
of the four interactions, and it can generally be
evaluated explicitly and quite accurately. For rare-
earth ions, it is of the same order of magnitude as the
exchange interaction and must be considered carefully
in the analysis of splittings. For transition metal ions,
the exchange interactions tend to be larger and the
magnetic-dipole coupling is often, therefore, relatively
less important.

Using Eq. (6), we obtain an effective Hamiltonian
for the magnetic dipole coupling to a particular impur-
ity site a:

Hmdd =_ﬁa . Hdip ’ (18)

which has the form of a simple effective field ﬁdip act-
ing on the magnetic moment x,, where

- ?a ( g s ?(,)
ﬁ<'*'v=—2f1—1! (el rlgy -3t |“b|§> b
h |'ah| irabl

19

The summation over b is here again over the magnetic
host ions. The sum in Eq. (19) is conditionally con-
vergent and depends on the shape of the sample, so
demagnetizing effects must be considered. Matrix ele-
ments of the magnetic moment operators %, and i,
can be determined experimentally from the Zeeman
effect.

c. Electric multipole-multipole interaction. The elec-
tric multipole interaction has been considered by Wolf
and Birgeneau®® who also give references to earlier
work. Following their notation it may be written

Vemi(a,6) =3, 3 Ak (ab) y (D% (), (0)
ij Kk’
qq’

where the y,*) are spherical harmonics for the indivi-
dual electron coordinates. Due to the complexities of
the crystalline environment, as well as shielding and
covalency effects, the Aj;f/ must be regarded as essen-
tially free parameters, with no a priori reason for as-
suming the higher-rank terms to be negligible relative
to the k =2 quadrupole-quadrupole interaction. This
has also been illustrated by the results of recent ab ini-
tio crystal-field calculations by Newman et al.,*’ which
indicate that quite complex overlap and covalency
effects can be significant.

The number of terms can be limited by the ion pair
symmetry and by the angular momentum of the elec-
trons under consideration, as in the case of the ex-
change coupling. Within a configuration, the yq(“
have nonzero matrix elements only for k£ even and
k <2I. Representative sizes of matrix elements are
given by Baker.*?

Summing over the host-lattice neighbors we obtain
an effective single-ion operator of the form

Hemi= 3 714 zy;wi)] . Q1)
kq i
where
Yo =23 3 Ask (ab) €| Jy " Dle)y . QD)
b k'q’ 7

For an ion with Kramers degeneracy, the electric
multipole interaction will therefore not produce any
additional splittings to this order and, as we discussed
in connection with the derivation of Eq. (6), we may
expect second-order effects to be generally small.
However, we must note one possible complication,
even within the first-order approximation, in:that the
expectation value in Eq. (22) should really b¢ written
as a sum over all thermally populated states of the
host, so that Eq. (22) applies only if kT << A. The
contribution of the electric multipole interaction to the
effective crystal field is therefore really temperature
dependent, so that a consistent analysis can be made
only if both the crystal field and the interactions are
determined at temperatures satisfying condition (3).

d. Virtual phonon exchange. The fourth interaction
mechanism which must be considered is the electric
multipole coupling between moments induced at the
ion sites by the exchange of virtual phonons.?"32 This
interaction has proved important in the ground terms
of UO,,® the rare-earth ethyl sulfates,’® Pr’* pairs®®
and Ce’* pairs® in LaCl;, in PrAlO;,%? and in
Tb(OH);, % but for our present purposes it is simply
another mechanism which can give rise to the terms
discussed for the electric multipole interaction. More-
over, the energy denominator should suppress even
these effects in optically excited states, so that this
mechanism should be essentially negligible in the ex-
periments we wish to analyze.

D. Matrix elements of the spherical tensor operators

Evaluation of the matrix elements for the spherical
tensor operators involved in the exchange and other
interactions is straightforward and well suited to com-
puter calculations. In some cases, where the states are
very nearly pure Russell-Saunders states, matrix ele-
ments may be evaluated directly in the |SLMSML)
representation.”® In general, however, it is useful to
couple the spin and orbital operators to act on the to-
tal angular momentum J, a process analogous to the
coupling of angular momenta®

SPDuSHD) = 3, (<) 1 + D)1
r.t

m g

y [K k _rt][s(")(i) x u® ()]

(23)
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If the operator s{¥ is defined to be the identity opera- type in Eq. (11). The case with x =1 corresponds to
tor in the spin space, and s,{" is the usual single- terms of the first type in Eq. (11). As in the more
electron "real" spin operator, this expression may be familiar case of addition of angular momenta, allowed
used for all of the interactions discussed in Sec. IIC. values of r range from |k —«| to |k +«|. Since &k <6
Equation (23) with x =0 is then used for the electric for felectrons and x <1, r =7 for f electrons.
multipole-multipole interaction, which is independent Reduced matrix elements of the coupled operators
of spin [Eq. (21)] or for exchange terms of the second are given by®

—

N
(@SLJN 3, [s@ () x u® (D17 Ne'S'L'T) =1 + 1D QI +1) Qr + D]V

i=1
1

K . N
L' kp(aSLI 3 s“(Du®@Ma'S'L) (24)
r i=1 .

n

'

X
~ N
~

where the quantity in large curly brackets-is the usual 9-J symbol.®® The doubly reduced matrix elements

N
(@SLI 3, s“(Du®(Da'S'L)

i=1

for terms with x =0 have been tabulated,®’ but those for x =1 must be calculated using the coefficients of fractional
parentage of Racah® ®: :

N
(@SLIS s@W@Du®(Dla'S'LY = (—-1)S tEH2H QS + 1D Q2S' + D QL + 1D 2L+ D]
i=1 . .
T L '
><N2(—1)5“(9{}0)(01}9’){1 ! K—){L L /i}(glts‘“’lt%)(lﬂu‘“Hl).
- T3 S 1 L
(25

where §=aSL, §'=4&/S'L’, and 0=aSL. (The barred states are the parent states for the configuration /Y.) The
symbol (0{|#) represents a fractional-parentage coefficient®® *® and the quantities in large curly brackets are six-J
symbols.** The single-electron reduced matrix elements in Eq. (25) are given by’

Ulu®lD =1, (26)
(3115914 =2, @7
Gls15) =372 . (28)

Doubly reduced matrix elements for ions with more-than-half-filled shells such as Er** (4'") can be calculated
. from those with less-than-half-filled shells using the relation®
442N

N
(aSLIIEs("’(i)u("’)(i)lla’S’L’)_=(—1)"*""”(aSL|I 3 s@W@OuRDNa'S'L) . 29)

i=1 i=1

In the case of intermediate coupling, which is required for an adequate description of most manifolds and particu-
larly the excited ones, the reduced matrix elements are linear combinations

N .
I3 59D xu® DNy I =3, 3, a(yJ;aSL)a(y'Ja'S'L")

i=1 aSL o'S'L’

N
x (@SLJI 3, [s% () x u® (D1 Na'S'L'T) (30)
i=1
where the a (yJ;aSL) are the components of the intermediate coupling states |yJ).

Using these expressions for the reduced matrix elements, we finally obtain the actual matrix elements required
for the calculations using the Wigner-Eckart theorem®*
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N J—J ., r -" N
(Y] 3 Is@6@) xu® DOy T Ty = (=1) :|_J' p J',](yJH 3 s xu®DINy' Ty a3n

i=1 i=1

where the quantity in large parentheses is a 3-J symbol. If we wish to analyze energy-level splittings in cases in
which J mixing is not important, we need only consider matrix elements diagonal in J. In order for a particular
term in the interaction to give rise to a splitting, the signs of the matrix elements for the two components of a

doublet must be opposite, and examination of Eq. (31) shows that this occurs only for tensors of odd rank r.
Using Eq. (30), together with the property. of the doubly reduced matrix elements

N N
(@SLII 3, s@@Du®(DNa'S'L) = (=15 S+L-L'(&/'S'L'll 3, s@()u®()laSL) , (32)

i=1

and the property of the 9-J symbol that interchang-
ing columns introduces a factor of (—1)* where x is
the sum of the arguments,’' it may be readily shown
that k + k +r must be even for the diagonal reduced
matrix element

N
(YIS 596 x u® (D)1 71yJ)

i=1

to be nonzero. Since r must be odd, we can therefore
restrict our attention to operators for which « + k is
odd. The electric multipole interaction with k =0 and
k even thus cannot contribute to splittings in first ord-
ér. On the other hand, both the exchange interaction
and the magnetic dipole-dipole interaction do contain
terms for which x + k is odd which will contribute to
such splittings. As mentioned in Sec. IIC, the ex-
change interaction can also give terms with r even,
which are similar to crystal-field terms in that they will
not split the Krameérs degenerate states, although they
will generally have quite different reduced-matrix ele-
ments.

III. APPLICATION OF THE THEORY TO Er’*
IN FERROMAGNETIC Tb(OH);

While a variety of real systems are appropriate for
an analysis of the type described above, a particularly
ideal choice is that of the Ising-like ferromagnet
Tb(OH); doped with a small percentage of Er** ions
which occupy Tb** sites. In Sec. III A we shall relate
the properties of this system to the requirements for a
simple analysis discussed in Sec. II B, and we shall
then consider in some detail the possible influences of
the Er** impurities on the states of the neighboring
Tb’* ions. We shall show that changes of the Tb**
states should be negligible in this system. Both the
Er’* crystal-field analysis and experimental values of
the spontaneous magnetic splittings for Er** impurities
in Tb(OH); have been reported in an earlier paper.’
In Sec. III B we shall describe the analysis of these
splittings using the effective single-ion Hamiltonian
method developed in Sec. IIC. The results will illus-
trate unambiguously the relative importance of
anisotropic-versus-isotropic exchange in this system, and

i=1

s

by inference for all other systems with nonzero orbital
angular momentum. Possible extensions of our
results and recommendations for other kinds of sys-
tems are discussed in Sec. III C.

A. Reasons for choosing Er’* in Tb(OH);

1. Properties of Th(OH),

Previous work on Tb(OH); has shown that it fulfills
the requirements for a host discussed in Sec. IIB to an
unusually high degree. Optical studies’74in the or-
dered state at 1.3 K (T.=3.72 K) have shown the
ground state to be very well described by a doublet
|7Fg,J. =+6), which is split by dipolar and exchange
interactions by 6.4 +0.2 cm™~'. The first-excited
crystal-field level, a uw =+1 doublet (nearly pure
J.=15), is at 118 cm™', while all other crystal-field
levels of the ground ’F¢ manifold are above 200
cm~'.7*7 (Extensive measurements of magnetother-
mal bulk properties also agree quite well with this pic-
ture.®) The excited crystal-field energies are thus
more than an order of magnitude larger than the in-
terionic interactions (¥,y <10cm™'), and condition
(2) of Sec. IIB is therefore well satisfied for these
states.

We now consider possible coupling terms between
the two components of the ground doublet. The
crystal-field analysis for Tb(OH); of Scott et al.7*7
has shown that the components of this doublet are
very nearly pure |J =—6) and |J =+6), with only a
small admixture of |J =0), calculated to be about
0.04. Other J. values are ruled out by the Cj;, site
symmetry. Coupling between pure |J; =—6) and
|J. =+6) states for the interactions discussed in Sec.
I1C is identically zero, since it would require a g value
of 12 for the effective operator, while the f char-
acter of the wave functions limits ¢ =<7. Coupling
between the two components arising from the small
|J. =0) admixture or from second-order effects can be
estimated to be of the order of 0.1 cm™' which is
negligible compared with the first-order effect on the
ground state. [This point has also received careful
consideration in the recent analysis of the bulk proper-
ties of Tb(OH);, mentioned earlier.’®] It is reasonable
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to conclude, therefore, that condition (2) of Sec. I B
should be well satisfied for Tb(OH)3 in its ground
state. Moreover, this conclusion should be valid not
only for the case of two interacting Tb’* neighbors,
but also for one Tb’* ion and any other rare-earth ion.

The dipole field for Tb(OH); has been calculated by
Skjeltorp®®7¢ and may be used together with the ap-
propriate experimentally determined Er** moment’ to
separate the dipolar contribution [Eq. (18)] to the Er’*
splittings from the exchange contribution. The value
of H,, obtained from the lattice sum given in Eq. (19)
is

Hy,=(9.45£0.2 kG) — N(5.67 +0.11 kG) ,

where N is the demagnetizing factor’” and the error
limits represent the uncertainties due to the ground-
staie magnetic moment and the lattice parameters.’®’¢
The relatively accurate values available for Tb(OH);
permit rather good estimates of the dipolar contribu-
tions and corresponding good determinations of the
exchange effects.

Another significant advantage of To(OH); is the
rather high rare-earth site symmetry (C;,). This
serves very effectively in limiting the number of
parameters in the exchange potential, as we shall see
in Sec. III B. It also gives rise to very desirable linear
polarization selection rules, which enable the signs of
the experimental splittings to be determined.

2. Use of EPY as the impurity probe

The probe ion to be used in conjunction with a
Tb(OH); host should clearly be a trivalent rare earth
with an ionic radius near to that of Tb** to ensure
minimum distortion of the crystal lattice when it is
substituted for one of the Tb?* ions. In addition,
when the ion is in the crystal, it is necessary for it to
have energy levels which are not nearly degenerate
with those of the host, so that condition (2) can be
met by the kind of interactions typically found in this
sort of material (<10 cm™"). It is also desirable (but
not necessary) for the impurity ion to have an odd
number of electrons, so that its crystal field levels all
have Kramers degeneracy in the absence of the mag-
netic or exchange interactions.

The Er** ion satisfies all these conditions. The large
number of energy levels resulting from the 4!
configuration are well undersicod and many fali in a
region of the optical spectrum which is accessible to
highly accurate photographic techniques.

The crystal-ficld analysis for Er** at the Cj, sites in
Tb(OH); is straightforward, requiring only four
parameters, and previous studies have shown that it
can give a very good account of the observed levels.”?

It turns out that the spontanecus magnetic ground-
state splitting of the Er’* impurity levels'in Tb(OH);
is small enough to aliow appreciable population of
both components even at 1.3 K. This doubles the

number of transitions observable in the temperature
region defined by condition (3) of Sec. II B and thus
makes available a substantial amount of additional ex-
perimental information. [Condition (3) was necessary
to ensure that we are observing transitions involving
highly localized modes.] Another more minor con-
venience associated with Er’** is that the f!'
configuration (conjugate to f°) has only seven parent
states®’; this simplifies calculation of the reduced ma-
trix elements of the exchange operators from Eq.
(25).

Of the other possible choices for the probe ion,
Dy’* and Ho* may be expected to have large magnet-
ic dipole-dipole contributions to their ground state
splittings, which would reduce the number of observ-
able transitions and which might make the determina-
tion of the exchange contribution somewhat more
uncertain. Also the free-ion states are not quite as
well known and simple as those of Er*™, and in the
case of Ho’* there is also the disadvantage that the
crystal-field states are not Kramers doublets. Even so,
both these ions do present reasonable possibilities for
the impurity probes, and experiments using these ions
in Tb(OH); may well be interesting. Another possible
jon is Nd**, but for this ion J-mixing effects are larger
and this will complicate the analysis. Yb’* and Ce’*
have too few 4f levels to provide the amount of data
to determine all of the exchange parameters, while the
levels of Tm?* and Sm** occur mostly in the infrared
region where high-resolution experiments are more
difficult. For Gd’* the number of readily accessible
states is limited to a small number of °P, states, but
the smali orbital angular momentum of these states
reduces the number of terms required in Eq. (11) to
k =2. For C;, symmetry, only three parameters ay,
B, and ayy should be sufficient, and a simple and
unambiguous analysis should again be possible. Ex-
periments on Gd’" in Tb(OH); would be of consider-
able interest.

3. Crystal-field perturbation for T6 ions
near an EXt impurity

The purpose of the present section is to demon-
strate that the Tb*>* ground state in Tb(OH); is excep-
tionally insensitive to perturbations in its environment
resulting from substitution of an Er** impurity for a
Tb’* neighbor. Two types of changes in the crystal-
field levels of TH** could effect our analysis—other
values of J. could be admixed into the ground levels
|J; =+6), thus affecting their Ising-like nature (which
was discussed in Sec. [l A1 above) or other crystal-
field levels could be shifted to lower energy giving rise
to measureable second-order contributions to the split-
tings. _

Effects of both types could, in general, arise when
an Er’* ion replaces a Tb?* ion, since this "destroys"
the symmetry of the crystal field at the neighboring
Tb** ion sites. In principle, this allows new terms in
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the crystal field, and it might also result in changes in
the magnitudes of the usual C;, terms. We should
note, however, thdt there are a number of reasons to
believe that in practice such changes in the crystal
field will be small. First, the variation of the crystal-
field parameters throughout the rare-earth hydroxide
series from Eu’’ to Er’' has been examined in an ear-
lier paper’® and found to be smooth and gradual;
changes in the parameters from Tb(OH); to Er(OH);
are small (=10%). Second, the ligands which account
for a major part of the crystal field in compounds of
this type®’ are unchanged and would be affected in the
present case only to the degree that Er’" introduces a
distortion. The ratio of the parameters Bgs/ B¢y, Which
gives a measure of this distortion is very nearly the
same for Tb’* in pure Tb(OH);, Er** in Tb(OH)3, and
Er’** in Er(OH);:—13.0 £0.5, —13.2 +0.7, and
—13.5 £ 0.5, respectively,’® thus indicating that the dis-
tortion around an Er** ion in Tb(OH); is small. Er**
and the Tb’" ion it replaces, of course, have the same
monopole momento(i.e., ionic charge) apd they have
similar radii: 0.96 A for Er’* and 1.00 A for Tb**+.”

It thus seems reasonable to consider the changes in
the Tb>* wave functions using perturbation theory,
with the wave functions for the undistorted case serv-
ing as zeroth-order wave functions. Off-diagonal ma-
trix elements of the new crystal-field terms between
the states |J. =+6) and higher levels are presumably
small, since the changes in the crystal field will only
be a very small fraction of the unperturbed crystal
field. Furthermore, the energy denominators for the
particular case of the Tb(OH); ground state will all be
quite large, since the lowest of the excited levels is at
118 cm™!, while all others are above 200 cm~'.7475
Consequently we would expect only small admixtures
of other J. values into the ground state (of the order
of a few percent or less), and we would not expect any
of the excited states to be shifted significantly.

It seems safe to conclude, therefore, that even the
Tb* ions very close to one of the Er’* impurities will
behave very much like those in pure Tb(OH)s;.

3

B. Analysis of the highly localized Er'* modos
1. Effective exchange potential for EF " in To(OH),

Considerable simplification of the effective exchangs
potential of Eq. (11) results from both the nsture of
the Tb>* states and the Er'* C;, site symmetry in
Tb(OH);. Let us first consider the terms in Eg. (11),
involving both spin and orbital operators. If, as we
suppose, all the T’ ions are in their ferromagnetical
ly ordered ground state |"F,J; =—6), the diagonal ma-
trix elements of the Tb>* operators

34 (DsB )

in Eq. (12) will be nonzero only for ¢’ =m =0 and we
see, therefore, that the only nonzero parameters a,,,
in Eq. (11) will be those with m =0. (The subscript m
on the o’s will thus be dropped in the future.) This is
particularly fortunate since it immediately limits the
Er’* spin operators in Eq. (11) to the one component
s¢". Since this transforms like the I'; (identity)
representation of the magnetic point group this implies
that only operators &, % which also transform like I,
can occur in the product 4 %'s¢" for the Er’* operator.
From the previous general discussion in Sec. II1 C, this
requires that ¢ =0, +6. In Sec. II D, it was shown that
for the analysis of first order splittings, we only need
to consider even values of k with k €6 for f electrons,
so that k =0, 2, 4, or 6.

Similar considerations apply to the second types of
terms in Eq. (11), which contain only orbital opera-
tors. - Again X must transform like ', and this re-
quires ¢ =0, +6. In this case, however, as was
shown in Sec. II D, only odd values of kK must be con-
sidered in the analysis of first-order splittings, so that
now k =1, 3, and 5 will be allowed.

Combining these various restrictions, we finally
derive the most general exchange potential allowed by
symmetry in this case

11 ; :
Hexchz E {aoouém (i)So‘” (I) +(120U(§2) (/)Sé” (I) +a40u(§‘” (i)Sé“ (I) +a60u[§6) (i)S()(‘) (l)

j=1

where the summation over i is over the individual
electrons on the Er** ion, and all parameters are real.
The operator following the coefficient iags has zero
diagonal elements; thus, for the purposes of the
present analysis such terms may be dropped, leaving
eight real parameters ay, and B¢ to be determined by
experiment.
2. Experimental results

Experimental results of the high-resolution optical-

absorption experiments on Er’* in Tb(OH); have been

+ agelud® (1) +u'® ()1s{? (ii +iage [1® (1) —u®Q (D15 () + Broud? (V) + Bsoud® (i) + Bsoued® (1))

(33)

discussed fully in an earlier paper.”> Almost all of the
lines were quite sharp at 1.3 K and could be measured
with an accuracy of 0.01 cm™!; furthermore, by using:
both line intensities and polarization selection rules,
both the magnitudes and signs of the splittings could
be determined. The observed levels and their spon-
taneous magnetic splittings at 1.3 K are listed in Table
I. From 1.3 to 3.7 K, the splittings were found to be
independent of temperature to within experimental er-
ror (0.01 cm™!), and we may therefore take these
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values to correspond to the 7'=0 K splittings given by
the theory (Table I).

Some additiohal lines appeared in the vicinity of T,
and these may be attributed to the expected shell
modes involving "spin" flips on Tb®* neighbors. The
number and intensity of these additional lines in-
creased as the temperature was increased, as would be
expected on the basis of thermal population of
higher-energy modes. Such lines could presumably be
explained using statistical methods similar to those
used by Prinz® for NdCl; and Wright®' for DyPO,;
however, in the present case, the additional transitions
were strongly observable for only one Ei*" level.??
While it would be interesting to investigate this
phenomenon further, using photoelectric techniques
or pulsed dye laser absorption to get accurate intensity
data, it is not directly relevant to a determination of
the effective exchange-potential parameters and will
thus not be considered further here.’ :

3. Analysis of the observed splittings

Since crystal-field effects for systems such as Er?*
Tb(OH); are much larger than those of the interionic
interactions, crystal-field wave functions provide the
basis for evaluating the exchange-matrix elemernits.
These wave functions were obtained by a diagonaliza-
tion of the combined free-ion and crystal-field Hamil-
tonian, including the effects of intermediate coupling
and J mixing, as discussed in a previous paper.”> Com-
parison of experimental values of the Er’* magnetic
moments obtained from the Zeeman effect with
corresponding values calculated using these wave
functions was chosen as an appropriate test of their
accuracy. If wave functions cannot reproduce matrix
elements of the simpler magnetic moment operator,
they certainly cannot be expected to give accurate
values for the complicated exchange operators.

For 11 of the observed states belonging to the */,5,,
112, *l9p, *Fopy, and *Sy;; manifolds,’ this criterion

TABLE 1. Spontaneous magnetic splittings of Er3* in ferromagnetic Tb(OH); at 1.3 K,

with dipolar and exchange contributions. All energies are in cm

-1

Level?® E,° Splitting AE € AE,¢ AE e °
s % 0.00 —0.87 +0.01 —0.78 +0.02 —0.09 +0.03
% 10275.14 0.92 +0.01 1.08 +0.04 —0.16 +0.05
% 10279.22 0.05 +0.01 0.22 +0.02 —0.17 £0.03
Nip % 10322.80 —4.71 £0.01 —4.4510.10 —0.26 +0.11
: % 10341.11 —3.47 £0.01 -3.62+0.10 0.150.11
% 12434.06 —0.61 £0.01 —0.70 £0.07 0.09 +0.08
P % 12581.25 0.49 +0.01 0.46 +0.04 0.03 +0.05
% 15294.42 —4.01 £0.01 —4.37£0.12 0.36 +0.13
4Fy) % 15362.01 0.66 +0.01 0.52 +£0.03 0.14 +0.04
% 18445.89 2.33+0.01 213 +£0.07 0.20 +0.08
383 % 18497.78 0.50 +0.01 0.84 +0.04 —0.34 £0.05

4J manifold and u quantum number.

bEa,,=-12-[E(p~) + E(—w)], where E(w) and E (—pu) indicate the energies of the two com-

ponents of a doublet level.
AE=E() —E(-p). -

dCalculated magnetic dipole-dipole contribution to the splitting; AE;==2u_H;,, where

Hdip = 945 kG
CAEn=AE — AE,.
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was satisfactorily met. Agreement between theory and
experiment for the Zeeman effect was better than 5%
for all but four of the observed levels, with errors for
those four falling in the range of 10%—20%. In con-
trast, errors as large as 100% were found to occur for
some levels in the 2H,,,» and higher manifolds and
none of these were therefore used in the determination
of the exchange effects. As our analysis included in-
sermediate coupling and J-mixing effects, these
discrepancies are presumably due to either inadequate

TABLE II. Diagonal reduced matrix elements of the dou-
ble tensor operator

il
2 [S(x)(,») X u“‘)(i)]"')

=1

for Er?
Reduced matrix
Manifold K _7( r element
2.366
: (2) } ~0.2988
1 2 3 0.03409
Uisp 1 4 3 0.1739
1 4 5 ~0.2560
1 6 5 -0.2399
1 6 7 © 0.9899
i 0 1 ~0.08605
1 2 1 -0.2221
1 2 3 0.1135
1 1 4 3 ~0.001 862
1 4 5 ~0.1097
! 6" 5 ~0.1250
! 6 7 -0.5992
1 0 1 ~0.6303
1 2 1 - =0.2967
1 2 3 -0.4139
412 1 4 3 0.03927
1 4 5 0.090 81
1 6 5 0.1285
1 6 7 -0.4504
- 0 1 0.8349
1 2 1 -0.000161 4
1 2 3 —~0.3655
" 4Fy) 1 4 3 0.03304
1 4 5 —0.05401
B 6 5 0.1657
1 6 7 ~0.2502
1 0 i 1.037
1 2 1 0.02845
1S5/, 1 2 3 0.2791
1 4 3

intermediate coupling wave functions or inherent
shortcomings of the "single-particle" crystal-field
model.’>"® Further discussion of these effects, which
are clearly much smailer for the manifolds included in
the analysis of the exchange splittings, is given in Sec.
IIC.

Matrix elements of the exchange operators were cal-
culated using the methods of Sec. IID. The
inmermeadiate-coupling free-ion wave functions for Er*™
calculated by Rajnak,?® which gave a good description
of the crystal-field effects for the manifolds listed
above, were used for the coefficients a (yJ;aSL) in.
Eq. (30). Calculated values for the reduced matrix
elements are given in Tables II and III. The computer
program used in this calculation is given in Ref. 84
and was checked by using the free-ion wave functions
of Kahle*' and comparing the results with those re-
ported by Orlich and Hiifner.!?

As we pointed out in Sec. II B, the splittings of the
highly localized modes. arising from the Er**
Kramers-doublet crystal-field levels should be essen-
tially a simple first-order effect in a system such as

‘Tb(OH);. The exchange and magnetic dipole-dipole

contributions are thus given by twice the diagonal ma-
trix elements of the odd rank interactions for the lev-
els involved and are simply additive. The dipole-
dipole contribution to the splittings AE, was calculated
using the dipolar field determined by Skjeltorp®®® as

TABLE III. Diagonal reduced matrix elements of the dou-
ble tensor operator.

11
E[S(K)(l’) x”(k)(i)](r)

i=1

for Er3t,
Reduced matrix
Manifold K k r element
0 1 1 2.801
‘s 0 3 ~0.8818
0 5 S 0.644 1
0 1 1 2.285
“Inp 0 3 3 ~0.6418
0 5 5 0.4834
v 0 1 1 1.899
Iip 0 3 —0.6164
) 0 5 S 0.3572
0 1 1 1476 .
4Fo) 0 3 3 -0.6858
0 5 5 0.5254
48y 0 1 0.1232
) 0 3 0.4373

~0.056 68
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given in Sec. III A1 and the values of the Er’* mag-
netic moments determined spectroscopically.”? The ex-
change contributions to the splittings AE ., could

" then be determined directly by subtracting the dipolar
contributions AE, from the total observed splittings
AE. The calculated quantities AE,; and AE ., are
given in Table I, along with the experimental errors
which arise from uncertainties in the magnetic mo-
ments for the individual levels, the dipole field, and
the measurement of the splittings AE. It is clearly
evident from Table I that dipolar interations alone do
not provide a complete explanation of the observed
splittings. ‘

Once the experimental values of AE,,, and the di-
agonal matrix elements of the exchange operators
were determined, the fit of the exchange parameters
to the data was straightforward. The calculated split-
tings are linear in the parameters as a consequence of
the first-order nature of the splittings. Hence a nor-
mal least-squares method could be used, as opposed
to a more complicated iterative procedure such as that
required for a crystal-field analysis. In the least-
squares fit, each level was assigned a weight of 1/o?
where o represents the experimental uncertainty of
the exchange splitting for the level. !

As a first step, a fit was made using only the ag
term in Eq. (33) which represents the isotropic ex-
change. This fit was quite unsuccessful since there
was little correspondence between the signs of the ma-
trix elements and those of the exchange splittings.
The unweighted rms error was 0.20 cm™', and neither
the signs nor the magnitudes of the splittings could be

reproduced. Varying the dipole field produced no im-

provement. Isotropic Heisenberg-type exchange alone
thus appears to be completely incapable of explaining the
observed splittings.

When all eight terms in Eq. (33) were included, an
excellent fit was obtained with an unweighted rms de-
viation of only 0.08 cm™!, a value comparable to the
experimental uncertainties of the splittings. The
results of this fit are compared with the experimental
splittings in Table IV which shows that the fit indeed
gives both the correct sign and general magnitude for
every observed level. Table V gives the individual
contributions of the eight terms to each calculated
splitting, while the fitted parameters are given in Table
V1. The quoted error limits on the parameters reflect
only the experimental uncertainties arising from the
measurement of the total splittings and the separation
of the dipolar contributions. Additional systematic er-
rors, which are difficult to estimate, are expected to ar-
ise from the wave functions used in calculating the
matrix elements of the exchange operator. Possible
refinement of the wave functions will be discussed in
Sec. III C 2, along with other possible sources of Sys-
tematic error. It should also be noted that the fitted
values of the parameters are somewhat sensitive to

the relative weights assigned to the experimental levels.

C. Discussion of the results

1. Interpretation of the fit to the data

The seven anisotropic exchange terms together with
a small isotropic term in agq are really quite successful
in reproducing the eleven observed splittings, especial-
ly when one considers that energy levels from a
number of different J manifolds with dramaticaily
different spin and orbital angular momentum com-
ponents are involved. The general magnitude and
sign are correct in every case; furthermore, within a
given manifold the relative magnitudes of the calculat-
ed splittings for different levels correspond weil to the
relative magnitudes of the observed splittings.

- The inadequacy of the isotropic exchange alone to
describe the splittings is dramaticaily emphasized by
an examination of Table V where it may be seen that
the contributions of the anisotropic terms to the vari-
ous splittings are generally an order of magnitude
larger than those of the isotropic term. This indicates
that any realistic analysis of ion-ion interactions involving
ions with large orbital admixtures must take into account
the orbital dependence and the resulting anisotropy of the
exchange interaction. This result which was reported
earlier® is supported by the more recent results of
Cone and Meltzer> for Gd*" —Gd** exchange and by

~calculations of 4/ — 54 direct exchange in rare-carth
- metals by Yang, Huang Liu, and Orbach® and Huang

Liu, Ling, and Orbach.®’
Finally, we note from Table VI that oy, 810, and

TABLE IV. Comparison of theory and experiment for
eight-parameter fit to exchange splittings of Er** doublet lev-
els in To(OH); at 1.3 K. Al energies are in cm ™',

Level . Expt. Calc. Error
Uisp = ~0.09 £0.03 ~0.10 ~0.01
% -0.16 + .05 ~0.17 —~0.01

{ o 7 s
4[”/2 3 0.17 +0.03 —0.14 0.03
% —0.26 +0.11 ~0.32 ~0.06
< 0.15+0.11 0.09 ~0.06
Ion 3 0.09 +0.08 0.17 0.08
< 0.03 +0.05 0.07 0.04
“Fy) % 0.36 +0.13 0.57 0.21
1 0.14 + 0.04 0.12 -0.02
4S5 3 0.20 +0.08 0.18 ~0.02
% ~0.35 + 0.05 -0.27 0.07
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TABLE V. Contributions of the separate terms in the effective exchange potential to the eleven observed exchange splittings of
Er3* doublet levels in Tb(OH); at 1.3 K which result from a least-squares analysis with eight parameters. All energy contributions
1 . .

are incm™'.
Term
Level k=0,g =0 k=1,q=0 k=2,g=0 k=3,q=0 k=4,9=0 k=5,9=0 k=6,0=0 k=6,g =16
k=1,m=0 «k=0m=0 «k=1,m=0 «k=0m=0 «k=1,m=0 «k=0m=0 «k=1,m=0 k=1,m=0
Uy > ~0.019 0.013 ~0.034 -0.012 0.142 ~0.039 ~0.185 0.028
% -0.002 -0.030 0.001 0.063 0.299 -0.225 —0.301 0.028
" % 0.000 -0.005 -0.022 0.029 0.117 —0.088 —0.198 0.028
e 0.008 0.125 ~0.463 0.110 ~0.195 0.154 —0.033 ~0.028
%' 0.007 0.102 —-0.258 -0.007 0.374 —0.285 0.187 —0.028
419/2 % 0.016 0.027 0.317 0.092 —0.224 -0.064 0.071 —0.066
% —0.008 -0.013 0.201 0.031 -0.192 -0.101 0.153 0.000
4F9/2 -g— -0.088 0.089 0.446 0.120 -0.210 0.139 0.065 0.011
% 0.010 —0.010 0.128 0.034 0.052 —0.149 0.057 0.000
Sy > 0.152 -0.010 0.104 0.038 -0.108 0.000 0.000 0.000
% 0.051 —0.003 —-0.528 -0.113 0.324 0.000 0.000 0.000
B30 are not well determined by the fit to the experi- This could be due to inadequacies of the wave func-
mental data. This is particularly true for age, the only tions, higher-order effects, or additional terms in the
term which is not axially symmetric. A search for exchange potential.
further physical arguments to eliminate these terms in As we -have mentioned in Sec. III B 3, comparison of
Eq. (33) has been unsuccessful; however, since the theory and experiment for the Zeeman effect indicates
«’s and B’s each represent sums of contributions from serious problems with the Er’* wave functions in the
nearest and next-nearest neighbors, it is possible that 2H\,;; manifold which we excluded from this study. It

accidental near cancellations could make some of the
terms quite small. In this connection we may note the

competition between the various ground-state interac- TABLE VI. Comparison of the exchange parameters

tions found recently for both To(OH); (Ref. 50) and determined from a least-squares analysis of the experimental

Gd(OH); (Ref. 88). As there are no detailed theoreti- exchange splittings of Er** doublet levels in Tb(OH); at 1.3

cal model calculations for the individual exchange K. All values are in units of cm=..

mechanisms, it is not possible at this time to account ) i

for any such cancellations, but it is not unreasonable Parameters Eishtoarameter

to relate them to competing overlap contributions.®’ & pﬁt

(One could eliminate «y if the interaction between

Er’" and the surrounding Tb’" ions involved only the 0.20 +0.10

two nearest Tb’" neighbors through simple two center %00 —0.11 +0.08

processes. Such interactions would have axial sym- Bio 4A64 ;0'79

metry and a, would automatically be zero. However, %20 B

such a specific interpretation is not necessary, and any Bso 0.51 040

model which required ¢ +¢' =0 would also give the 40 —17.0 £5.2

same result.) Bso ~2.19£0.76
0 3.43 +0.88
%66 1.21 £1.51

2. Possible refinements in the analysis

Unweighted rms

For several of the levels studied, the calculated
error 0.08

splittings are outside the experimental uncertainties.




17 ANISOTROPIC EXCHANGEEFFECTS IN OPTICAL SPECTRA:... 4177

is also found that among the levels included in our
analysis, the most serious errors for both the Zeeman
effect and the exchange splittings occur in the *I),
manifold. Inadequacies of the wave functions thus
_appear to be a likely explanation for the lack of perfect
agreement. Such problems could arise from inadequa-
cies in the intermediate coupling wave functions which
formed the basis for both the crystal-field calculation
and evaluation of the reduced matrix elements for the
exchange operators [Eq. (30)], or from shortcomings
of the "single-particle” crystal-field model. Since the
2H,\,; manifold in Er’" is the first to have a major
S ='7 component, the problem may be a result of im-
proper proportions of S =% components in the
intermediate-coupling wave functions. The spin-
other-orbit interactions’® which were not included in
Rajnak’s analysis®’ could affect this mixture. The use
of effective operators to describe the configuration in-
teraction effects may also affect the wave func-
tions.”>’® Crystal-field-induced configuration interac-
tion effects and the more-general "correlation-crystal-
field" terms of Newman and Bishton®' have also not
been included in our analysis, due to the intractable
number of parameters involved. These effects may
result in a term (L,S) dependence of crystal-field or
exchange parameters. Hopefully, increasing interest
in excited state interaction phenomena, energy
transfer, and exciton effects will provide motivation
for further investigation of these complex single-ion
and "crystal-field" problems. '
Contributions to the exchange splittings from
second- and higher-order perturbation effects have
been considered carefully in Secs. II B and III A and
seem unlikely. However, there is also a possibility of
second-order contributions from virtual-phonon ex-
change, and in this connection we may note that .
strong evidence has recently been found®® for a major
contribution from this mechanism to the energy
dispersion of the |"F,J. =—5) exciton band located at
118 cm™ in pure Tb(OH);. In our case we would ex-
pect higher-order effects due to this interaction to be
largest for the Er** ground doublet and negligibly
small for the optically excited states, due to its energy
denominator dependence. In fact, however, the larger
discrepancies in the fit occurred for some of the opti-
cally excited levels, so that it would appear that
second-order virtual phonon effects are probably not
principally responsible for the residual differences.
Another possibility are additional terms in the ex-
change potential arising from the fact that superex-
change interactions involving a ligand or the closed
5525p® shells are not described completely by the ex-
pression given in Eq. (8). For such mechanisms®? one
may have, in addition to the scalar products of the
spins, higher rank products such as [sV(;) x sV ()P
and [sV () xsP()N]1?. For C;;, symmetry, this could
then result in terms of the form

g U s Y G) Faryy uR D sV G)

with az; -1, @41 -1, @61 1, and aq_5_, nonzero. Fora
first-order analysis these coefficients may be regarded
as real. Terms of the same form may arise from Eq.
(8) if the host-ion ground state has nonzero matrix
elements for g'=+1 or £5. Explicit expressions for
the coefficients based on Eq. (8) and contributions by
nearest and next-nearest neighbors only are

aign = 3, —2(=D "2 & (an)+ 6T 4% (nnn)]
k'.q'

x (gl ZshWut (Dlg) (34)

and

B = 3 — 3 [2T& (nnn) +6I' ¥ (nnn)]

k'.q'
x (gl Zur Dle) 35

where the sums are restricted by k + k' even and
g +q'=0,%6,+12 for C;, symmetry. )
Such terms are clearly too complicated to include in
the present analysis. One may hope that future exper-
iments will be performed in which many more than 11
level splittings will be observed, so that a more exten-
sive analysis becomes meaningful. Also, it may one
day become possible to carry out microscopic calcula-
tions of the different exchange processes with
sufficient accuracy to decide which of the possible
mechanisms are in fact important. For the present,

.we can only speculate that the higher order effects

which we have considered could indeed remove the
residual discrepancies.

3. Other possible systems

While the system Er** in Tb(OH); was ideal for the
present analysis for a number of reasons, the magni-
tude of the exchange contributions to the splittings
was not as large as those for which we hoped. It is in-
teresting, therefore, to consider other systems for
which these effects might be larger. Exchange in»
teractions are generally larger for transition metal
ions, but for such systems one would need to be care-
ful to find states arising from the same electronic
configuration. Interesting systems might also be
found among the actinide compounds. UCI; for ex-
ample appears to have large U’* —U3* interactions
since it orders at about 20 K.** Since the magnetic
dipole-dipole interactions in such materials are com-
parable to those in Tb(OH)3, it is clear that there must
be a major contribution from nondipolar mechanisms,
and these should show many of the features of our
present system.

Other lanthanide materials are good candidates also.
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GdCl:Er**,* and GdCly:Dy* % have been studied
but the experimental conditions for the reported
measurements do not appear to satisfy the require-
ments for a simple analysis given in Sec. II. However,
this difficulty may be overcome by using strong mag-
netic fields, which will generally provide a convenient
means for simplifyving and studying the complexities of
anisotropic exchange effects.?0"!

IV, CONCLUSION

We have shown that spontaneous splittings of high-
ly localized impurity levels in ordered magnetic insula-
tors are, under appropriate conditions, ammenable to
a simple first-order analysis with negligible effects
from higher-order terms. As a result, the exchange
contribution to the splittings can be isolated experi-
mentally and a detailed analysis of the effects of orbi-
tal anisotropy can be made. It can be shown that all
the observable effects can be described quite generally
by an effective Hamiltonian containing a reasonable
number of empirical parameters.

This analysis has been applied to eleven optically
observed exchange splittings in five manifolds of Er**
in ferromagnetically ordered Tb(OH);, and it turns

&

out that ail the effects can be described by a spherical
tensor operator involving only eight parameters. The
contributions of the anisotropic terms are found to be
about one order of magnitude /arger than those of the
isotropic term, dramatically illustrating the impertance
of anisotropic exchange in 2 case such as this and the
complete inadequacy of the usual isotropic (Heisen-
berg) form. The parametrization used here has also
been quite successful in relating exchange effects in
several J manifolds involving different L and S com-
ponents.
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