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Two-point correlation functions for a distinguishable particle. hopping
on a uniform one-dimensional chain*
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We derive the two-point corrrelation function for a distinguishable-particle hopping on a one-dimensional
linear chain with all sites equivalent. The solution is obtained from a multiple-scattering equation derived
from first principles, The results are similar to results obtained from computer experiments and
phenomenologicag arguments.

I. INTRODUCTION

There has been considerable interest lately in
the dynamical properties of particles hopping from
site to nearest-neighbor site on a linear chain
where no two particles can occupy the same site. ' '
Recently, Richards' has shown by computer experi-
ments and phenomenological arguments that the
one dimensional two-point correlation function for
a distinguishable particle is drastically different
than the occupancy (or site) correlation function
and than the same correlation function in higher-
dimensional systems. In this paper we consider
only the simplest version of this one-dimensional
problem, the case where all sites on the chain are
equivalent. However, we obtain an analytic solu-
tion to the problem from equations that are de-
rived from first principles. Crudely speaking,
our approximation corresponds to a calculation of
the scattering of the distinguishable particle off
of a single other particle (or vacancy) via the en-
tire Born series. The other. particles or vacan-
cies are taken into account by using the self-
consistently obtained distinguishable particle pro-
pagator in the Born series. Thus we include the
scattering of the distinguishable particle off of
many different particles or vacancies, but do not
account for the correlations between the other
particles or vacancies among themselves.

We recently developed a formalism for calcula-
ting all moments of hopping correlation functions
and methods for summing infinite classes of these
moments to obtain the correlation functions them-
selves. ' ' (References 4 and 5 will hereafter be
referred to as L) The methods and notation used
in this paper will follow these previous papers
quite closely and in the rest of this section we re-
view some of those results that are relevant to the
present problem as well as some of the special
difficulties encountered in one-dimensional prob-
lems. Section II contains the derivation of a scat-
tering equation which uses the mean field disting-

uishable-particle correlation function internally.
This type of equation would be exact in three-
dimensional problems when the number of par-
ticles in the lattice approaches the number of
sites on the lattice. In Sec. III we show how to
treat the internal distinguishable propagator self-
consistently in order to obtain good results.
These results are then discussed and compared
with Richard's work.

Following I, we let n„denote the occupancy of
the gite n and thus n„= 1 if the site n is occupied
and n =0 if the site n is vacant. Further, we let
p denote the occupancy of the site n by a specific
(distinguishable) particle and thus P =1 if the
specific particle is at the site n and P = 0 other-
wise. Further, instead of n and P„, it is more
convenient to use variables whose average values
are zero and that are orthonormal. These vari-
ables are

$„=(n —c)/a, a =.[c(1 —c)]'t',

p =(N/c)' 'p„,

where N is the number of sites on the chain and
c is the concentration of particles on the chain.
The two-point correlation functions associated
with these variables are

D(~, P; t) =(~„(t)~,(O))i)(t),

D(o', P; t) =(p (t)po(O))~(t),

where 8 is the step function and (x) denotes the
ensemble average of (x). It is also convenient to
introduce a self-energy or memory function K de-
fined by the equation

dt ZI7(o. , y,' t )

xD(y, p; t —T)=id„8 5(t) .
Finally, D and K can formally be expanded in
terms of their moments as
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(4a)

(4b)

All moment expansions for correlation functions
will be defined like Eq. (4b) and all moment ex-
pansions for self-energies will be defined like Eq.
(4a,). In the frequency domain these equations read

00 5

Z(a, P; u)) =Q L„„(u,P),
n=O

tl+ ]
D(a, p; &u) = —P M„(a, p) .

(4a')

(4b ')

The fundamental assumption made in I is that at
thermal equilibrium, the occupancy of one site
does not effect the average occupancy of other
sites Tha. t is, (n„n8) =(ng (n8) or (p ne) =(P„)
(n8) if nc p, and thus the static correlations (but
not the dynamical correlations) are trivial. In a
sense that is a high-temperature approximation iri
that we assume that the interaction energies in the
problem are small compared to kT. In this respect
our hopping problem resembles the dynamical
high-temperature spin problem' where an exchange
energy J (analogous to our A's and V's) is re-
sponsible for the dynamical spin behavior but if
(J/kT) «1, the exchange does not effect the ther-
modynamics. To complete the analogy one should
include a magnetic field H that depends on the
spin site. Further, it is not necessary that p, EI

be small compared to kT where p, is the magnetic
moment of the spin. Our problem is also analog-
ous to doing kinetic theory for a perfect gas, In
this case the collisions determine the transport
properties but do not contribute to the thermo-
dynamic s.

In I we showed how to generate diagrammatic ex-
pansions for all of the moments of the self-energy.
We repeat the rules and diagrams here for the
case when I'„z (the hopping rate from site a to
site P) equals I'8„(the hopping rate from site P to
site a). Further, we use the definitions

FIG. 1. Diagrammatic representations of the variables
p and $

a
a) ~pQp

V

d) ~ a QaPQ

p . Now consider the basic event diagrams dis-
played in Fig. 2 and the analytical expressions as-
sociated with them, where a single dot ( ) is de-
fined as one event. The rules for calculating
L„(a,P) are as follows: (i) Form all distinct con-
nected irreducible diagrams with n events that
start on the left with a single dashed line labeled
n and end on the right with a single dished line
labeled P. (ii) Label all interns. l lines with dummy
site indices and associate the proper analytical ex-
pression with each diagram that is the product of
the analytical expressions associated with each
event. (iii) Sum over all internal dummy site in-
dices with the restriction that no two sites at the
same "time" (or horizontal position) can be equal.

If the restriction that no two sites at the same
"time" can be equal is ignored, one can derive a
hierarchy of self-consistent integral equations for
the particle and occupancy correlation functions.
Although formally the lifting of this restriction in-
troduces relative errors of order one divided by
the number of nearest neighbors, in practice the
errors are much smaller that that. In fact using
these techniques we have calculated particle-. dif-
fusion coefficients and correlation functions to
better than 1%%uo accuracy for the three-dimensional
Bravais lattices. ' ' Unfortunately, this procedure
fails for one-dimensional hopping. The reason is
that the lifting of the restriction is tantamount to
allowing the particles on the chain to pass each
other. Since the fact that the particles cannot
pass each other is at the heart of the present

A„By =al"gy(&„y —& g),
V 8

—„a = —I'„a L2(1 —c)5„—5a a +c5„858—],
b) e)

Q
—Vapap

, ~n8n8 2+n8~aa~88 '

As shown in Fig. 1, we associate solid lines with
the occupancy or site variables ( and dashed
lines with the distinguishable-particle variables

c) ----
p Aapy f)Q

a
apap

FIG. 2. Basic event diagrams and their corresponding
analytical expressions.
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problem, these procedures that are successful in
three-dimensional problems cannot be used with-
out alterations.

II. DERIVATION

n n-I n-I

FIG. 3. Diagrammatic representation of Eq. (17) and
(18).

Our procedure in this section will be to examine
certain classes of moment diagrams for the
L„(o)P) and then to devise integral equations that
reproduce these classes of moment diagrams.
There is only one moment diagram with one event,
Fig. 2(a) so

where

and

c =(1 —c)

G;, (6 &) =» Z, 'q" G(q, q y q; &)

(14)

L,(o. , p) =2„8 . (6) x trig; q' trig, . q" . (15)
All higher-order (n&1) moment diagrams must
start with the event in Fig. 2(c) and end with the
event in Fig. 2(d). Thus, by the rules in Sec. I,
we have

Ln (& ~ & ) Z8, 8, y, y
f1 a yBGn- (y2& Pi ys Pansy (7)

Go(o', P; a. , P) =5„„5s(s1——5„8) . (8)

In order to sum up the moments, it is, convenient
to Fourier transform in time. All time-dependent
quantities A(t) are transformed as

for n~ 2. The rules for calculating G„(o., P; o. , P)
are the same as the rules listed in Sec. I for X„,
except that the diagrams must start with a solid
line labeled n and a dashed line labeled P and end with
a solid line labeled n and a dashed line labeled P.
In addition,

r„, = r,f(~), f(~) =5„,+5„

r(q) = r,f (q) =2I,(1- —cosq) .
(16)

Although it is not our final approximation, it is
instructive to calculate D in the approximation
where the contributions to G„(u, P; )y. , P) are re-
stricted to diagrams that have no more than one
solid line at the same "time" (horizontal position).
It is easily seen that in this approximation

G„(a, P; o, P) =Zs.
y F(u, P; n', P')

In Eq. (15), i and j can be s and c where trig, = sin
and trig, = cos. In obtaining these equations we

have assumed a linear chain with N atoms spaced
one unit apart and periodic boundary conditions.

. Since we assume only nearest-neighbor hopping,
we also have

Now Z(n, o.; e) can be written

K((x, o); (d) =(d~~ —Z s y s y Q~s

(9) xG„,(n', P';)y, P)

for n ~ 1 where G, is given by Eq. (8) and

F (n, P; n, P) = ((u —58 I) + &V g 85 —+ V 8
—
„T))

x(1 —5„I))(1—5—„8) . (18)
x G(y, p; y, p; &u)Q —

8y—,
where G(y, P; y, P; e) is the function whose nth mo-
ment is G„(y, P; y, P). Further, it is convenient to
spatially Fourier transform all quantities depend-
ing on the difference between two sites A (o. —P) as

A (q) = Z A (o. —P)e "~ @

These two equations are expressed diagrammati-
cally in Fig. 3 where G„ is represented by the part
of the figure to the far left. Further, G(o. , P;cy, P;w)
satisfies the equation

—2 4& G ((x ~ p ) cK, p) (8 ) = 5~ ~5 8 s (1 —5~ s )

Functions like G()y, P; n, P) that depend on only
three independent varibles and can be Fourier
transformed as

—Z)y y F(o. , p; n', p')

x«(o', p'; cr, p; ~) . (19)

G(q', q", q) = Z. sG(~, P; ~, , ,-P)

x exp' —iI(-,'q+q')o. '+(—,q —q')p

—(lq+q")o. —(lq-q")fl) ).
With these definitions, Eq. (10) can be written

Z(q, ~) =2cI,(1 —cosq) [I —4cI,G„(q, ~)],

(12)

By using equations similar to Eqs. (4a') and (4b'),
it can easily be verified that the moments of
G(a. , P," oT, P; e) generated by Eq. (19) are identical
to the moments generated by Eqs. (17) and (18).

Although Eq. (19) can be solved directly, the
physics of this approximation is much clearer if
we rewrite it. By comparing moments it is easily
verified that the following equations are identical
to Eq. (19):
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G(o'y Pic'y Pi &)=P(~~Pi o'& Pl ~) —Z~, B' n" 8."P(o'~ Pi & y P i ~)&2(& ~P i & ~P )G(& I fl i &~ Py &) I

i—&u P(n, P; 5, P; ~) = 5„~58&(1 —5„&)—Z~ & E,(a, P, o.'; P')P(n'„P'; 5, P; a),
(20)

(21)

where

P (g, (d)
1+41,cP„(q, &u)

(26)

P;, (g, e) = N 'Z;, - P(q'., q", q; e)
&trig; q'trig, . q" (27)

where

&(a, P; ~, P) = F( o, fl; ~, P) +F,( a, 8; ~, 8) . (22)

This holds no matter how one decomposes F into
E, and F,. In particular, we chose the decomposi-
tion

F,(n, P; 5, P; (u) = (1 —5„g)(1 —5-„g)

X[&d ~~(p)5 88+ ASTI(B )5a(x] I (23)

F,(n, P; n, jP) = cl'„8(5 „5g—
g

—5„y5—„8) (24)

where

(u —„(p)=5 -„(Z~ 8Z ~) - r -„(25)
I

and 2„—(P) =c&u —(P). The quantity ~„—(P) is ex-
actly the self-energy K(n, n) for the occupancy or
site correlation function when the site P (Pc+, a)
is blocked. Further, &u&8(o. ) is exactly the mean-
field self-energy K(P, P) for the distinguishable-
particle correlation function when the site o. (n
c P, P) is blocked.

First consider Eqs. (20)-(25) in the limit where
c-0(c-1). Since R(q, e) is explicitly proportional
to c because of Eq. (13) we need only evaluate
G„(q, &u) at c =l. In fact Eqs. (20)-(25) should be
exact in this limit because the moment diagrams
for G omitted in this approximation are proportion-
al to 0' and 0' is proportional to c. The equations
also have a very simple interpretation in this lim-
it. Since c =0, the term 2&8(n) in Eq. (23) vanish-
es and all quantities in Eq. (21) a,re proportional to
o~ a. The q'uantity P(o. , p; n, p, ~) is now just the

.propagator for a single particle or vacancy hopping
on a chain with the site p blocked out. ' That is, it
describes the motion of a single vacancy that can-
not move the distinguishable particle at the site P.
Equation (20), on the other hand, is in the form of
a.scattering equation for a propagator G where P
is the noninte racting propagator and F, is an in-
teraction potential. This equation takes care of
the processes whereby the vacancy moves the
distinguishable particle.

If Eqs. (20 and (24) are Fourier transformed ac-
cording to Eq. (12) the resulting equation is an
integral equation with a separable kernel. This is
trivially solved to yield

as in Eq. (15). By combining Eqs. (13) and (26),
we obtain

2I;c(1 —cosq)
1 + 4c I;P„(q, &u)

(28)

for all values of c.
If Eq. (21) is Fourier transformed according to'

Eq. (12) the resulting equation is an integral eq-
uation whose kernel is a sum of separable ker-
nels. Thus the solution to this equation for c =0
is also straightforward. The solution requires
the evaluation of a number of integrals of the form

F(f, &u) = N 'Z,f (q)[-i &u + 21,(1 —cosq)] ', (29)

where f (q) is some trigonometric function. These
integrals can be performed easily by using the fol-
lowing r epresentation:

~0

F(f, ~) =N 'Z dt f(q)
0

&& exp(- f[- in+21'0(1 —cosq)]).

If the q summation is turned into an integral and
performed first, the remaining integral is the
Laplace transform of a modified Bessel function.
This can be easil'y evaluated using standard ta-
bles. ' With a bit of algebra, one can show that
P„(q, u) is independent of q and

P„(q, ~) = (4I', ) 'J —1+[~(&u +4i I', )]'~' j&u] . (31)

2I',c(1 —cosq)~
D(0 +)I o= i++

[ ( 4 I )]&/2 (32)

In any lattice with symmetric hopping rates the
analogous equations can be solved to obtain a self-
energy Z that is proportional to 1 —c. For a three-
dimensional lattice this yields a two-point corre-
lation function that is exact as c approaches one
and corrections for finite values of 1 —c are of or-
der 1 —c compared to one. The physics of the
situation in this limit is that one need consider the
interactions of the distinguishable particle with
only one vacancy at a time. The correlation func-
tion for this process is often described by an ef-
fective diffusion coefficient or correlation fact~

This function has a branch cut connecting e =0 with
cu =-4i I", and the phase of the square root is the
sa.me as the phase of e when ~e ~-~. Thus, in the
limit c-0, we obtain
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in the long-wavelength limit. "'"
The situation for a one-dimensional chain is

actually more complicated than in three dimen-
sions. The effective strength of the interaction
between the vacancy and the distinguishable par-
ticle is much stronger in one dimension because
the number of paths away from the particle is severely
restricted. In fact the corrections to obtain the
correlation factor are of order 2/n where n is the
number of nearest neighbors. " Since n = 2 for the
nearest-neighbor linear chain, the fact that the
correlation factor diverges (or does not exist)
should not be too surprising. This nonexistence
of a correlation factor is reflected in the fact that
the mean square displacement' of the distinguish-
able particle is not proportional to t for long
times t Furt.her, as we shall see, Eq. (32) is in-
correct unless e» (cq')' no matter how small c
becomes. The reason is simply that a vacancy in-
teracts with the distinguishable particle for such
a long time that one cannot consider the effects of
only one vacancy at a time.

Equation (21) can a,iso be solved straightforward-
ly for finite c. In this case P(o. , P; n, P; w) is the
propagator for the distinguishable particle and
another particle (or vacancy) with the restriction
that they do not pass each other. However, the
distinguishable particle propagates in the mean. —

field approximation. Since this is a bad approxi-
mation, we do not expect the results to be valid.
In the next section we will show how to improve
upon this approximation by treating this internal
distinguishable particle propagates self-consist-
entently.

III. RESULTS

In this section we shall keep Eq. (20) t and thus
Eq. (28)] while improving upon Eq. (21). As dis-
cussed ea.rlier, Eq. (20) describes the multiple
scattering of the distinguishable particle and

another particle (or vacancy). The quantity
P(o. , P;K, P; e) describes the propagation of these
two entities when they are not interacting. The
trouble with Eq. (21) for P is that it describes the
propagation for the distinguishable particle in the
mean-field approximation. What we wish to do
now is renormalize this propagator (represented
by the dashed line) so that it is replaced by the
self- consistently obtained propagator. This will
yield the approximation discussed in the first
paragraph of the paper. We shall only attempt to
carry out this calculation in the hydrodynamic limit
where & « I", and q«1. Because of the divergent
na. ture of the integrals involved, D(q, e) or K(q, a)
can be evaluated self consistently in this limit
without knowing their values for larger q and (d.

We now wish to note [see Eq. (27)] that

P„(q, (u) =P„(q, ~),

P(q, (u) =P„(q, &) =0, (33)

no matter what approximation is made for
(P(o. , P; cy, P; &u) if that approximation preserves the
restriction that the distinguishable particle and
the other particle (or vacancy) cannot pass as dis-
cussed in the last paragraph of Sec. II. For ex-
ample, using Eq. (27) one can easily derive the
equation

P„(q, ~) = —', Z -e"' " [P(o., o. + 1; 7e, n +I; ~) + P(n, cr —1; n. , n —1; &)
SS

+ e" P(n, n I;+K, 7c —1, &u) s e "P (n, n —1;5, 5+ 1; cu)] . (34)

p„„(n, p;n, p;a)= d(d
D(o'~ &i &)

~00 2P

or
XD (Pie Pi (d —CO)

P„„(q', q", q; e) = N 5(q' —q")

x D(q +&q Q))
l

xD(q' ——,'q, u& —2) . (36)

However, since the two particles cannot pass,
P(o. , n el, n, 5+1;cu) must be zero. Equations (33)
can also be verified explicitly for the approxima-
tions used in Sec. II. Thus P„(q, v) in Eq. (20) can
be repla. ced by P„(q, ~).

If we ignored these restrictions about no passing,
P(n, P; n, P; w) would be the simple convolution
P„„(cr., P;n, P; &u) where

I

In these equations D is the self-consistently de-
termined distinguishable particle propagator and

D is the exact occupancy or site propag'ator

D(q, ~) = [—i e + 2 I;(1—cosq)] ' . (37)

We now a.rgue that Eq. (36) is a good approximation
for computing P„(q, a) in the hydrodynamic limit
(&u « I"„q«1). The argument is that all four P's
in the square b'rackets in Eq. (34) are equal in the
hydrodynamic limit (o. and 5 are well separated) if
we ignore the restrictions. Further, P„'„(o., o. +1;
o.', 5 +1; e) is very close to one-half of the value of
P(o. , o.+1, n, 5 +1; &). This factor of 2 obtains be-
cause if the distinguishable particle starts out to
the right (or left) of another pa.rticle it must a, l-
ways remain to the right (or left). On the other
hand, if the restrictions are ignored, the proba-
bility of them being to the right or left of each
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, other at long times later are equal. As a further
check of this approximation we have computed
P„(q, cu) both ways explicitly in the approximation
used in Sec. II (for finite c). In that case we find
the two ways of computing P„(q, ~) yield identical
results in the hydrodynamic limit.

Using the approximation we obtain

f(x)- ,'x'i-', x»1,
f (0) = 0.6 .

(46a)

(46b)

We cannot express f(x) in terms of tabulated
functions. However Eq. (45) can ea.sily be solved
numerically with a computer. In particular, we
find that

Pq), (q) co) =
2

D(q+4q, ~)

&&D(q ——,
'

q, ur —2)cos'q . (38)

Thus I7(q, v) is a function with a branch c'ut running
from ur = 0 to u& = i ~—, is analytic in the upper-half
co plane, and is real and positive when v is posi-
tive imaginary. Further,

where the q integration can be extended to form
-~ to +~. Equations (28) and (39) along with the
equation

D (q, (d) =. [—i (d +K(q) (d)] (40)

, can be solved self-consistently for D.
It is now convenient to define a reduced imaginary

frequency

8 = —t4)/Io

and a reduced self -ene rgy

k(q, z) = z(q, (u)/r, . (42)

We shall also assume that
~

I",P„(q, ur)~»1, which
can easily be verified. By combining the above
equations one obtains the equation

2 2 oD -1
&(q, ~) = , —, ~q[—~—+q'+u(q- q, x+q')] '

(43)

The frequency integration can be done easily using
Eq. (37) since D(q, R) has a. pole in the lower-half
2 plane, and D(q, u) —ru} has no singularities in the
lower-half (d plane. Further, we assume that only
values of

~
q~«1 contribute significantly to the'in-

tegral in the hydrodynamic limit. This assumption
is easily verified by the form of D(q, &u) ultimately
obtained. Thus, Eq. (38) can be rewritten

P„(q, &u) = —D(q —q, &u + i r,~q),Jg

R(q, &u ) = r, (c q '/c )'f((-i ~/r, )(c q '/c) '),
(47)

where f (x) is the solution to Eq. (45).
The mean-square displacement of a distinguish-

able particle x'(t) is given by

x'(t) = x D(x, t)dx . (48)

By expressing D(x, t) in terms of D(q, t) and inte-
grating by parts twice this can be rewritten

-d'D(q, t)x t =—
dq q-o

(49)

x'(t) =(2c/c)(r, t /m)) ', (50)

which is valid for long times, I",t 1. Thus we
recover the t ' ' dependence noted by Richards. '
The numerical factor in front of t' ' is a,bout 3(P/q

lower than the value obtained by Richards.
The form of the two-point correlation function

suggested by Richards, translated to our notation,
1S

The frequency integral needed to obtain D(q, t) can
be performed by Peforming the contour around the
branch cut which transforms the integral into a
standard Laplace transform. Since q is eventually
taken to zero in Eq. (49), Eqs. (46a} and (47) can
be used to evaluate the derivative before the fre-
quency integral is performed. The result obtained
1S

This equation cm. be further simplified by antici-
pating the final result that

&(q, ~) =(c q'/c}'f(x),
x=z(cq'/c) '.

D„(x, t) =(2w) ' '(bt) ' 'exp[-x'/2(bt)' ']

b =2.5r, (e/c)2 . (51)

(44)

From the form of the final answer it can also, be
verified that q —q can be replaced q in k(q —q,
x+q'). This obtains because either q«q or q'
»k in the important region of integration. Finally
the following equation for f (x) is obtained:

~o 4 1

f(*)=.(
—O'I*')" +f)x+)")) '

where

y =q'(tb/16m))' ', (53)

and erfc is the complementary error function and
a branch cut extends down the negative imaginary
&u axis. In spite of the fact that Eqs. (47) and (52)

This can be Fourier transform easily using stand-
ard tables' yielding

D„(q, u&) =(i/&u)[1 —())y)' 'e" erfcy' '], (52)
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look very different, expansions for large and
small frequencies are quite similar. A dimension-
less measure of the frequency is

iidc-'/I;c 'q ' . (54)

The expansion of our function for large values of
v ls

In the other limit, for y =0,

D(q, 0) -1.2(c/cq ')',
while Richards obtains

Dz(q, 0) =(8/2. 5w)(c/cq')' .

(56)

(56' )

The expansions for high and low frequencies of

while the corresponding expansion of Richards
functions is

D„(q, &u) = (i/e)[1 —(2.5~/16)' 'r ' '+ . I . (55' )

our correlation function differ from the expan-
sions obtained from Richard's correlation function
by about 30%%uo and 20%%uo, respectively. Further,
computer evaluations of the real and imaginary
parts of D(q, u&) are within 30%%uo of real and imagi-
nary pa. rts of D„(q, e) for all values of q and e in
the hydrodynamic regime. Thus we maintain that
our analytically derived D(q, ~) represents a good
fit to Richard's computer experiments for sym-
metric hopping rates.

Except for inelastic neutron scattering, one cannot
experimentallymeasureD(q, e) directly. In general
NMR experiments do not measureD(q, v) directly. In
fact, they usually measure various convolutions of
D or integrals of D(q, e) over q. The one excep-
tion that comes to mind is pulsed-gradient dif-
fusion measurements. " Because of the form of
D(q, u&) for small q and v, we would not expect the
decay due to diffusion to be.the same as that us-
ually obtained.
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