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Theoretical explanation for the observed temperature dependence
of the magnetic susceptibility of scandium
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Fermi-liquid theory is used to explain the observed maximum in the temperature dependence of the
magnetic susceptibility of high-purity scandium. Previous calculations, based on Stoner theory and band
calculations, are critically discussed. The observed disappearance of the maximum when small amounts of
impurities are added is also explained.

The magnetic susceptibility X of high-purity
scandium was measured by Spedding and Croat'.
A maximum in X as a function of the temperature
T was found at about 25 'K. The maximum was
present only at the purest sample and it disappear-
ed when small amounts of nonmagnetic impurities
were added. An attempt to explain the maximum
using Stoner theory and band calculations was
recently reported by Das'. The purpose of this
paper is to explain the experimental data, as well
as the disappearance of the maximum due to im-
purities, on the basis of Fermi-liquid theory.

According to the Fermi'. -liquid theory for the
temperature dependence of the susceptibility of
normal paramagnetic metals' ', the existence of
the interactions between the electrons as well as
the presence of a sharp Fermi surface lead to the
following nonanalytic temperature dependence of
the susceptibility at low 7.":

y(T) =y(0) —bT ln(T/T ); b& 0. (1)

This result is a consequence of the nonanalyticity
of the self-energy Z on the real frequency axis
and therefore is not obtained in Stoner's theory,
where the ~dependence of Z is neglected.

Equation (1) leads to a maximum in X(T) at
T= T /le (higher-order terms may affect the
actual position of the maximum). According to
the "paramagnon model, " the coefficient g is pro-
portional to S'(Ref. 5), where S is the Stoner
enhancement factor. According to Misawa's
calculations' 5-S'. In both cases, the effect is
most likely to be observed in strongly enhanced
(S» 1) paramagnetic metals and has in fact been
observed in many such materials: Pd, n-Mn, U, C3,
YCo„ I uCo„NpCo„CeSn„Rh, Y, Pt, and others
(see Refs. 4—7).

The maximum in y(T) of scandium is therefore
not a rare effect but rather one of a general type
of behavior. The enhancement factor of Sc was
estimated to be 4.6 (Ref. 2), which makes it a
good candidate for the effect.

It is well known that the spin fluctuations play a

most important role in strongly enhanced para-
magnets. They are responsible, for instance, for
the strong damping of the quasiparticles with
energies close to the Fermi level. This effect is
always attached to the Fermi level and leads to
the strongly enhanced coefficient P.' Spin fluctua-
tions are neglected in Stoner's model and there-
fore this model is not appropriate for the study of
strongly enhanced materials. Spin fluctuation
effects were included in the works of Heal-Monod
et ala and Kawabata. ' They obtained a T' variation
for X(T) with a coefficient proportional to S'
(Stoner theory gives S'). However, in their
diagrammatic treatment, they neglect self-energy
insertions, the inclusion of which was shown' to
lead to a complete cancellation of their T' term.

To check our theory in the case of Sc, we tried
to fit the expression given by Eq. (1) to the experi-
mental data Of the susceptibility of the purest
sample (Sc-4-155-Bof Ref. 1) in the c direction,
which exhibits the most pronounced maximum.
We have found that the formula

X(T) = 8.2 —(T/52. 3)' ln(T/43. 7) (2)

(in 10 ' emu/g) fits the observed data in the tem-
perature range between O'K and 40'K with a rms%
deviation of less than 0.2 /o (I'ig. 1). Above 35 'K,
the higher-order terms of X(T) are important and
the experimental data may be fitted over a wider
range of temperature by introducing a term pro-
portional to T'lnT(Ref. 4) or T'lnT

The increase of y(T) below 6'K is presumed to
come from magnetic impurities. '

Attempts have been made to calculate X(T) in
Pd(Ref. 10), in Sc', and in Pt(Ref. 11) using
Stoner theory and band-structure calculations,
but these calculations are limited by the histogram
size of the calculated density-of-states curve.
Since the relevant peart of the density-of-sta, tes
lies in a region of the order &1' around the Fermi
level, one must know the accurate density of
states in this region. Although one can always
use extrapolated density of states by polynomial
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the peak in j(T) was found to be very sensitive to
the position of the Fermi level and indeed, at
least in the case of Pd (Ref 10) the position of
the Fermi level was used as an extra adjustable
parameter. In this way, a maximum in y(T)
was obtained, but the overall fit to the ex-
perimental data is poor. In the case of scandi-
urn, ' a sharp dent in y(T) was obtained instead of
the observed smooth maximum.

Even if the density of states was known with the
required accuracy, Stoner's theory still predicts
the following analytic expansion of the susceptibi-
lity for low T:

2o yo $o go

FIG. 1. Temperature dependence of the susceptibility
of Sc. The experimental points are the results of Spedd-
ing and Croat (Ref. 1) (sample 4-155-B, X~). The bold
theoretical curve given is Eq. (2). The broken line is
the best fit using a three-parameter Stoner theory.

fit, this procedure certainly obscurs any import-
ant changes i;n the derivatives of the density of
states close to the Fermi level. These derivatives
are vital in any calculation of the temperature
dependence of the susceptibility. In palladium,
the accuracy of band calculations is limited to
1 mRy (Ref. 12) ( 160 K), while the maximum in
X(T) occurs at approximately 85 'K. In scandium,
the accuracy is limited to a few millirydbergs, '
while the maximum occurs at approximately 25 'K.
In platinum" band-structure density of states were
calculated with an energy mesh of 0.25 mRy.
Their calculated y(T) agreed well with the experi-
mental data of Budworth et al." between 100 and
220'K. In this case, no maximum in X(T) were
obtained neither in the experiment nor in the
calculations. However, later measurements by
Foner et al." show a, small maximum at 100'K.
Thus band-structure calculations do not reproduce
the new measured data while Fermi-liquid theory
(see Ref. 7) agrees perfectly well with measure-
ment in the temperature range between 30 and
19.0 K.

In Stoner's theory, the position of the maximum
in X(T) and its height above X(0) depend strongly
on the delicate structure in the density of
states around the Fermi level". That explains
why, in using band calculations, the position of

where the coefficients a„depend on the density of
states and its derivatives with respect to the
energy, evaluated at the Fermi level.

The maximum in X(T) is then attributed to
special feature of the bare density of states near
the Fermi level, " "but since similar maxima
showing a characteristric T' lnT behavior appear
ln so many dxQerent strongly enhanced paramagne-
tic metals and metallic compounds, one would
have to postulate the existence of these special
features in the bare density of states in all these
materials, always of the same form and always
situated precisely at the Fermi level. According
to the Fermi-liquid theory, the nonanalyticity of
the self-energy is always at the Fermi energy and
therefore it provides a natural explanation to the
widely observed effect. Furthermore, Stoner's
theory does not exclude the possibility of any
other temperature variation of X, say the existence
of a minimum. Experimentally, a maximum is
observed in all strongly enhanced pure paramag-
netic metals and metallic compounds.

The coefficient b in Eq. (1) has been calculated
within the parama, gnon model approximation' and
it agreed well with the coefficient obtained by
least-mean-square fitting in the case of Pd, with
S- 10. This did not work in the case of Sc,
presumably because 8 is not large enough and
because compared with Pd, the Fermi level is too
far away from the edge of the band' for the para-
magnon model to be valid. The parameter T* in
Eq. (1) is roughly proportional to the spin-fluctua-
tion temperature, i.e., T~ jS, where 7~ is the
Fermi temperature, but since this parameter
also absorbs in it the coefficient of the regula, r
T' term in y arising from the band contribution
and regular terms in the self-energy, it is so
far not possible to calculate it theoretically. T*
remains a parameter to be determined by experi-
ment.

Disregarding the paramagnon model value for g,
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Eq. (1) consists of a three-parameter theory to
fit the experimental data. To compare this with

a three-parameter Stoner theory, we tried to fit
the experimental data to a variation of the form
g = y(0)+ a'l'+bf" Th. e best fit using the least-
mean-square method is shown in Fig. 1 (broken
line), thus exhibiting the supremacy of the nonana-
lytic variation given by (1) over the analytic expan-
sion (3).

The effects of impurities on the logarithmic term
have been studied in a previous work. ' Using a
paramagnon model. calculation in the case of a
finite mean free path, " the following low-tempera-
ture variation of X was obtained:

(4)

where

T =T~(Sk~l) '.
0& is the Fermi momentum and $ the mean free
path.

The maximum measured from X(0) is then
reduced in magnitude and its position shifted
to lower temperatures. The maximum disappears
completely when T p r'caches the value of T*.
This behavior is observed in palladium alloys
such as Pd-Ag(Ref. 18), Pd-Rh(Ref. 19), and
Pd-Pt (Ref. 20) and it explains the disappearance
of the maximum in Sc when small amounts of
impurities are added to the purest sample. '
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