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The possibility is discussed that in a heavily doped n-type semiconductor a small but significant fraction of
electrons may be released from the donor levels even at O'K. The theory is based on the model of both the
free-electron screening and the donor-electron screening of the potential. The latter screening arises from the
neutral-donor polarizability which enhances the dielectric constant via the dipole-dipole interaction. The
partial release of electrons into the conduction band starts at such a donor concentration that the bound state
would disappear if only the donor electron screening is assumed, The fraction of the released electrons and

the binding energy of the donor are calculated for n-type Si and Ge on the basis of a schematic model.
Support for the present theory is provided by the magnetic data which are sensitive to the concentration of
the conduction-band electrons.

I. INTRODUCTION

It is well known that the binding energy of R

shallow donor decreases with increasing donor
concentration g and that the bound state will dis-
appear at Rn zVD exceeding R certain crjtlcal value

jV~, which results in metallic conduction. ' Con-
cerning this M-I transition Mott has emphasized
the importance of the electron correlati. on effect.
One approach to this effect. is that of Mott who

studied the transition from the metallic side taking
into account the free-electron screening. Another
approach has been adopted by Hugon and Ghazali'
for the transition from the insulating side taking
into account the polarizability of neutral donors
and the dipole-dipole interaction among them. As
a result of the dipole-dipole interaction Rn expression
is obtained' for the dielectric constant e which
repl es ents the ClRus ius -M os 8ottl relRtlon. Thus

e can be divergent for a certain value of gVD.

The purpose of the present paper is to show the
possibility that the likely divergence of g may lead
to the partial release of electrons from donor levels
into the conduction band, even at O'K. In thj. s
theory potential screening by both the conduction-
band electrons and the donor electrons is considered
so that the above two approaches are unified.

In Sec. II we first describe the dielectric-con-
stant enhancement due to the neutral-donor polar-
izability and the mechanism of. the electron re-
lease into the conduction band. In Secs. III-VI we
construct a schematic model for the polarizability
of neutral donors, taking into account free-electron
screening effects and donor-donor interaction
effects. Qn this basis we study the electron re-
'lease and the resulting binding energy in Sec. VII.
The theory is compared with experiments in Sec.
VIII.

II. DESCRIPTION OF DIELECTRIC-CONSTANT

ENHANCEMENT AND OF ELECTRON RELEASE

I et us consider isolated hydrogenic donors in
the absence of free electrons. Taking account of
the Lorentz effective field Castellan and Seitz'
showed that & will be given by

where e, is the static dielectric constant of the
host crystal and a~o is the polarizability of a hy-
drogenic neutral. donor. This is the same expres-
sion as that obtained. by Hugon and Ghazali' except
that the wave-vector (q) dependence of o» is ne-
glected in Eq. (2.1). Considering noo for a medi-
um of dielectric constant e we have

oao =o ~ s (~/eo) ~o ~ (2.2)

where a& is the Bohr radius given at e = eo.
Solving for e as a function of fVn from Eqs. (2.1)

and (2.2), we find that there is no positive e so-
lution for donor concentrations exceeding a crit-
ical value N~. Thus there is no bound state. In
the range of gV~ &g~ there are two positive so-
lutions. The smaller of the solutions corresponds
to the ground state, noting that the binding energy
is proportional to (eo/e)'. The binding energy
decreases with increasing N~ down to a certain
nonzero value at XD =Nc. Therefore, the transi-
tion is of first, order in this model. This point
has been indicated by Hugon and Ghazali, who
obtained a~&Vc' '=0.21, in-contrast to a~N~' '
=0.119 obtained in the present calculation. The
difference is mainly ascribed to the fact that the

q dependence of the polarizability is neglected in
Eq. (2.1).

The important point to note here is that the
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Er =6+ E~(q). —

In place of Eq. (2.1) we have

(2.3)

above discussions are restricted to the case where
all the donors are neutral. Let us assume that a
fraction of electrons is in the conduction band.
These electrons can screen the polarization field
of neutral donors, yielding an effectively reduced
polarizability. Then even for &D & N~ the bound
state can exist. The concentration of the released-
electron fraction which gives the lowest total energy
of the electron system is determined.

This is the essential point of the present theory.
In a practical analysis we have more complicated
situations, which are mainly related to the non-
hydrogenie donor orbit and donor-donor interac-
tion. We adopt a rather schematic model as fol-
lows. Let us assume that Nf and N„electrons/cm'
are in the conduction band and in the donor ground
states, respectively. The sum N&+N„ is equal to
the donor concentration ND. Our analysis of donor

states is based on the effective-mass approximation,
considering a conduction band with isotropic ef-
fective mass nz*. and v valleys; the valley-orbit
interaction is neglected. We also consider the
dielectric constants e due to host atoms plus the
neutral-donor atoms and the ez(q) due to the con-
duction-band electrons, which give the total di-
electric constant

mobile charges and of the donor-donor interaction.
We take for the polarizability

on = (0.119/0.21)'o n, kgb . (2.9)

The factors b and g arise from the presence of
the conduction-band electrons. The screening
effect of these electrons is to reduce the polariza-
tion field and to cause nonhydrogenic behavior of
donor electrons. The former and the latter effects
are represented by h and g, respectively. In the
absence of conduction-band electrons we defi. ne
A, =1 and g=l. On the other hand we take into ac-
count the interaction between neutral donors in
terms of q, which is unity in the limit N„-o.

III. BINDING ENERGY

We calculate the binding energy of a donor at
0 K for a screened Coulomb potential, which is
rewritten from the usual Lindhart result as

e 2 "
1 sin(qr)

dq"'= .. . '.,(q)
(3.1)

Here e is the electronic charge and er(q) is given
by Eqs. (2.3) and (2.4). The effect of the donor-
donor interaction on the binding energy is neglected
for simplicity. Let us assume that electrons of
zero to k& wave vector occupy the conduction-band
states. We can write

4mN„~ ~
1 —(4v/3~, )N„a,

' (2.4)
„(q) A. 4k~ —q' 2k~ +q

(3 2)E' q 4krq 2k~ —q

For the time being we neglect the explicit depen-
dence of ~D on q, but a suitable correction will
be given later.

First, we consider isolated donors in the case
where there are no screening mobile charges. We
have a hydrogenic donor in a medium of dielectric

. constant c with Bohr radius p~B and binding energy

+b0 ~

where

X' = 4vkr/va~,

k, =(3v'N /~)'"

Equation (3.1) is rewritten

(3.3)

(3.4)

8 2 x'U(r) = ——— dx, —sin(2krrx), (3.5)r 7r, x'+-,'v'((x)

a* =8 e/m*eB )

Z+ = (k'/2m*)(a+) '
For the special case a=co we define

as =8 Co/m 8

Z„=(k'/2m*)a,

(2.5)

(2 6)

(2.7)

(2.8)

where

v = 4&/7I'ap k~,

t'(x)=-, 1+ ln
1-2 1+x

2x

To facilitate the analysis we take for ((x),

(3.6)

(3 7)

We take the polarizability of a hydrogenic donor
to be (0.119/0,21)'uD0, where &Do is given. by Eq.
(2.2). The 'factor (0.119/0.21)' is empirically given
to take account of the q dependence of the polar-
izability. The effective role of the q dependence
is to reduce the polarizability. The present model
closely reproduces the binding energy found by
Hugon and Ghazali.

Now we consider the effect of the screening

&(x) = I/(I+ 2) . (3.8)

'0(r) = —(e/er) S(r),

where

(3.9)

This function is found to be quite adequate for the
present eigenvalue problem, and it leads to an
incorrect expression for the potential only at
large distances where the potential is very small.
Equation (3.5) is calculated to be



g(~) = e' ~~") [cos()(,r) +(v' —1) 't'sin()(. ,r)j,
(3.10)

x, =a~(v+1)'t' and x, =ur(v —I)' t', (3.11)

in the range g ~ 1. Equations (3.9)-(3.11) approx-
imate Eq. (3.5) within a. few percent in the r range
of practical interest.

I et us calculate the binding energy using Eq,
(3.9) on the basis of the variational method which
has been formulated by Hulthen and Laurikainen. '
It 18 convenient to define gg by

E, = (h'/2m*)((', .
For g~ «X, the trial function used by Hulthen and
Laurikainen for the Thomas-Fermi. screened
potential is useful. Analogously we take the.ground-
state wave function

(3.12)

p(r) = (I/r)e( V ' (1 —e( "~"' )8 + &&' ~"' )

(3.13)

On the other hand, for g~ »X, the function

~(&) &(- &rK) g +It&( xzr) )-
is appropriate. In the method of Hulthen and
I aurikainen the eigenvalue problem is solved
choosing e'/e as an eigenvalue and taking ((, (or
the energy) as a known parameter. Thus A and
8 are determined so as to give a minimum value
for e'/e. It is found that the value of the binding
energy obtained using Eq. (3.13) for ((, &)(, con-
tinues smoothly into that obtained using Eq. (3.14)
for ((, &)I,. In pig. 1, E,/E,*, is plotted as a function
of g+~N~ fol v = 1, 4) Rnd 6. The blndlng energy
vanishes at ~~ V&'~'=0.422, 0.266, and 0.246 for
v = 1 4 and 6 respectively. These vRlues Rre
considerably larger than those obtained by Krieger
and Nightingale' (0.29 for v = 1 and 0.23 for v
=4 and 6).

It is convenient to describe the E~ —a~iV&
~'

relRtloQ by simulation cul ves which Rre given
in the form

Eb 1 Bx ) (3.15)

with g =g+&+& ~, whele g =17.3 Rnd 8 =0.6V for
v =4 and A, =19.4 and 8 =0.70 for v = 6. This equa-
tion is a good fit to the theroretical curve for
v=4 over the whole range. For v=6 a smaller
value is obtained from Eq, (3.15)only in a restrict-
ed range of g~~N&'~' ~ 0.18. However, the values
of Nz at which F., vanishes are correctly given
by Eq. (3.15) for both v=4 and v=6.

IV. SCREENING OF POLARIZATION FIELD

In this section we discuss the reduced polariza-
bility due to screening of the polarization field by
the conduction-band electrons and derive an ex-
pression for the factor P in Eq. (2.9). The electric
displacement P in an insulator is given for Rn

electric dipole m induced along a uniform field
direction, by P =/„m . In. the presence of mobile
charges we can define R reduced magnitude of I'
on the basis of the polarization field at a point
r =0 surrounded by a polarized medium. Let the
screened potential due to a. point charge by e8(r)/
er, where g(r) has been defined in Eqs. (3.10)
and (3.11). Then the screened potential due to an
electric dipole located at r =r& is given by

:-(r; ) = (I/~) m .&, [(I/~, )& (~, )] (4 1)

The electric field at r =0 due to all polarized neu-
tral donors is

In performing the summation we consider a uniform
distribution of neutral donors. According to the
coQveQtlonRl method of Lorentz-field calculation)
we consider a spherical cavity of radius $ with
its center at r =0. The polarization field is cal-
culated to be

F = (4((/3e)N„m h(t),

t (t ) = ()(t ) —t ()(t ) .df (4 4)

0.2

I I'G. I. ~& //g&~ vs agrf&./3, calculated for the poten. —

tial given by Eqs. (3.9)-P.ll) with v as.a parameter.

If there are no screening charges, we have @(t)
=1, i.e., the conventional result. %e may define
a, screened polarization field as P =N„mh(t ).
Thus t((t) can be used in Eq. (2.9). Using Eq.
(3.10}we obtain
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I. O

1+(, ),~, {1+vX,t)sin(X, t) . (4.5)

There is considerable leave in choosing a value
of f, for random distributed donors and for large
donor orbits. In view of this, the rather arbitrary
choice g =N, '/' is taken.

0
LLI

LLj
O. I

V. POLARIZABILITY OF AN ISOLATED

NON HYDROGENIC DONOR
I I I I I I I I I I I I I I

IO

where

6' U

a, s(s- T) ' (5 1)

d
drrlt(r) —lt(r), (5.3)

U=-'- dyy X r (5.4)

For a nonhydrogenic donor which results from
the screened Coulomb potential, the polarizability
deviates from that of a hydrogenic donor. The
deviation is expressed in terms of the factor g
in Eq. (2.9). The polarizability is calculated con-
sidering a sma11 applied field F in the x direction,
which adds the term ej'x to the zero-field Hamil-
tonian. We start from the wave function P(r)(1
+Px), where p(r) is the ground-state wave function
in the absence of electric field. The ground-state
energy in the presence of the applied field is cal-
culated by a suitable choice of P on the basis of
the variational principle. From the energy the
polarizability is calculated to be

FIG. 2. (Ep/Eg p*) g vs 0, calculated from Eqs. (5.l)—
(5.4) (—) and from Eq. (5.6) (---) for simulation.

1+0.420'3 (5.6)

as shownby the dashed curve in Fig. 2. It is to
be noted that we have g= 1 in the limit N&-0.

VI. POLARIZABILITIES OF INTERACTING DONORS

Interaction between donors will reduce the po-
larizability per donor to a value smaller than that
for an isolated donor. We define the reduction
factor q as the ratio of the polarizability per donor
to that of an isolated donor. We calculate g using
the somewhat schematic model that the interaction
between nearest-neighbor donors is important in
determining it.

In a way similar to that followed in the preceding
section, the polarizability ~D ~ of a. molecule
which is made up of two donors is calculated on
the basis of the variational principle. For an elec-
tric field in the x direction we obtain

In these equations lt(r} has been defined as lt(r)
=xp(r). We note that the expression for ~D is
independent of the normalization constant of the
wave function.

Especially for the hydrogenic case, i.e., Q(r)
=e " 'a, we obtain the polarizability

oID D =2e'G, /SGII,

where

dr, dr, C p" (r„r,) (x, + x, )

(6.1)

{6.2)

DP 8( /P PI (5.5)

which is somewhat different from Eq. (2.2) and is
used hereafter for an approximate calculation. For
the nonhydrogenic case we use Eq. (3.13), assuming
the least important factor Q + Be~ ~I" ~ ) to be unity
for simplicity. Figure 2 shows the calculated re-
sult (solid line) for

as a function of o=gp/X, . The theoretical g is
well simulated by

(6.3)

dr, dr, (x, + x )'
I
4'.(r, r. ) I' ~ (6.4)

In the above equations 4 p(r„r, ) is the zero-field
two-electron wave function and the two electrons
are labeled by the suffices I and 2. For 4,(r„
rp) we use the ground-state wave function

(6.5)
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I. O

O.S

as shown by the dashed curve. We neglect the
hump, whichis not important in the present dis-
cussion.

Now we extend the above case of hydrogenic
donors to the case of nonhydrogenic donors. This
is done by replacing tf/as in Eq. (6.7) by x„d,
noting that ~„' represents the radius of the donor-
electron cloud.

0.2
VII. DETERMINATION OF DONOR LEVEL

AND CONDUCTION-BAND ELECTRON CONCENTRATION

0
0

I

2 3

FIG. 3. q vs d//az, calculated from Eqs. (6.&)—(6.4)
( ) and from Fq. (6.7)(---) for simulation.

In the present model we consider both conduction-
band electrons and neutral donors of concentra-
tions &f and N„, respectively, the sum of which
gives the donor concentration ND. The fraction
p=N//ND of the conduction-band electrons is de-
termined that gives the lowest total energy of the
electron system per cm',

=3E~ —
5 N~E~ —N„Eb . (7.1)

given by Rosen' for the case of a hydrogen mole-
cule, where

$,(r, ) = [1+c(r, —r, ) n] exp(-b(r, —r, ~),

)(),(r, ) = [1—c (r, —r„) n]exp(- f) ~r, —r,
~ ),

(6.6)

with i = I or 2. Here n is the unit vector in direc-
tion of the molecular axis. The positions of donor
af:oms are represented by r, and r, . The constants
c and b are calculated from Figs. 2 and 3 of Ref.
8. Thus we calculate q =on ~/2n» as a, function
d/as, where d is the average distance between
neutral donors, given' by d=[(2vN, )/3] '/', as
is the Bohr radius, and o» is given by Eq. {5.5).

The polarizability of the molecule varies with
the field direction with respect to the direction of
the molecular axis. So we take an average value
)1 (Q ))

+ 2rl ~)/3, where )1 ))
and ))~ are quantities in

the cases of field direction parallel and perpendic-
ular to the molecular axis, respectively. The
result of the calculation is shown by the solid
curve in Fig. 3. The theory is tested using the
polarizability data of a. hydrogen molecu1e and of
a helium atom. As for the former the interatomic
sepa. ration is 1.4 times the Bohr radius with ~ t(

=0.934A' and ~~ =0.718 A'. As for the latter we
have e =1.0000693 giving ~ =0.103 A'. On the
other hand, rigorous calculationyields a =0.663A'
for the hydrogen atom. The values of q calculated
according to the definition are shown in Fi'g. 3. (0,
~). Thehurnp atq &1arises mainly from a~5 & I
only, in the corresponding range of d/as, which
has been obtained by Rosen. ' The theoretical
curve is simula. ted by

(d/a, )'
(d/as)'+ 3

4nN„+D+-- (7.2)

4 0.119
a ~ 0 21 ~oh'

E'O

l/)2+
jz=e 8 1+ p cos P

1 g) —I))„. )) )))s )) ) JI,

(7.3)

(7.4)

14 . 7gl. 3 @g 2
1 I~ '' b0g-36 1+0 42gl' I:

)1 =y /(y + 3) + 0.16 exp(- —'y ),

(7.5)

(7.6)

9 1/t3 1/3("I)"
2v 1 —p

(E /~* )"
[12'(a,*)'N ]"4'

(~ /~* )'"
y (2 )1 /3 g Nl/P3 n

&, /&*„=1/(1+&a@)r') aa,*N, —

(7.7)

(7.8)

(7.9)

(7.10)

with A =17.3, B=0.67 for v =4 and A. =19.4, and

The energy is measured from the conduction-band
edge. The first term on the right-hand side of
Eq. (7.1) is the total energy of the conduction-
band electrons, assuming the band to be filled
from zero energy to E~ =h'k2~/2m*. This assump-
tion will be reasonable since such a. distribution
may give the lowest total energy. The lowest
total energy state can be found by solving for
e/eo which satisfies the following relations:
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0.3 I. 0

0.8

0,2—

O

bJ 0. 6

~04

0.2—

O. I

0
O. f 0.2

(jBND "&

0.3

FIG. 6. Eg/Ep p vs a~D ', calculated for & =6
~

0 ( I

0.2 0.3 0.4

B =0.07 for v =6. For a given value of a~N~ ' the
solutions are found for various values of p in a
restricted range. The ground state of the system
is determined for the value of p which gives the
minimum value of E~.

The ratio p thus obtained is shown as a function
of a~ND

' in Fig. 4. The conduction-band electrons
emerge at @AND

' =0.225, beyond which the bound
state can exist only in the presence of screening
mobile charges. The obtained ratio E, /E~, is
shown by the curves in Figs. 5 and 6 as a function
of @AND '. A discontinuity appears at a donor
concentration, given by aBND

' =0.225, where

I. O

0.8

~ 0.6—

0.4—

0.2—

4o
~ 4

CIBND"

FIG. 4. p(= Nf/ND) vs a~D for v=4 (—) and for &

=6 (———)

transition to a smaller binding energy occurs.
Beyond this concentration an impurity band may
be formed, owing to the increased overlap of the
wave functions between neutral donors. Thus the
calculated binding energy is significant"only in an
approximate sense. For g~N~

' a 0.31 the binding
energy is so small that the impurity band will
completely merge into the conduction band. So
the present calculation is useful for g~N~

' & 0.31.
In Fig. 5 are shown experimental data ' for the
binding energy of Ge doped with various donors.
Some of the data (~, ~, A) are calculated from the
resistivity-temperature curves. In plotting the
data g~ is calculated from values of the binding
energy E„ofa donor (see Table I) in a light-
doping range, using the relation E» =e /2aseo
based on a hydrogenic picture. We use g, =15.36
for Ge, " and e„=11.40 for Si."

There exists experimental evidence" "" that
the metal-insulator transition occurs at a donor
concentration N~ at which the activation energy
(conventionally denoted' as E2) vanishes. The
values of g N'~' calculated from the data" ""are
0.24, 0.24, 0.25, and 0.21 for Ge:P, Ge:As, Ge:Sb
and Si:P, respectively. At ND =N~ the binding
energy does not vanish, as is seen from Fig.
5. This situation was theoretically found by
Hugon and Qhazali' and it is seen also in the
present calculation. The reason why the experi-
mental points of E, lie lower than the theoretical

TABLE I. Parameters for different materials.

0
Material EM) (meV)

\

a, (A)

O. I 0.2 0.3 0 4

FIG. 5. E„/E~ p vs a~N~, obtained from calcula-
tion (—) for @=4 and from experimental data (X,~,o,
~) for Ge.

Si:P
Ge P
Ge:As
Ge:Sb

45.8
12.9
14.2
10.3

The data are found in Table 9.1 of Hef. 21.

13.8
36.4
33 ~ 1
45.6
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curve for g~N~
' «0.225 will be ascribed to the

fact that we have not taken into account the level
broadening due to the donor-wave-function over-
lap and the charge-compensation effect, in
calculating the binding energy. Such effects have
been considered in Refs. 14 and 15.

The binding-energy gap at a discontinuity point
depends on the strength of the free-carrier
screening. If stronger screening is assumed, a
smaller gap will be obtained. For strong enough
screening even a continuous rapid decrease of
E, may occur instead of a discontinuous change.
In the present calculation we have taken into
account the screening due to the impurity-band
electrons only in terms of nearest-neighbor
donor interaction. Vfhen the impurity band is
formed the screening effect will be larger. Thus
the actual situation is such that E, and p are
larger and smaller, respectively, than those ob-
tained in the present calculation.

Vm. TEST OF THE THEORY

N~= X,

O. I

IO
18

I I I i I I I I I

I9
IO

I I I I I I

IO

A direct test of the present theory is provided
by the magnetic data on the electron system. In
Fig. 7 are shown the Knight-shift data" on.Si.:P
at 1.6 K together with the theoretical curve. The
curve is obtained on the basis of Fig. 4, from
which iV& is found to calculate the Knight shift K
by the relation K =AN& '. The constant A is an
adjustable parameter determined at such a high
concentration that all donors are ionized. In
view of the overestimation of p, as discussed

-8
IO

-9
I 0 0

l7
I 0

I I ( t I & I

I8
IO

~D( ')

FIG. 8. Magnetic susceptibility Xe of the electron
system vs ND for Ge: P (———), Ge: As (- —-) (o) (Ref.
17) (0) (Ref. 19) and Ge:Sb (—), (k) (Bef. 17) g, ) (Bef.
18) ('7) (Bef. 20). The curves are calculated from y,
= —3.0&&10"' N'& emu-g, where Nf (in cm 3) is
found from Fig. 4 for a&ND & 0.31. The curve ob-
tained by putting N&=ND, for which the transition of

X, occurs at a~ND = 0.225, is also shown. Empirical
data (oO kA 0) at low temperatures are obtained from
pef. 16.

above, of the uncertainty in the calculated value
of p~, and of the local-density fluctuation of donors,
the present theory describes considerably well
the observed qualitative features.

Figure 8 shows the data, collected in Ref. 16,
of the magnetic susceptibility y, of the electron
system, on Ge doped with various donors. In the
figure are shown the theoretical curves obtained
on the basis of Fig. 4, assuming y, to be deter-
mined merely by electrons in the conduction band.
Noting the relation y, =BE ', B is again chosen
as an adjustable parameter determined at such
a high donor concentration that all donors are
ionized. In view of the above-mentioned points
concerning p, p~, and the local-density fluctuation,
the present theory describes considerably well
the qualitative features of the observations. Thus
the above discussion would indicate a partial re-
lease of the donor electrons even at 0 K in the
presence of a bound state in a heavily doped semi-
conductor. The Fermi-Dirac distribution is no
longer valid as a result of many-body interaction
in the electron system.

FIG. 7. Knight shift K vs a&A"D~ for Si: P. Thy curve
is calculated from ~=2.1 &&10 'N'~~ for whichN&
(in cm ) is found from Fig. 4 for a&ND &0.31 and is
put equal to ND for a~N&l ~& 0 31 Empirical data (0)
at 1.6 K are obtained from Ref. 16.
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