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Small-carrier perturbations close to the unperturbed bulk are analyzed which represent boundary
conditions for the perturbations produced by injection and extraction in thick enough semiconductor samples.
On this basis concentration contours for the strong-perturbation range can be qualitatively drawn and even

numerically evaluated. The results allow for a clear distinction to be made between lifetime and relaxation
behavior. There is also an intermediary regime between these, and within it a new kind of steady state with

oscillations in space is proved to be possible for appropriately chosen currents. Two new conditions have also
been evidenced for the high current conduction in the asymptotic range: "equality recombination" in the
deep-lifetime case, and "unperturbed conductivity" in the deep-relaxation case. Necessary conditions for
obtaining an increase in resistance through injection have also been outlined.

I. INTRODUCTION

The paper deals with small perturbations of
carrier concentrations produced by injection or
extraction in trap- free semiconductors. Such
behaviors are not restricted to small currents,
but to those regions of the material close to the
unperturbed bulk. The behaviors within these re-
gions represent boundary conditions for the assoc-
iated strong-perturbation regions.

The small-carrier-perturbation range is ana-.

lyzed through the asymptotic-range solutions in a
semi-infinite sample, solutions which can be ob-
tained from bnearized eq uati ons.

The asymptotic analysis allows one to obtain
information concerning the injection-extraction be-
havior through analytic treatment, but without
having recourse to approximations like neutral-
ity, NP =X', ,

' NI' =N', ,
' negligible diffusion, ' or

unity injection ratio." It can quantitatively de-
cide whether and when the above-mentioned ap-
proximations are valid for the low-perturbation
range. Of course, the conclusions can be applied
only to carrier perturbation in thick-enough sam-
ples, so that the innermost material remains prac-
tically unperturbed by the injection or extraction
through the contact surface.

Our analytic treatment investigates all possible
values of the ratio between dielectric relaxation
time va and diffusion-length lifetime yo, showing
that not only lifetime and relaxation regimes are
possible, but also an intermediary one; the r,/r,
limits of this intermediary regime have first em-
erged from the analysis Van Roosbroeck gave of
the transient drift with recombination. ' Within the
intermediary regime, whose steady states we ana-
lyze for the first time, depending on current, either
lifetime or relaxation behaviors are possible, or

even a new kind of steady state with oscillations in
space. Our treatment also covers the whole range
of possible currents (from -~ to + ~) and investi-
gates new conditions of carrier perturbation which
appear in the asymptotic range at high enough cur-
rents in extreme-lifetime and -relaxation cases.

The analysis of the asymptotic range of carrier
perturbation in pronounced extrinsic materials
shows that in this case recombination and space-
charge effects act as independent processes which
compete in controlling the penetration of carrier
perturbations inside the materials.

One more advantage of our treatment is that it
brings additional insight into the problem of re-
sistance enhancement through minority- carrier
injection; injections that result in aperiodic field
contours enhance the resistance only if within
their asymptotic range the field decreases towards
its limit; quantitative conditions to obtain such
asymptotic behaviors are deduced.

II. MODEL AND EQUATIONS

The model is that a semi-infinite trap-free
semiconductor limited by an injection-extraction
plane at the space origin and within which a steady-
state conduction is established through injection
or extraction of charge carriers. These result
in a state quantitatively defined through departures
of electron and hole concentrations from their un-
perturbed bulk values.

The current is positive when it enters the mater-
ial through the injection-extraction surface. For
a. semi-infinite arbitrary (n or p-type) semicon--
ductor the current is in the forzeard direction when
minority carriers enter (are injected), or major-
ity carriers are taken out (are extracted), through
the contact interface; the current is in the re-

3972



BULK BOUNDARY CONDITIONS FOR INJECTION AND. . . 3973

J =v NE+ —, (2)

verse direction in the opposite cases. We define
these directions as they correspond to the char-
acteristic behaviors of the material, but they are
not necessarily connected to a p-n junction con-
tact. Thus we may have very high currents in the
reverse direction that are not necessarily very
high reverse currents of a junction (which might
be confusing). For instance, they can result
from a majority- carrier'inj ection. For an n-
type material the currents in the forward direc-
tion are positive.

As usual, "' a recombination term

R = (np —n2p, )/r2(n2+ p, )

is considered, in which ~, and p, are the equili-
brium concentrations and t, is a diffusion-length
lif ctime. '

In the steady state the usual current, continui'ty,
and Poisson equations, for the one-dimensional
case, can be written

J~o J p J„=0, and ~=E —E, = 0, with

J=J„+J =J„,+ J& = const,

and given by

8= (v„N2+v2P2)E2 =E2,

(10)

d~ 1
dX ' ' v„

=-E hN-N ~- —M (12)

Eo being the normalized field which carries the
current J through the unperturbed bulk.

The following analysis is concerned with such
solutions in the asymptotic range in which linear
approximations are valid whatever the current.
The information obtained through the linear ap-
proximation in the asymptotic range character-
izes also the solution outside this range. For in-
stance; boundary conditions can be obtained for
numerical evaluation in the nonlinear range in a
more efficient way than previously done. '

In the asymptotic range' and in terms of ~, 4P,
AE, and AJ» Eqs. (2)-(5) become

dp
Jp=vp PE- —,J=Jn+Jpt

dJ~ dJ„7'D
dX dX 7,

-"=——(NP —N P)

—= (P —P2) —(N N2)—dE

(3)

(5)

de 1
dX ' ' v

=E 4P+P ~——~
(P2AN +N26P),

~0

d~
dX

= Ap —4N.

The sought-after solutions look like

(15)

in a suitable normalization, in which N and P are
carrier concentrations z,p normalized to the total
concentration m, :

m, =n, +P, (N, +P, =1); (6)

v„and v are electron and hole mobilities normal-
ized to the average mobility jL(,,:
p, , = o2/em2 = (n2 p,„+p2p&)/m2 (v„N2+v&P2 = 1); (7)

AN, AP, m„AE= C," v 's exp(- a, X)

+ C,"'v' ~'s exp(- @2X), (16)

where (a) n„and n2 are the solutions with a posi-
tive real part of the characteristic equation

c44 —(1+ A2, +E2)n2+ aE, u+ &', = 01

in which

where X is the spatial coordinate, x c (0, ~), nor-
malized to the Debye length LD:

1 7'D N~ ~P

v„v~
(18)

LD = (kTe/e'm2)'~', (8)

E is the electric field normalized to kT/eLn,
J,J„,J~ are current densities normalized to
eLn m, /~n, where rD is the dielectric-re)axation
time defined through the expression

TD = e/e tL2m2. = e/0'2.

This relaxation time relates to the Debye length
through the usual expression LD =(D,rn)'t2, where
D, =kT p, /e. .

It can easily be shown that the solutions which
remain finite over the semi-infinite range should
asymptotically approach the unperturbed bulk con-
dition, ~=N-N, =0, ~P =P —P, =0, m, =J,

No —1 -Po ———1

and (b) C," v 2 s and C,"'v'~ s are, respectively,
proportional to two arbitrary chosen constants
Cl & 2 ( 1 ~ 2 t 14/ Py J/ECly2)''

We shall be mainly concerned with distinct real
solutions and we chose n, & n, &0. We shall call
n„and its corresponding component in the gen-
eral solution C, exp(- n, X), the main solution, as
the asymptotic behavior reduces to it towards in-
finity. There are only few exceptional physical
conditions which impose C, =0, C, 10 and for which
the seconda2y solution a2 and C, exp(-n2X) de-
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scribe the asymptotic behavior, e.g. , a lifetime
p-x junction in thermal equilibrium.

Of all different proportionality coefficients we
shall discuss only

P =P' =Cv/CN=~P/~ (20)

in which AV and ~P are both for the main solu-
tion, and which represents an important feature
of a certain injection-extraction behavior. For
pv" the following expression can be derived (Ap-
pendix B):

in which carrier-perturbation contributions cancel
each other, Pp~ Np&P which approximates
NP Np Pp N

~
in the' asymptotic range; and the

"equality- recombination" case, ' with equal carrier-
perturbation contributions in the net recombina-
tion rate POAV Np&P The conditions under which
these cases appear wil1. be discussed later.

From the chars, cteristic equation (17), some gen-
eral features of the solutions can be derived (Ap-
pendix A) and will be presented below:

(a) For ze ro current, E, = 0,

v n' —nE, —1/v„
vp n + nEO —1/vp

1 )

n(0) =
1 ~7 LD

(22)

1+ v„(nE,—n')
&=&, , ~

1 —vp(nE, +n') ' (21)

Under particular conditions in which degeneracy
appears n, = o., and no expression can be written
for P~" as it has an arbitrary va, lue.

III. GENERAL DISCUSSION OF THE SOLUTIONS

We shalj. further present some features of the
solutions, deduced from the equations shown

above, for various values of the ratio rD/ro, and
of the total current J (or bulk field Eo). Various
behaviors of the solutions will be translated in
terms of small-perturbation behavior of an n-
type material (N, ) P, ). Extension to P-type ma-
terials can easily be done through the symmetry
of Eq. (17) with respect to simultaneous changes
No P„andEo -Eo (or J -J). None of the
effects which will be further discussed is restric-
ted to n-type materials.

It is time to emphasize that, throughout this
paper, we quantitatively define the carrier-per-
turbation condition through hN or &P 10, not
necessarily associated to a nonzero current J.
For instance, in a p-n junction at thermal equili-
brium, or for a steady-state distribution of equal
mobility carriers generated by a nonuniform illum-
ination, there is carrier perturbation, but no net
current.

Throughout this paper we talk about, contribu-
tions of the perturbations of electrons (&N) or
holes (&P) to the net recombination rate, i.e. ,
to the departure of the generation-recombination
process from equilibrium. In the asymptotic range
these contributions are proportional to the respec-
tive perturbations weighted with the equilibrium
concentrations of opposite-sign carriers [the terms
PonN and N, nP in Eq. (14)]. lt is as if excess
electrons and holes do not see each other and in-
dependently recombine with the corresponding
equilibrium carriers. Two particular cases are
worth mentioning: the zero-recombination case,

lim [n, (E,)/E, ]=+1, (23)

while the main solution goes to zero for any
finite rn/r, values according to the expression

lim [E n, (E )]=-2[a+(a'+4k.')'~']
Qo~p eo

(24)

This behavior implies that, however great (but
finite) rn/r, is, one can safely neglect carrier dif-
fusion at high-enough currents in the forward or
reverse direction (I&I IE.I--). We shall come
back to this later in more quantitative terms.

(c) The curves n(E, ) have quite distinct behav-
iors in various ranges of the parameter rn/r,
This can ea,sily be seen if the cha.racteristic equa-
tion (17) is regarded as a quadratic equation in

nE, (n) (Appendix A), the solutions of which are
real or complex.

As long as vD/r, is outside the interval (v„,v )
(i.e. , rn/r, g v„,v ), there are distinct solutions
n„n,for the whole range of currents E,c (-~,
+~) (see Fig. 1). Both curves have extremes in
n with respect to the field E», EO2 determined by
the condition

the lower of which becomes the main solution Q.
„

the other being the secondary one n, .
The solution +=1 corresponds to a character-

istic length of the spatial distribution equal to
the Debye length Ln = (D,vn)'~'.

The solution n=~, corresponds to a characteris-
tic length equal to the ambipolar diffusion length

I,= (D,ro)'~', the ambipolar diffusion coefficient
D, having its usual meaning, D, = (n, +p, )/(n, /D
+p, /D„).

We see, therefore, that the main solution for
zero current relaxes in space with the Debye length
or the ambipolar diffusion length, depending on
whether r /r is greater or sma, lier than v„v .

(b) For infinite current, E, -+~, the secondary
solutiongoes to infinity according to the expres-
sion
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FIG. l. Heal distinct solutions +&, +2.

1E„,n(E„,) = —,a. (25)

~', (('~ ~~)

Eom &oe Eo

FIG. 2. Solutions co&, n2 when complex solutions ap-
peRl".

As ~ is positive, the fields. E»,E„have the sign
of the parameter a [Eq. (19}]. For an n-type ma-
terial, when rD/ro& v„,v (i.e. , v„orv, which-
ever is smaller), the extremes correspond to a
finite current in the reverse direction J, , & 0,
while for rn/r, & v„,v (i.e. , v„orv, whichever
is greater} they correspond to a current in the
forwa. rd direction J»&0, which can go to infinity
when rD/r, -~ (with the exception of the peculiar
case N, & P, but v„,& a ).

When the mobilities are unequal and 7~/r, is
inside the interval (v„,v ) (i.e. , minv„, v & rD/r,
& maxv„, v ), there is a range oi' fields (EO, E,v)
within which the solutions n»(E, ) are complex.
They correspond to a behavior in which oscilla-
tions in space appear around the asymptotic un-
perturbed=bulk values. The fields which limit the
range of oscillatory solutions E, ,E» have the
sign of the parameter a, positive for v„&v and
negative for v„&v . For these fields degeneracy
appears [i.e. , n, (Eo„v)= n, (EO „)](Fig. 2}.

(d) The particular cases vD/7; = v„,v c'orrespond
to significant boundary behaviors. There is now

only one field value E„for which degeneracy ap-

pears [i.e. , n, (E„)= n, (E„)= n, ] T. hese cases
are more easily dealt with by using the following
alternate forms of the characteristic equation
(Appendix A):

(n' —nE —1)( n2 + 'oE —X', ) = 2 nE0 Po ———1
~n 70

(26)

' —uE, —X',j( '+ E—1),= -2 ZN—, ,——1};
p 0

(27)

as for the particular cases above one gets, resp-
ectively,

(cP —nE, —l)(n'+ nEO —1/v }=0 for r~/r, = v„,
(28)

(n' —nE, —1/v„)(n'+ nE, —1) = 0 for r~/r, = v .

(29)

The comparison of Eqs. (28) and (29) with Eqs.
(26) and (27) triggers the following remark: a giv-
en semiconductor, with a finite nonzero P,/No
ratio, behaves under carrier perturbation in the
asymptotic range like a unipolar n-type material
(P, =0) for v~/r, = v„,and like a. unipolar p-type
material (N, =0) for r~/ra= v .

Later, when we discuss equations of this type
for a wider range of conditions, more details
will be given concerning the pattern of the solu-
tions. With reference to Eqs. (28), (29), and (21)
we shall now only say that in both above-specified
cases the main solution has a. current range in
.
.
munich peculiar one- carrier perturbations appear:

(a) When vn/r, = v„,'for fields higher than Eo„
the main solution corresponds to an asymptotic
behavior with perturbed holes and unperturbed
electrons 4P WO, dN=O (Pv=~). It previously
has been shown' that there are. conditions under
which this behavior extends itself outside the asym-
ptotic range for any 4P values; in Ref. 3, the
equality rD/v, = v„corresponds to A = l.

(b) When 7~/r, = v, for fields up to E„,the main
solution corresponds to an asymptotic behavior
with perturbed electrons and unperturbed holes
rP=0, hNc0 (p~=0). It can again be shown that
this behavior may also extend itself outside the
asymptotic range for any hN value. The equality
rv/ro = v corresponds to A = p /p, „,with notations
in Ref. 3.

(c) For equal mobilities v„=v = 1, the condition
v D/r, =1 corresponds to a very peculiar behavior
of the main solution; there is an unperturbed hole
conduction ~t0, ~P=O for all negative cur-
rents, and an unperturbed electron conduction
AV=O, nPAO for all positive currents (E„=O).
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In order to better interpret some cases pre-
sented above w'e shall make more use of Eqs.
(20) and (21) for Pv= nP/nVv W.e shall evaluate
this ratio for the main solution at various fields
pv(F-, ) and for different ratios rD/j; (see also Ap-
pendix B).

(d) For zero current we already know that the

n„n,values are 1 or A.„depending on the TD/r,
ratio.

When rn/r, ( v„,v, o., (0) = &, and

1 —(1/vt, )(rn/ro) &P'0 (/ )(
/' (lforv&v. (30)

)3',(")= [1+v„(o'&.).1/(1 —v„(o'&.) ]. (32)

In the limit case rn/r, -0, P, (0)-1, i.e. , neu-
trality is approached.

When rD/ro& v„,v, u, (0) =1 and

Piv(0) = (1 —v„)/(1—v ) = -P,/N, (31)

(by using v„N,+ v P, =1, n, +P, = 1), i.e. , the solu-
tion corresponds to a zero recombination condi-
tion (NP =N',.) in the asymptotic range.

We have already shown that n, (0) =1 even for
rn/ro inside the interval (v„,v ), down to rn/ro
= v„/v . This is the lowest rD/r, value for which
the main solution corresponds to zero recombina-
tion under no current. Now, eve:I fear lower rD/r,
values, for which the zero recombination condition
is no longer the main solution, it can still be the
physical one (i.e. , C, =0, C, CO); this is the case
of a lifetime p-n junction in thermal equilibrium,
in which strong carrier perturbations hN, 4P can
appear close to the junction, while the zero-re-
combination condition NP=X',. is everywhere con-
served.

(e) For infinite current the expression for P~
along the main solution [see also Eq. (24)] be-
comes

If rD/r, -0, for an n-type material one obtains

lim Piv(+~) =1,
vD/Tp ~0

lim P~( ~) -= P,/N„
v'D/&0 ~0

(33)

lim Pv(+ ~) = v„/—v,
'D/'0

lim Pi+(-~) = P,/N .-
/T ~eo

D 0

(34)

For very high currents in the reverse direction
the limit has the obvious significance of a zero-
recombination condition. At the limit for very
high currents in the forward direction the con-
tributions of carrier perturbations in local con-
ductivity cancel each other as v„hN=-v &P; the
resulting condition is an urspextuxbed-covductivi fy
one, namely, &0 —-0,

Up to now the equations give Pp values only for
a few particular cases. General, closed expres-
sions which should give Pp whatever the current
and v'n/v', ratio cannot be written. But it can be
shown (Appendix B) that for the main solution
~,(&.),

&0 for rn/r, (v„,vj IE

(0 for rn/7, (v„,v
(35)

for the whole range of field or current valises
(see, e.g. , Fi'g. 3).

For 7n/r, c (v„,v ) there is first of all a certain
range of fields within which spatial oscilla. tions
appear, so that one cannot speak of a certain

i.e. , neutrality is approached at very high cur-
rents in the forward direction, and equality recom-
bination for very high currents in the reverse di-
rection,

If rn/r, -~, also for an n-type material, one
gets

eo &o =/g

+n =/p

I

-5 -4 -3 -2 -1 0 j'

+r gP

I i I I

-5 -4 -3 -2 -1 0 1 2

~o
I I I I I I I I

—5 -/I -3 -2 -1 0 1 2 3 /f 5

I I I

-5 -0 -3

FIG. 3. Numerical solu-
tions A1 2~EO~ a1ld ~P ~+0
for lifetime and relaxation
cases. Characteristic
patterns for p p in the two
cases should be noted. For
zero net recombination p p=- 0.01; for equality re-
combination P z ——0.01.
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TABL E I. Lifetime, n type (Np &Pp).

—0 («1, extreme case)

Boor J

DP

Any value in

( oo, +co)
(Limit in the
reverse
direction)

Po/No
(equality

recombination)

1
(neutrality)

(Limit in the
forward
direction)

+ 00

1
(neutra lity)

value and sign of pp for the whole asymptotic re-
gion; but it can also be shown that for fields be-
low and above this range the values of Pp are real
but of opposite signs. Depending on whether v„
is greater or smaller than v, the crossing of the
oscillatory range of fields changes P~ from neg-
ative to positive, or the other way around (Appen-
dix B).

The above presented results, summarized in
Tables I and II, show that, except for the trap-
free case with equal-mobility carriers, the con-
dition r~/r, = l does not represent a significant
boundary between different injection-extraction
behaviors of the semiconductors. But the condi-
tions rD/r, ( v„,v and rD/r, & v„,v do correspond
to distinct behaviors; these can be called lifetime
and relaxation ones within the spirit of the defin-
ition which compares neutralization and recombin-
ation tendencies. "' Now, if the whole range of
possible currents is considered, the tendencies
to approach neutrality, or zero recombination
through NP=N2, do not represent essential fea-
tures for lifetime or relaxation semiconductors,
even in the extreme cases 7'D«7, or 7~» 7, .
Such tendencies do appear, but are restricted to
limited current ranges.

The only characteristic feature for the injection-
extraction behavior of a semiconductor seems to be
the sign of the parameter Pv= AP/AN We conclude.
that lifetime or relaxation regimes are character-
ized by the way in which departures from equili-
brium of electron and hole concentrations are

coupled, as regards sign, in the asymptotic range
of a certain behavior. The lifetime case corre-
sponds to a positive Pr (AN, AP of the same sign),
while the relaxation case corresponds to a neg-
ative Pv (AN, AP of opposite signs). This conclu-
sion is in complete agreement with that of pre-
vious evaluations of nonlinear behaviors for unity
injection ratio. '4

The general equations concerning asymptotic
behavior presented above allow for numerical
solutions to be obtained for any set of model pa-
rameters at any given current. An example of
calculated curves is given in Fig. 3.

In order to visualize better the pattern of the
solutions and allow for a fast quantitative assess-
ment of significant current (or E,) values in some
usual cases, we shall deal below with approxima-
tions suitable to the particular case of pronounced
extrinsic materials. We leave for a future pre-
sentation such interesting problems as the oscil-
latory regime, injection and extraction of carriers
in intrinsic materials, or nearly intrinsic ones in
which unequal mobilities ensure opposite carrier
and conductivity characters (for instance n, &p,
and simultaneously a„,( o&).

IV. SOLUTIONS FOR PRONOUNCED EXTRINSIC
MATERIALS

We explicitly deal with an n-type material N,
P„p,„&pp, but still 0„,o Op, . In the equations

concerning such materials, P, or P,/N, are to be

TABLE II. Relaxation, n type (No &Pp).

D /'ro Vnq p
~ (» 1, extreme case)

Any value in

( oo + oo)

(Limit in the
reverse
direction

(Limit in the
forward
direction)

(0
—Pp/Np

(zero net
recombination)

NP =N ~

—Pp/Np
(zero net

recombination)
NP =N

—V~ /Vp

(unperturbed
conductivity)
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regarded as small parameters, for instance in

Eq. (26). This equation shows that the solutions
are satisfactorily approximated by the simpler
form

G(

(n —uE —1) n +nE ——-a =02 2. 1
0 0

P 0
(36)

n, (E,) =- min [n, (E„),o.,(E,)] . (38)

o. ; is a positive, increasing solution, resulting
from the first parentheses in (36),

(39)

while n„is a positive, decreasing solution, result-
ing from the second parentheses in (36),

a'~ (Eo) = —,
' {-Eo+[Eo +(I/v~)(r~/T())]" ') . (40)

The most significant departures of the exact solu-
tions of Eq. (26) from the approximate ones of Eqs.
(39) and (40) appear close to the intersection of the
latter ones,

~ j/2
o..= a, (E~) = o'~(E ) = — — +1 (41)

P 0

Tp
Oc

Vp Tp
2 ——'+I . 42

For rn/r, & v„,v~ (lifetime and relaxation cases)
these departures do not r'esult in spectacular
changes of the curves n„n„butonly in a split
in n of the order of ~P„which precludes their
intersection at F.~.

For ~n/~, ~- (v„,v~) (the intermediate regime) the
above-mentioned departures result in qualitative
changes in the a „n2curves which become discon-

which corresponds to the unipolar case P, =O,

(N, = 1), A.
' = (1/ v )(T,/T„)= a + 1.

It can be shown (Appendix C) that the first paren-
theses correspond to the equation for electron
perturbation. hN, in which recombination and hole
contribution to space charge are neglected, while

the second parentheses correspond to the equation
for hole perturbation A.P, in which total space
charge and electron contribution to recombination
are neglected.

The equation for p~ corresponding to Eq. (36) is

V„&—(2 Ep —1
(37)

vp D +(xEO —v„/vp

The following discussion concerning the pattern
of the solutions of Eq. (36) is also valid for the
similar kind of equations describing the particular
cases 7D/7; = v„,v~, Eqs. (28) and (29).

The solutions of Eq. (36) are intersecting curves
and the main solution is

I'IG. 4. Pattern of a&(EO) solutions for the pro-
nounced-extrinsic case No»po, and various q. D/T p,

when p„&v&.

tinuous due to a split in Fp values of the order of
VP„which precludes the intersection at 6„agap
of fields, or currents, appears where n values
become complex, arid to which spatial oscillations
correspond. The above-discussed features are
illustrated in the sketch of the solutions for the
extrinsic case and various 7D/r, given in Fig. 4.

One may see that two distinct effects govern the
injection-extraction behavior of a pronouhced n-
type material in different current ranges, corre-
sponding to the transition of the main solution from
n; to n„,beyond the intersection field F~.

The first, approximately described by o. ,(E,)

with P~ =0, consists in a quasiunipolar space-
charge controlled conduction of electrons (major-
ity carriers), in which recombination has only
little effect. When 7D/r, changes from zero to
infinity, the material goes from equality recom-
bination to zero recombination, but changes in a
are negligible and changes in ]8~ are very small,
from P, /N, to P,/E, (see Ta-bles I and II.) The
a,: effect governs conduction from infinite cur-
rents in the reverse direction up to J(E„).

The second effect, described by a.~(E,), consists
of a bipolar conduction controlled by hole (minor-
ity carrier) perturbation. The spatial distribution
of the latter is in turn controlled by recombina-
tion, while space charge has only little effect. The
electron (majority-carrier) response to the hole
perturbation depends on the balance between neu-
tralization and recombination, controlled by the
ratio vn/7, . The n~ effect governs conduction
from J(E„)up to infinite currents in the forward
direction. As hole recombination is essential in
the n„effect, the latter has a strong dependence
on rn/~, ; it is this dependence which controls
the critical current J, =J(E„)above w'hich minority
carrier perturbation begins to be prominent in the
asymptotic ringe and in the general behavior
[see Fig. 4 and Eq. (42)].

The current J, represents also a quantitative
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limit beyond which, in the relaxation case, the
conduction starts departing from a nearly-zero-
recombination condition NP = Ã; towards a condi, -
tion in which ~VP = iV',- can no longer be maintained
(Figs. 3 and 4); beyond the same limit, diffusion
currents gradually become negligible and a quasi-
unperturbed conductivity condition is finally
reached (Table II).

In terms of P~, the critical current J, marks the
beginning of departure from small absolute values
corresponding to quasiequality, or zero recombi-
nation, towards those corresponding to quasineu-
trality or unperturbed conductivity (Fig. 3, Tables
I and II).

We shall nbw say a few more words about the
conduction for currents greater than J„in which

the n& effect prevails. As we have already said,
in this 'solution the space-charge term, i.e. , dE/
dX, is neglected. This reminds us the "quasi-
neutrality" approximation widely made use of in

the theory of ambipolar irijection in insulators,
e.g. , in Ref. 9, or in the theory of high injection
levels in semiconductors and semiconductor de-
vices, e.g. , in Ref. 10, where dE/dX is also ne-
glected. But, at least for our asymptotic solution,
the above-mentioned neglect is not just in accord-
ance with quasineutrality, as it can be fulfilled
not only in materials with fast dielectric relaxation
T~/r, = 0, but also up to T~/T, » 1. A less-restric-
tive condition is in fact necessary, namely, that
above J, the hole current divergence due to field
variations plays a negligible part in the recombi-
nation process whatever the rn/r, ratio. In strong-
ly extrinsic materia. ls and for not excessively high

, hole perturbations the validity of such a "quasicon-
stant field" condition for the hole (minority car-
rier) perturbation may extend itself well outside
the asymptotic range. This could explain the suc-
cess of "quasineutrality" calculations in some sit-
uations in which quasineutrality itself is improb-
able. This also accounts. for the practically iden-
tical n. P(X) dependences, obtained in Ref. 3 through
numerical solutions of the nonlinear equations,
from lifetime to the relaxation boundary (see Figs.
2 and 3 in Ref. 3), and even beyond it, up to

gn /g, = 10.
We have discussed up to now asymptotic behav-

iors for a wide range of conditions. One can start
with an appropriate one among them, and numeri-
cally evaluate strong perturbation behaviors which

appear close to the injection-extraction surface of
the investigated semiconductor, under the given
current conditions. Such numerical evaluations,
and the way in whi. ch it is ensured that evaluated
contours match the co@tact properties, are outside
the scope of this paper. But we will qualitatively
illustrate how behaviors within asymptotic quasi-

&O~~ +~~i i'Onben
&peg~~

I

I go. 5. Concentration contours in the N-p plane for
extreme lifetime'(a) and relaxation (b) semiconductors
(pronounced-extrinsic, n type). The effect of current-'
denslty value on asymptotic and ovelall behavior is
evidenced; J,= J'(Eo, ), Eo, being the critical field given

by Eq. (42).

unperturbed region have a significant bearing on

behaviors in the region with strong perturbations.
Figure 5 shows qualitatively some concentration

contours in the P-N plane illustrating changes'in
boundary asymptotic conditions at various cur-
rents, for pronounced lifetime and relaxation n-
type materials. Contours corresponding to p-n
junctionsp gp cf2ycf3p approach the EP =MOP, hyper-
bola towards the transi. tion region of the junction,
and have generation or recombination maxima;-
behavior in the bulk beyond these maxima does not

qualitatively differ from the asymptotic one in the
quasiunperturbed bulk. The change in asymptotic
slope between lifetime and relaxation cases is
immediately obvious.

For moderate positive and negative currents the
lifetime (J„J,) and relaxation (J„J,) p njunction-s
have "normal" behaviors. In contrast to the life-
time case, relaxation carrier contours for posi-
tive, zero, and negative currents are very close
to each other.

In the "normal" relaxation case, even if holes
are injected (J,) or extracted (J,) at the contact,
in the asymptotic region practically only the elec-
trons are per turbed, and only their pe rturbations
have a significant contribution in the current. In

other words, generation or recombination max-
ima have the character of "fronts" of generation
or recombination.

Even if this "front" character does not exist in .

"normal" lifetime behaviors, it .is not a general
and exclusive property of the relaxation behavior.
As previous analysis shows, this character de-
pends on a very low P, /N, ratio (pronounced ex-
trinsic materials) and a current below J,. It does
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not appear in the relaxation case at high positive
currents [Fig. 5(b), curve J,]. It can appear in
principle in lifetime p-v junctions far in the nega-
tive current range; there are such solutions of the
equations [Fig. 5(a), curve J,], which correspond
to an extraction of holes from a generation front,
which in turn injects electrons into the asympto-
tic-.region under a strong field which diminishes
towards the bulk. Physical realizability of such
solutions with generation front is limited by junc-
tion breakdown. But asymptotic conductions at
currents in the reverse direction beyond J, do
appear in lifetime materials through a space-
eharge controlled injection of majority carriers,
[Fig. 5(a), curve J,]. Curve J, in Fig. 5(b) also
corresponds to a space-charge controlled injection
of majority carriers, but for the relaxation case.

V. RESISTANCE ENHANCEMENT THROUGH

MINORITY- CARRIER IN JECTION

-P, /N, =P~& 1 (43)

satisfy the above-mentioned condition.
The relaxation regime does not satisfy this con-

dition in its asymptotic range. Consequently it
allows for resistance enhancement only in the

At least for trap-free relaxation materials the
problem is a subject of controversy. Van Boos-
broeck' predicted this enhancement, but his proof
rested on simultaneously assuming zero recorn-
bination and negligible diffusion in the depletion
region, while Kiess and Rose" and DVhler and
Heyszenau' had sound objections against that.
Numerical solutions for injection in semi-infinite
trap-free materials' could not reveal the enhance-
ment either.

In order to get more quantitative insight into this
matter we analyze a necessary condition for re-
sistance enhancement, namely, the possibility of
having fields higher in the injection region than in

bulk; asymptotic analysis can offer good sugges-
tion concerning the conditions where such behav-
iors are to be looked for.

Of course, steady states with oscillations in

space allow for fields higher than in bulk. What
we are mainly concerned with now is whether such
fields are possible in aperiodic steady states
(with field contours which are monotonous or with
one overshoot). Thus, we are looking for aperiod-
ic asymptotic behaviors in which the field ap-
proaches the bulk limit value by decreasing. The
space charge which ensures that is a negative one, ,

for a positive current in an n-type material, i.e. ,
AI' —6(g& 0.

Among the asymptotic contours for a positive
current only those with

rather strange injection conditions, if any, in
which aperiodic asymptotic behavior is compatible
with a finite number of oscillations in the strong
injection range.

The above-mentioned condition is fulfilled, and
resistance enhancement through injection may ap-
pear, in a lifetime mater ial in which electrons
are more mobile than the injected holes, v„&v~

[see Eq. (30)]: in fact the upper limit for zn/g, is
inside the interval (v„,v~). On the other hand, the
increase in resistance is not possible up to an in-
finite current in the forward direction, for which

Pr &1, Eq. (32). It can be shown tliat the upper
limit in current corresponds to

I /2

Eo I gp =, = —,'-(v, —t n )
n P 0

(44)

The conclusions reached here are in agreement
with those of previous numerical calculations,
which could not reveal resistance increase through
injection in trap-free materials with equal rnobi-
lity carriers, ' but proved it possible in materials
with strong trapping of the injected minority car-
riers and a Tn/T, value in the lifetime range';
the strongly trapped holes can be regarded as
having a lower effective mobility, in physical con-
sistency with the condition p„&p~ (v„,v~) outlined
here for a trap-free material. A greater space
charge per mobility unit is ensured for every in-
jected minority carrier, and this seems to be im-
portant in the physics of resistance enhancement
through minority-carrier inj ection.

VI. CONCLUSIONS

The analysis of carrier-perturbation behavior in
the asymptotic range allows for a clear distinc-
tion to be made between lifetime and relaxation be-
havior. It provides new significant information
concerning the overall carrier-perturbation be-
havior.

For 'the relaxation regime (excepting v, =0) the
analysis of the asymptotic range allows one to draw
the following conclusions expected to be valid also
well outside this range, in agreement with results
of previous numerical calculations for the nonlin-
ear range: (a) There is an upper limit for the
current in the forward direction up to which quasi-
zero-recombination NI' = ¹,' is possible, in agree-
ment with Ref. 12 (see Fig. 1 there). (b) There is
no current in the forward direction for which a
negligible diffusion is compatible with quasi-zero-
recombination, in agreement with Ref. 3.

Previous work' ' ' has suggested that the value
of the rz&/7, ratio allows for a distinction between
two diff erent regimes of s emiconductor behavior.
Van Roosbroeek and Casey' have first ascribed
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distinct regimes of semiconductor behavior to
situations ~D» ~, and v.

D «~„and called them the
relaxation case and the lifetime case.

The present analysis shows that the whole range
of ro/v, values (0, ~), is divided in three regions
by qualitative changes in the asymptotic behavior;
these appear at the values ro/r, = v„,v~, where
v„and v~ are the ratios between carrier mobili-
ties, p,„and p, ~, respectively, and the average
mobility.

The ranges rD/r, & v„,v~ and v.o/r, & v„,v& can
be called relaxation and lifetime regimes, re-
spectively, in general agreement with the previous
definition. Within the range ro/r, =(v„,v~) the
semiconductor has, at different currents, either
lifetime or relaxation behavior, 0~ even a neu tyPe
of behavior in which oscillations around the bulk
values occur in space. For equally mobile car-
riers (v„=v~=1) there is no intermediate interval
in rD/r» lifetime and relaxation regimes have a
common boundary 7. /r, = 1.

The value ro/r~= v„v~ (A., =1) within the interval
(v„,v~) has an interesting significance for the zero-
current case. A zero-current carrier perturba-
tion is a superposition of two distinct perturba-
tions (Appendix A): (i) the first involves a neu-
trality perturbation which relaxes in space with
the Debye length L„-,generation, and recombina-
tion canceling each other (NP =N ); (ii) The sec-
ond involves a recombination perturbation and re-
laxes in space with the ambipolar diffusion length
L„'when v„=v~, or v'n/7, approaches zero, the
second effect corresponds to space-charge neu-
trality. When rD/r, & v„,v&then Ln& L, , while LD
& L, in the opposite case.

As regards lifetime and relaxation regimes, even
in their limit cases, charge neutrality and zero
net-recombination, respectively, cannot be re-
garded as essential features of a certain behavior,
when the whole range of currents is considered.
In an n-type lifetime semiconductor with ro/r,
«1, for high-enough currents in the reverse di-
rection, in the asymptotic range charge-neutrality
cannot be maintained and an equality -recombination
condition is approached; it corresponds to equal
contributions of electron and hole perturbations to
the net-recombination rate. To round off the pic-
ture, in the relaxation semiconductors with ro/
~, oo I at high-enough positive currents in the for-
ward direction, in the relaxation range the zero
net-recombination condition is replaced by an

unperturbed conductivity condition; electron and
hole contributions in the net-recombination rate no

longer cancel, but do so in the local conductivity.
However, there is a characteristic feature of

the lifetime or relaxation cases, valid throughout
the whole current range. It is the way the pertur-

bations of opposite-sign carriers are. coupled in
the asymptotic range, as indicated by the sign of
the AP/hN ratio; this ratio is always positive in
the lifetime regime and negative in the relaxation
regime.

Some interesting features are revealed for the
particular case of asymptotic carrier-perturbation
behavior in Pronounced ex' insic materials.
There are two physical effects, which compete
in controlling the asymptotic behavior at various
currents. From infinite currents in the reverse
direction up to a certain critical value, a quasi-
unipolar space-charge controlled conduction of
majority carriers prevails. Above this critical
current the conduction is bipolar and controlled
by the minority-carrier perturbation. In the
spatial distribution of the latter the recombina-
tion process is essential, while space charge has
a negligible effect, however high the current
level is.

The critical current, around which the conduc-
tion changes from one kind to the other, is in the
reverse direction for the lifetime case ro/so& v„,
v~, and in the forward direction for the relaxation
case r/o,r&v„,v~. In the deep-relaxation case
the critical current increases as (ro/r, )'~'. It is
this critical current which represents in the deep-
relaxation case the limit beyond which the zero-
recombination condition cannot be maintained, be-
yond which diffusion becomes gradually negligible,
and conduction changes towards an unperturbed-
conductivity condition.

As for the possibility of increasing the resis-
tance through a, certain minority-carrier injection,
which results in aperiodic steady states, it is
crucial whether in the asymptotic range the field
decreases or not towards its bulk value. This is
never possible in a trap-free relaxation material
ro/70& v„,v~. Such resistance increase through
injection may appear in lifetime materials ro/
r, & v„,v~ and even in some materials with ro/
r, c (v„,v~), provided the mobility of the injected
minority carriers is lower than that of the ma-
jority ones. These calculations, drawn for trap-
free materials, are in physical consistency with
those of a previous numerical analysis~ concern-
ing injection in materials with significant trapping.
It was shown that, in order to obtain a resistance
increase in such materials, they have to be in a
lifetime regime defined by a positive ~/~, and
ensure that the injected minority carriers are
strongly trapped, i.e., have a lower effective rno-
bility.
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APPENDIX A

Second-order equations for electron and hole
perturbations can be derived from Eqs. (12)-(15):
d'~ d~ 17
d~2 0 dX 0 + 0 0+E +N (np —nN)= — (p ~+N—np),

(45)

d ~ d~ 1 v'~-p, (r p nN) = -D(p, n—N—+ N, np) .
Vp

(46)

The three terms on the left-hand side give the
contributions of diffusion, concentration variation,
and field variation (space charge), in the net-com-
bination rate on the right-hand side.

The above equations can be rewritten

d2(PohN+ NonP) d(PonN —NonP)
dX2 + 0

d'(np nN) d(np+ nN)
dX' ' dX

= (nP —nN)+ (P nN+No~) "~ . (4—8)
V„Vp

For the zero-field case E,=0 the latter ones be-
come equations for recombination perturbation
(P,~+N, nP), and neutrality perturbation (r P
—nN) which have the following independent solu-
tions: -~, ~, ~ —~-e =e D, and

Po~+ NOLP = 0; -~, ~, Io~+N ~ -e
=e "~~~, and nP —~=(nZ~- nZ„)A.'„where
~Z„=v„~,hZ~= v&~, and L„I.D, and X', have
been previously defined.

The first solution corresponds to zero net-r e-
combination and the second, when v„=v~ or rD/
70-0, to charge neutrality.

In the general case, by using Eqs. (16) and (20),
the above equations become

(y -(yE —N —— =—I +N 1 ———P =01 TD D
0 0 7- 0 0 v 7- P

~n n . Q

(49)

(n' —«, —1+ l~)(n'+ o.E, —.1+ I„)= I„f~,
with

17 1T
/ —P 1 — ) / —N 1—

(51)

in which, with previous notation (19), I&—l„=a.
If Eq. (51) is reduced to its simplest form, Eq.

(17) is obtained. If simple convenient manipula-
tions are made Eq. (51) can also be written in the
alternaltive forms given by Eqs. (26) and (27).

Equation (17) can be regarded as a quadratic
equation for «0(n), the solution of which is

«.(~)= 2n +[&(~)I'",
the parameter a being previously defined, and

n, (o.) = o4 —n'(I X+',)+ X', + -,'a'

is an expression which vanishes for

~2 ~2v(f I )1 j2

(53)

(55)

in which l~, l„have previously been defined, and

(56)

The values n~, n correspond to extremes in
o.,(E,) and o,(E,), respectively. n(n) &0 when
o. ~(n„,o. ). When rD/ra~ v„,v~ or I~I„)0,then

ov, c. are real (Fig. 1). When r~/v, c(v„,v~) or
/p l ~ 0, there are no real n~, n, but two distinct
branches in E,(o.), or a complex-values gap in
the dependence n(E, ), (Fig. 2). If diffusion had
been neglected [second derivatives in Eqs. (45)
and (46) or n' terms in Eqs. (49) and (50)], then
the complex-values (oscillations) gap would not
have appeared [a(o.) = X,'+ -,'a'j.

APPENDIX 8

If Pv is extracted from Eqs. (49) and (50)

o!'—nE, —No —(I/v„}(ro/ro}PO
-No+ 1/v„(r~/ro}NO

-P, + (1/v, }(rD/r, )P,
n'+ nE, —P, —(1/v }(r~/r, }N, '

one obtains through obvious manipulations

(57)

( (p
P (~2

—o.E,}/v, —N, /v, —P,/v„
+ nZ, }/v„-N, /v —P,/v„
&'- nE, —1/v.
u'+ nz —1/v (58)

7D 1 T I
n +eE —P —— N +I 1 ————=0.0 0

p V&
0 0

Vp To Pp

(50)

By eliminating P~ from Eqs. (49) and (50} one ob-
tains
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which is Eq. (21). It shows that the dependence of
P~= nP/B'AV on 7n/ro is only an imPlicit one,
P~(rn/&, ) =Pz[&(rn/r, )] In. Particular cases when
o' is known [Eqs. (22) —(24)j closed expressions
can be deduced [Eqs. (30)-(34)].

General conclusions regarding P~ can be drawn
from the following two equations, obtained by com-
bining Eqs. (49) and (50):

1 v'D 1 12n'=j. +A.', +g, ———1 —+@, —— 1 P,
vp To ~s vn ~0

(59)

1 7D 1 1 v'D
2&ED 0 +PO 1 No 1 p

v T P v„ I'

(60)

One immediately sees that P~=0 is a singular
point, excepting the case zD/go=v~. As a con-
sequence P~ conserves sign along &„&,curves
when 7D/7, 4 (v„,v ). As the main solution n, is
the smaller positive one, from Eq. (59) it is seen
that Pz must be positive in the lifetime case rn/ro
( v„,v, and negative in the relaxation case rn/r,) V~q Vp.

When rn/r, c (v„,v ) the two terms containing

p~ in Eq. (60) have the same sign. As their pro-
duct is constant, the curve Eo(P~) has two disinct
branches, which correspond to P~ either positive
or negative, and which extend towards either
E, = -~ or E, =+~. A short inspection of these
curves shows that when the whole range of Ep is
covered (-~, + ~), p~ changes sign when crossing
the oscillation gap (complex u, Pp) from negative
topositive if v„)v~ and the other way aroundwhen
V ( Vn.

APPENDIX C

In the extreme extrinsic case P, =0 (N, =1), the
asymptotic equations for electron and hole per-
turbations (45) and (46), reduce to

d~~ d~ 1 TD+E + (aP ~) = ——&P,
dX dX v„~o (61)

O'AQ dd P' 1
dX dX V 70

(62)

The most important consequence is that the contri-
bution of the space-charge term in the hole-cur-
rent divergence, i.e. , in the recombination rate,
is negligible. The recombination rate itself re-
duces only to the hole-perturbation contribution.

In general, the two factors which control the
penetration of carrier perturbation inside the
semiconductor are carrier recombination and
local space charge. In extreme extrinsic mater-
ials these effects correspond each to independent
particular solutions of the system [Eqs. (61) and

One particular solution is a hole perturbation,
the spa. ce distribution of which is determined by
a hole- controlled recombination. The chara, cter-
istic length of the exponential behavior is field
dependent, but practically coincides with the hole-
diffusion length L at fields lower than kT/eL .
In this type of process the majority electrons may
have the same exponential behavior, as they re-
spond to the hole perturbation ensuring electrons
for the hole-controlled recombination, while
their space charge plays no role in controlling
the hole distribution. Equation (62), which con-
trols this type of process, corresponds to the
vanishing second parentheses in Eq. (36).

Another particular solution of the system re-
sults from the fact that the trivial solution of
Eq. (62), rP—:0, does not imply a trivial solution
for the system as well ~ The process, whose spat-
ial distribution is now described by Eq. (61) with
&P —=0, is a one- carrier conduction consisting in
a space- charge controlled condu'ction of majority
electrons with no recombination. This particular
form of Eq. (61) corresponds to the vanishing
first parentheses in Eq. (36).
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