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A hydrodynamic model for the nonequilibrium thermodynamics of electron-hole droplets in semiconductors

is presented. It predicts droplet properties at densities and temperatures where the assumptions of nucleation

kinetics fail. It is an extension to finite lifetimes of the Cahn-Hilliard theories of critical droplets and

spinodal decomposition. As in finite-lifetime nucleation kinetics both critical and stable droplets are found to
exist above a .minimum supersaturation which must become large at low temperatures. However, stable

droplets differ both quantitatively and qualitatively from the capillarity approximation commonly assumed in

nucleation kinetics. For example, they may be characterized by a. velocity profile which peaks in the surface

region. Among other novel predictions are that: (i) a maximum supersaturation before phase separation is

given by the spinodal line; (ii) stable droplets continue to exist at temperatures approaching T, but their

properties are strongly affected by impurity and phonon scattering; and (iii) at very low temperatures critical

droplets are too small for hysteresis, but stable droplet properties are calculated. Quantitative predictions are

made by the principle of corresponding states.

I. INTRODUCTION

In many respects electron-hole condensation in
semiconductors has been shown to be analogous to
other liquid- gas transitions. ' However, among
the several important differences is the one that
in semiconductors the condensing particles have
finite lifetimes. The nonequilibrium character of
electron-hole condensation is manifest in experi-
ments on nucleation, droplet- size distributions,
optical hysteresis, and especially in strong de-
partures from ordinary liquid-ga, s behavior at low
temperatures. ' ' At temperatures mell below the
critical temperature (7&4 'K in Ge) and at exci-
tations near the thresholds for droplet formation
and decay, these experiments' ' have been success-
fully described by the generalization of nucleation
klnetles to flnlte lifetimes.

For ordinary liquid-ga, s transitions, the control-
ling variable in nucleation is the Gibbs free energy
as a function of droplet size. For gas densities
n greater than the coexistence curve n, , there is
a net lomering in free energy due to formation of
the liquid phase. However, there is also a net
gain in free energy due to formation of the inter-
face between gas and liquid. The first term is pro-
portional to the droplet volume, while the second
is proportional to surface area, . A critical radius
is defined by the size where bulk and surface con-
tributions to the change in free energy with size
a,re balanced. Larger droplets find it energetically
favorable to continue growth, while smaller drop-
lets find it energetically favorable to evaporate.
Dynamically for n &n„droplets larger than criti-
cal collect gas particles faster than they evapor-
ate them. The interface free energy has the effect
of increasing the evaporation rate for small drop-

lets. The nucleation rate is controlled by the for-
mation of critical droplets by statistical fluctua-
tions. This rate is proportional to minus the ex-
ponential of the Gi's energy of a critical droplet.
This energy and the corresponding critical radius
decrease with increasing supersaturation (S =rT/n,
—1) and with decreasing surface tension (which
determines the interface free energy). Droplets
once formed continue groming for any S&0 pro-
vided their size is greater than the critical radius.

For electron-hole liquids the nem feature is the
finite particle lifetimes due to recombination. Dy-
namically, the lifetimes provide a new mechanism
for droplets to lose particles at a rate proportional
to the droplet volume. The evaporation and collec-
tion rates are proportiona. l to droplet surface area.
Thus, one expects another characteristic droplet
radius to be determined by the size where the net
collection of particles for n&n is balanced by the
net loss of particles due to recombination. Larger
droplets mill tend to lose particles reducing toward
the characteristic radius. Smaller droplets will
tend to gain particles groming toward the charac-
teristic radius. Therefore, this radius is termed
the "stable" droplet radius. Since the net differ-
ence between collection and evaporation rates in-
creases from zero as the supersaturation increases
from zero, the stable droplet size should increase
with supersaturation. Note that the concept of a
stable droplet does not depend on surface tension.

Consider then what happens when both the sur-
face tension is nonzero and the lifetime is finite.
For high supersaturations, the stable radius will
be large while the critical radius mill be small.
As the supersaturation is reduced, the two charac-
teristic radii mill approach one another until, at
what is termed a, minimum supersaturation 8,„,



critical and stable radii are equal. At supersat-
urations S&S,„ there are no droplet sizes where
the particle collection rate exceeds the combined
effect of a lifetime loss proportional to droplet
volume and a surface evaporation term enhanced
by the effect of interface free energy. Note also
that the surface rates of evaporation and collection
decrease rapidly with decreasing temperature,
while the Lifetime loss is temperature independent.
Thus, S,„must become large at low temperature.

This description follows the language of nuclea-
tion kinetics. However, an alternative description
may be provided by hydrodynamics. In the rest of
the Introduction, the two approaches will be com-
pared with regard to the assumption involved, the
domain of applicability, and the nature of their
predictions.

The detailed assumptions of nucleation kinetics
are that': (i) particles undergo free molecular
flow apart from collisions; (ii) kinetic equations
for the concentrations of particle cluster sizes
are applicable; (iii) the rates are determined by
gas kinetic collision cross sections and detailed
balance; (iv) monomers are the dominant cluster
size; and (v) the Gibbs energy of a large cluster
is given by the "capillarity approximation" in which
there is a volume term proportional to the differ-
ence in chemical potentials of gas and liquid and a
surface term proportional to the bulk surface ten-
sion. ""Clearly, assumptions (i)-(iv) require an
almost ideal gas phase and, therefore, that the
kinetic energy is much larger than the potential
energy of particles in the gas phase. This is not
true at high supersaturations, near the critical
point, and near the spinodal line separating meta-
stable from unstable regions of the phase dia-
gram. The capillarity approximation, assumption
(v), can be established from a microscopic basis
for the critical droplets which controL nucleation, "
but it has not been established for the stable drop-
lets which are unique to electron-hoLe condensation
because of the finite lifetimes.

In order to address these difficulties, in this
paper an alternative hydrodynamic approach to the
nonequilibrium thermodynamics of electrons and
holes is presented. The hydrodynamic model is
a continuum approximation to the behavior of a
condensing fluid. It consists of combining the den-
sity functional formalism, which has been applied
to surface properties, "with the hydrodynamic
equations of change. The equation of continuity is
modified to include particle creation and recom-
bination. The equation of motion is modified to
include frictional forces due to scattering from
phonons and impurities. The equation of state is
nonmonotonic below a critical temperature corres-
ponding to a liquid-gas transition. This formula-

tion has a precursor in the Cahn-Hilliard theory
of critical droplets and spinodal decomposition. ""
In the infinite lifetime limit, it can be used to de-
rive the capillarity approximation for critical drop-
lets. It also describes the alternative phase sep-
aration mechanism of the exponential growth of
density fluctuations (spinodal decomposition) at
extremely high supersaturations where the ideal
gas assumption is invalid. "

The unique feature of this paper is to present the
predictions of the hydrodynamic model for the fin-
ite lifetimes appropriate to electrons and holes in
semiconductors. Despite the qualitatively differ-
ent character of hydrodynamics and nucleation
kinetics, as shall be shown, the two theories share
many predictions for droplet properties in the
ideal gas phase region. Both predict the existence
of stable and critical droplets above a minimum
supersaturation, that the minimum supersatura-
tion increases with decreasing temperature, and
that strong departures from ordinary liquid- gas
behavior must occur at low temperatures. Further,
both theories may be scaled in terms of critical-
point parameters to depend only on one dimension-
less variable $ =zzzo'/r'(kT, )"zz,', where o is sur-
face tension at O'K, 7 is lifetime, m is mass, T,
is critical temperature, and n, is critical density.

However, the hydrodynamic model. may be applied
in regions of density and temperature where the
ideal- gas assumption of the nucleation kinetics mod-
el breaks down. These include (a) temperatures
below that where the minimal supersaturation be-
comes comparable to one (T( T,), (b) near the
critical temperature, (c) near the spinodal line
separating metastable from unstable regions of
the phase diagram, and (d) inside the spinodal
region. Further, even in the ideal-gas region hy-
drodynamics makes new predictions for droplet
properties such as size, density, chemical po-
tential, density profile, etc. , which differ from
the results and assumptions of nucleation kinetics.
In particular, the properties of stable droplets
differ substantially from the capillarity approxi-
mation. These predictions n. .ay be tested by the
standard experiments in luminescence, light scat-
tering, junction noise, etc.

Time-dependent phenomena are another area
where hydrodynamics differs from nucleation kin-
etics. Because it is a continuum approximation,
hydrodynamics does not have the statistical fluc-
tuations responsible for nucleation and decay. This
maybe remedied by adding suitable I angevin forces
to the equations and deriving a Fokker-Planck
equation for the distribution of hydrodynamic vari-
ables density and velocity. " This subject will be
addressed in a later paper.

The organization of this paper is as follows.



HYDRODYNAMIC APPROACH TO ELECTRON-HOLE DROPLET. . .

Section II is concerned with formulating the hydro-
dynamic model. Section II A presents a brief re-
view of relevant concepts and results in the theory
of phase transitions and critical. droplets. Section
IIB is a presentation of the equations of the model.
Section II C discusses the applleablllty of the hy-
drodynamic model. Section II D shows how the
principle of corresponding states can be used to
make quantitative px edietions. Section III contains
a treatment of the zero surface tension limit of the
droplet solutions of the hydrodynamic equations.
In Sec. IV droplet solutions of the complete equa-
tions are studied. Section'IVA discusses numeri-
cal solutions. Section IV B introduces a very use-
ful approximation. Section IV C contains a deri-
vation of droplet properties such as minimum su-
persaturation and minimum radius in this approxi-
mation. Section IV D studies droplet behavior at
densities near the spinodal line. Section IVE dis-
cusses droplet behavior at low temperatures. Sec-
tion V contains a summary, and discussion. In

Appendix A properties of the model equation of

state used in the numerical work are presented.
Appendix B contains a derivation of a sum rule
used repeatedly in Sec. IV. Appendix C discusses
the effect of a nonzero friction coefficient. Ap-
pendix D presents a "cell model" for predicting
the behavior at high excitation when the droplets
are interacting with each other. Appendix E con-
tains a summary of some of the principal results
of nucleation kinetics in a form suitable for com-
parison with the hydrodynamic model.

A preliminary account of this work has been pub-
lished elsewhere. "

II. FORMULATION OF THE HYDRODYNAMIC MODEL

A. Review of concepts in the theory of surface tension

and phase transitions

The equation of state of a system of particles
may be specified in terms of the free energy per
unit volume f, pressure p, , or chemical potential
p, as functions of t;he density n and temperature
T. These quantities are related by p=npfand, -
p = df/dn. Above the critical temperature p and p,

are monotonically increasing functions of n. Below
the critical temperature there is a mechanically
"unstable" region of the n, T plane where di(/dn is
negative. The "spinodal line*' n, defined by(dp/
dn)

~

„=0 separates metastabie from. unstable re-
gions. A second line termed the "coexistence
curve" defined by p(n, ) =p(n, ) and i((n, ) = p, (n, ,) sep-
arates metastable from stable regions. A metas-
'table state may be defined as a system which could
lower its free energy by separating i.nto high- and
low-density fluids but there is a free-energy bar-
rier to its doing so. These various regions are
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illustrated in Fig. 1 for the model equation of state
discussed in Appendix A.

For an inhomogeneous system of ordinary par-
ticles, the density gradient approximation to it@
free energy is given by'"""

&(»)= J+» (l@& )*+/( )I

Consider first a plane interface between liquid and
gas phases. Variation of E(n) with respect to n(x)
gives

& d, =i (n)- u(n, )

This may be integrated to

dn 2 x/a

d
= ~p(n, ) —p(~)+n[V(n) —u(~, )J)

as the equation describing the surface density pro-
file. For A equal to surface area the free energy
(l) is

Qnz(n(x))- r(n ) =A fc — dx
X

+A n —n )p. n )dx. (4)

io-&
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FIG. 1. Schematic phase diagram for electron-hole
fluids calculated using the model equation of state in

Appendix A. Solid line is the coexistence curve. Dashed
line is the spinodal curve. The development of equa-
tions of state for electron-hole fluids in semiconductors
is required for realistic determination of these curves.
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The surface free energy is therefore

K — dx r, = 2o/n, [p. (n) —p, (n ) ],
n

(2K)' 'lp(n, ) —p(n) +n [p, (n) —y(n , ) Q'~' dn.

The width of the interface profile W is on the order
of

(6)

Consider next extrema of E(n) for spherically
symmetric droplets. The density profile must sat-
isfy

d'n 2+ dn
, + ——= p. (n) —p(n),

where n is the average density in the gas phase.
A numerical study of Eq. (7) confirms that the

following approximate treatment is valid provided
the droplet surface radius x, is greater than the
plane interface width W [Eq. (6)]. Then dn/dr is
large onty in the surface region and negligible
elsewhere. To use this observation, multiply (7)
by dn/dr and integrate to obta, in

=f|n(r))-f(n) —(n —n) p, (n). (8)

The droplet size is infinite at n=n and decreases
with increasing supersaturation. The free energy
may be calculated from (1) by substituting (8) into
(1) and noting that

"2K dn ' 20dr = ——B(r, —r).
v A'

Then E(n) is given by

E(n) —= —,
' vr,'o+ ~4 wr,'(n, —n) p. (n), (10)

and the Gibbs energy G(n), defined by E(n) —p(n)
x fd'r [n(r) —n], is equal to a positive quantity

, rEoquations (9) and (10) can be reduced to
that of the standard capillarity approximation in
the limit that n «n, and small n-n, . Then one may
show p(n, ) —p(n) =n, [p(n) —tL(n, ) ]. This gives

E(n) —= 4wr ',o + ', mr ',n, p(n,)—,

When r = 0 and r, & W, one has by assumption p [n, ]
= tj(n) for n, =n(0). Equation (8) then reduces to

"2K dn ' 20
dr

which are identical to the capillarity approxima-
tion results for critical droplets.

For n large enough for x, ~ W the above approxi-
mations cannot be justified and numerical solution
of Eq. (7) must be obtained. The binary mixture
analog of this equation has been studied by Cahn
and Hilliard. '"" Numerical solutions which we
have carried out confirm that the principal conclu-
sions of Cahn and Hilliard remain valid in the
liquid- gas case. For increasing supersaturation
p(n, } falls increasingly below p(n}. The surface
density profile becomes more extended and poorly
defined. As n approaches the spinodal line, n,
approaches the lower boundary of the spinodal n,
and the amount of matter contained in the critical
droplet approaches zero. Numerical solutions show
that J dr (dn/dr)' starts at the plane interface val-
ue for large r, but falls toward zero as r, decreas-
es.

B. Equations of the hydrodynamic model

Consider then a system of condensing particles
of mass I and lifetime T'. The hydrodynamic vari-
ables are the density n(r, t) and velocity u(r, t)
For an inhomogeneous flowing fluid the free-ener-
gy functional is postulated to be"~"

nznu' K ~
E(n, u) = d'r +—(Vn)'+f(n)

2 2

The first term is the kinetic energy contribution
and the other terms are as discussed in Sec. II A.
The equation of motion is the Euler equation

9U
m —= —mu ~ V(u) —V[-KV'n+ p. (n) ] —mPu.

Bf,

Here a simple friction term -mPu has been added
to the usual hydrodynamic equation to simulate
scattering from impurities and phonons. Possibte
dissipative terms due to other damping mechan-
isms such as viscosity might also be added, but
these will not be considered in this paper. The
equati. on of continuity is taken to be

&n n n—= —V (nu) ——+—,
et 7 7. '

where the second term is due to recombination and
the third term is due to excitation processes which
maintain an average density n. The dependence of
7 on density has been ignored. It is assumed that
photon transport is unimportant, which restricts
this model to fluids in indirect-gap semiconductors
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or in small samples of direct-gap material. Usu-
ally a third hydrodynamic equation is added to
describe energy conservation. However, in high-
purity semiconductors the phonon mean free path
and consequent thermal conductivity are quite
large at low temperatures. Further, no evidence
for thermal disequilibrium between droplets and'
exciton gas has been observed in recombination
spectra. This justifies an assumption of isother-
mal flow except for extremely high-intensity short-
pulse excitation.

These equations potentially constitute a basis
for the description of many diverse phenomena.
In this paper attention is restricted primarily to
stationary spherically symmetric droplet solutions.
Then (14) and (15) become

and

Kd 2n 2K dn mu'
, + ——= + p, (n) —p(n)- mpudr, (17)

2

where boundary conditions appropriate for an iso-
latedfluctuationare chosen, i.e. , n-n and u-0 as

The average density n must be in the low-
density metastable region for an isolated fluctua-
tion. In Appendix 0 the case of nonisolated fluc-
tuations and n in the unstable region is considered.

C. Applicability of the qualitative predictions

of the hydrodynamic equations for droplet properties

The hydrodynamic model is clearly an extension
to finite lifetimes of the density-functional formal-
ism which can be used to derive the well- established
capillarity approximation for- critical droplets. The
equations are certainly valid when the ratio of the
mean free path to the distance scale of fluctuations
in the hydrodynamic variables is small. They can
also remain valid for large mean free paths in the
sense that they reduce to conservation, or Euler,
equations for the density, momentum, and energy
moments of the Boltzmann equation. "

For droplets the mean free path varies between
very short for the high-density liquid at droplet
center to a larger value for the lower-density gas
phase far from the droplet. If the mean free path
is important, it will show up as a nonlocal relation
between forces and gradients or, equivalently, as
a limitation on the distance scale of fluctuations
produced by transport coefficients. Therefore,
the droplet radius must be large compared to the
mean free path when transport eoeffieients are
important. For low-density exeltons in german-
ium at helium temperatures, the mean free path
due to phonon scattering is estimated t;o be between

„and 1 p, m. The important droplet radii lie be-
tween 15 and, o'o p, m which is the Bohr radius of an
exciton. ' Thus, hydrodynamics becomes a poorer
approximation with decreasing droplet size.

However, there are several reasons why one may
expect the hydrodynamic description to remain
valid until rather small droplet sizes. First, it is
shown in Appendix C that at low gas densities the
transport coefficients are unimportant to the results.
Second, as shall be shown, the density fluctuations
in the gas pbase are only on the order of ~e. Third,
in this limit the results are qualitatively similar
to and only quantitatively different from the pre-
dictions of nucleation kinetics which is a free-
molecular- flow approach.

Gi.ven the approximate validity of a hydrodynam-
ic description, there is still the question of wheth-
er time-independent droplet solutions are the appro-
priate subject of study, In the limit of very small
viscosity (large Reynolds number), most stationary
solutions of Navier-Stokes equations are unstable.
The extreme example of this is turbulence. (The
viscosity is still important in producing dissipation
at high momenta. ) Time-dependent solutions may
very well be important at low t emperatures (T «To)
where the stationary-droplet solutions cannot be
found either in the hydrodynamic model or in nuc-
leation kinetics, as shall be discussed. I.imitations
on quantitetive predictions are discussed in See.
II D.

D. Quantitative predictions, scaling, and the principle

of corresponding states

The principle of corresponding states is applic-
able for a wide variety of liquid-gas transitions.
It permits one to scale properties of one liquid to
predict those of another. " It is likely that it is
also valid to some extent for electron-hole liquids
as well. To use it in the hydrodynamic model, de-
fine scaled variables p, , n, and x by p. = p™k~T„
n =n,n, r = r(Zn, /ks T,)'~', and u = (u/r}(Z'n, /ks T,)'~',
where T, is the critical temperature and n, the
critical density. Then Eq. (17) becomes

2' Q, +=== p(n) —p(n)+$ ——pr udr
. d& gd 2

(18)
where $ -=mKn, /r'(ksT, )'. An alternative scaling
is given by r=rr(k T /m)'/' and u=u(k~T, /'m)'i'.
Then Eq. (17) would read

2 dn - gP, += —= p(n) —p(n)+ ——p7 udr. (19)
2

Clearly, if ( were a small parameter it would
justify the consideration of limits where either
K or 1/r were neglected or, equivalently, where
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TABLE I. Estimates of parameters of electron-hole liquids in semiconductors.

7 (sec) T~ ('K) N~ (cm 3) +0& '('K) &0m

Ge
Si
GaP
CdS
CdSe ~

aAsm, n

0.335
0.46
0.93
1.56
0.86
0.57

x10 4

4.8 x 10
1.05 x10
7.2 x10 3

3.1 x10

x10-5'
1.27 x10
3.5 x10

10 ",
10 "
10 "'

6.5
27"
40'

7.3'

0.8 x10"
1»10""

x10"'
0.7 x10"
1.3 x10

1.6x10 "
9.4x10 ~~

1.9 x10 8

3.4x10 ~

4.0x10 6

?

2.8 x10-'
1.2x10 6

9.4x10 '
1.4x10 '
2,4x10 6

1.4
7.8

16
26
4.1

1.5
9

20
34

5,6

From Eq. (48).
From Eq. (E6).

~See T. M, Rice et al. (Ref. 1).
C. Benoit a la Guillaume et ar, . (Ref. 22).
G. A. Thomas et al. (Bef. 20).
Guessed at by dimensional arguments.

g W. Schmid (Bef. 24).

J. Shah et al. (Ref. 23).
' J. Shah et al. (Bef. 25).
' B. Leheny et al. (Ref. 26).

T. L. Beinecke (Ref. 27).
Used data of B. Leheny et al. (Bef. 28).
J. Shah et al. (Bef. 29).

"O. Hildebrand et al. (Bef. 30).

the quantities in brackets in (18) and (19) were
neglected. That this is indeed the case for real
electron-hole liquids will be discussed below and
in Table I.

It is useful to convert other important quantities
to scaled units. The surface tension from Eq. (5)
in the units of Eq. (18) reads

where x is a dimensionless number

x=— (21)

One expects that x is a number on the order of one
at T=O'K. For the model equation of state in Ap-
pendixA one may analytically show that for T = O'K,
xliesbetween5. 30 (for c/a-0) and2. 4(for c/a-l).
The quantity x'$ = ma'/r'(kT, )'n', can be evaluated
in terms of measureable quantities. The width of
the interface profile in scaled units is

u) = (n, —n, )'/x .

For the model equation of state it lies between
1.7 and 3.7 at T=O'K.

The hydrodynamic model presented in this paper
ean be used in making semiquantitative predictions
using the same parameters as those of nucleation
kinetics. However, some words of caution are in
order. In direct-gap materials photon transport
of nonequilibrium carriers (polaritons) can re-
sult in a particle lifetime which depends on sample
thickness. " Also stimulated recombination can
shorten the lifetime within droplets. Even in in-
direct-gap materials, the quantitative predictions
depend to some extent on the equation of state as
ere have just illustrated. An accurate equation. of
state should describe the critical point correctly'~

and the Fermi-liquid behavior at low temperatures~

and interpolate correctly into the low-density re-
gion. To the author's knowledge, no equations of
state which satisfy all these requirements have
been proposed in the literature. Other require-
ments for quantitative predictions may include the
generalization of hydrodynamics to a two-compo-
nent anisotropic fluid, estimates of transport co-
efficients, allowing the lifetime v to be density
dependent, and inclusion of other nonequilibrium

effects such as interaction with phonons generated
by recombination and thermalization. To the extent
that these effects are included the corresponding
hydrodynamic model becomes more complex.

All of the numerical results to be presented be-
low are expressed in units of n„ksT„and (En,/
asT,)'"

In Table I are presented rough estimates of the
relevant parameters for the electron-hole liquids
in various unstrained semiconductors which have

been studied to date. Where the parameters have

not been measured, they have simply been guessed
at using dimensional arguments. Therefore, the
values in particular for direct-gap materials are
not to be taken too seriously. The materials are
arranged in order of increasing x~(. It is to be
noted that x'( is orders of magnitude less than one
for all the materials in which an electron-hole
phase transition has been shown. The question
marks for GaAs reflect the uncertainty about a
phase transition in this material. Also tabulated
in Table I is p = o/(AT, )n, which sets a distance
scale of the interface width for these materials.
In addition, predicted values of characteristic
temperature To for the hydrodynamic model (To")

and for nucleation kinetics (To ) are given as cal-
culated from Eq. (48) and Eq. (E8), respectively.
T, is the temperature where the minimum super-
saturation. equals one and below which significant
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departures from equilibrium liquid- gas behavior
must occur.

m nu 1 1——+——(n —n ) mPudr
2 n- n, r

III. DROPLET SOLUTIONS IN THE 0 ~ 0 LIMIT

Droplet solutions in the 1/7 -0 limit have been
considered already in Sec. II A. They correspond
to critical droplets. Justification for consideration
of the other limit of 0 -0, or K- 0, was presented
in Sec. IID. Then Eq. (17) is

= ("--n, ) p(n) -f(n-) +f(n, ) (26)

Considerable manipulation of this equation is re-
quired to put it in a form where its content is mani-
fest. The details of these manipulations are re-
served to Appendix B, but the result is

mu
2

mPu dr = p(n) ,—p, (n). (23) P(n, ) —p(nD) =
n~) n, ~)dr 2

dn 2mu mu
+ 7

dr — r 7 n

mu
( )

du 1 djLt, dn
pdr mu dnA (25)

are equivalent to (16) and (17) in the K-0 limit.
One can integrate these outward from x=0 with

n, =n(0) in the high-density metastable or stable
region and u(0) =0. At some "surface" radius r,
where the gensity is n, and u„a discontinuous
jump will occur to a new density n in the low-den-
sity metastable region and a new velocity u . The
problem is the relation of n and u to n, and u, and
of x, ton.

First, the total flux of particles into the droplet
should be equal on both sides of the surface. There-
fore, we have

Since flow is to be into the droplet, the velocity u
- is negative and the left-hand side is positive def- .

inite. The right-hand side is negative for values
of n between n and the high-density metastable
region. Therefore, droplet solutions in the 0-0
limit cannot be continuous functions of radius z.

The equations

'
(n —n, )mPu, ,

1nu=-
4mv' (30)

where nD is a density in the low-density metastable
region defined by p. (nn) = p, (n, ). Here, n, is a solu-
tion of (24) and (25), and n (r) is defined in terms
of n, (r) by (26) and (27). For a more complete
discussion, see Appendix B.

Consider the P 0 limit of this equation. The
effect of nonzero P is considered in Appendix C.
Then from (23) n, is fixed by p, (no) = p(n), and
therefore nD =n. Since n &n, and the second term
in (29) is zero, the right-hand side of (29) is posi-
tive definite. The left-hand side of (29) is positive
only for n&n . Therefore, droplet solutions of the
hydrodynamic equations exist, only for n &n . The
radius x, is zero at the coexistence curve and in-
creases with supersaturation. Further, the den-
sity at the droplet center n, increases with super-
saturation S =n/n —1. —

An analytic approximation to the droplet size
may be obtained from (29) as follows for n «n, .
Then n &n «n, and n is almost constant for r & y, .
Therefore (r&r, )

n,u, =n u (26) The right-hand side of (29) may be approximated
by setting n (r) in the integrand equal to n Then.

Second, using (23) and (26), one must have

mn'u' r,; '+ 'mPu=p(n, ) —p, (n ),
o

(27)

'r'
P(n. ) —p(n) = »„',,'.

Then to first order in n —n,

(31)

which is the second equation needed to specify n
and u in terms of n, and u, .

Finally, the surface radius r, may be determined
by making a requirement that the discontinuous
solutions obtained in the K-0 limit pass smoothly
into continuous solutions for nonzero K. If one
multiplies (23) by dn/dr it should be possible to in-
tegrate across the surface region. In addition
from (26) n'u' is constant across the surface re-
gion. Thus one obtains

i.--;))
18f/g d p.

n, m dn t« (32)

so that the droplet size starts at zero at n =n, and
increases with supersaturation.

The droplet radius cannot become so large that
u exceeds the sound velocity. If that happened the
denominator of' {24) would become singular. This
imposes an effective limit
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n„37 n„lp,
n, m

(33}

Approximating n =n, and using (32), the sound
velocity limit is not exceeded at supersaturations
S:-n/n —1 given by S ~ n /2n, . At higher super-
saturations r, is determined by (33). [Note that in
the ideal-ga. s limit the approximation (31) is un-

necessary, for (29) can be evaluated exactly. This
gives S~ 0.213n /n, , and r =3v'n/n, (kT/env)'~',
where e = 2.718. . . . This upper limit on x, differs
from the result of nucleation kinetics for "stable
droplets" given in Appendix E by (2vv/e)'~'. Fur-
ther n )e '~'n. ]

A qualitative characterization of these droplet
solutions in the 0- 0 and P -0 limit is as follows.
The density at droplet centernoexceedsn, by an a-
mount which increases with supersaturation. The
density decreases slightly and the velocity increases
linearly with radius until the surface x, is reached.
At the surface there is a discontinuous jump to. a
lower density n (n and a much higher vel. ocity u .
For x» x, the density increases toward n as
n —no-x ', and the velocity goes to zero as u-z '.
This may be seen by linearizing (23) in the P-0
limit about n. Therefore, the total flux of particles
into the droplet from infinity is nonzerot Numeri-
cal studies which have been carried out show that
typically the total flux from infinity is a sizeable
fraction of the total flux at x = r, .

This rather pathological behavior at infinity can
be corrected in two ways with generally negligible
effects on droplet properties as calculated from
Eq. (29). First, for nonzero P one may show that
n must approach n exponentially for x»x, with

decay constant tnzP/(v'ndp/dn)]'~'. An analysis of
the effect of P presented in Appendix C shows that
for values of a characteristic parameter g& 1,
where v} is defined as v}—= 6Pv'n /n, the droplet prop-
erties differ negligibly from (29) but the net flux
from infinity is zero. For g «1, and therefore
temperatures near T„ the friction coefficient is
an important correction to droplet properties. Sec-
ond, in the presence of a finite density of droplets,
the net flux from infinity must be zero. This is dis-
cussed in terms of a "cell model" presented in
Appendix D. As in nucleation kinetics, we term
these droplet solutions "stable" droplets.

tion. The radius of stable droplets start at zero
at n =n and increases with supersaturation. Both
these limits correspond to ( =0 as discussed in
Sec. IID.

In this section, isolated-droplet solutions for
nonzero ( are obtained. Appendix D discusses a
"cell model" for interacting droplets.

A. Numerical solution

One way to study (WO is by straightforward num-
erical integration of (16) and (17). This has been
carried out by guessing n, and integrating outward
using a prediction-corrector method. If the solu-
tions do not converge toward n as x-~, a new n,
is guessed at and the integration repeated. It is
found that above a minimum supersaturation,
droplet solutions corresponding 'to both small x,
(critical droplets) and large r, (stable droplets)
can be found. This is illustrated in Fig. 2 for P=0
and ( = 5 ~ 10 ~. With increasing supersaturation
these solutions approach the (-0 limit solutions
discussed previously. Note that the discontinuous
interface and velocity profile of Sec, III has been
replaced by a continuous transition from high to
low densities and low to high velocities ~

In practice, this procedure is difficult to carry
out for very small ( because the left-hand side
of (17) is found to be negligible compared to the
terms on the right-hand side except in the inter-
face region. These numerical results suggest an
analytic approximation which takes advantage of
the smallness of ( for the electron-hole liquids
which have been studied to date.

—Io

I.2—
n/n',

I.O—

0.8—

IV. ISOLATED -DROPLET SOLUTIONS OF THE COMPLETE

EQUATIONS
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It is clear from Secs. I-III that the properties
of critical droplets (Sec. IIA) and stable droplets
(Sec. III) are quite distinct. The radius r, of crit-
ical droplets starts at infinity at n =n~ and de-
creases toward zero with increasing supersatura-

PIG. 2. Density profile (solid) and velocity profile
(dashed) for stable droplet at n/n~= 0.6, T/T~= 0.9, (
= 5 && 10 . Note that the density at droplet center no ex-
ceeds n& jq 1 63ng The gas coexistence curve is n~~
= 0.453n .
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B. r, /4' )) 1 approximation

The principal assumption of the following anal-
ytic treatment is that the interface width, as given
by Eq. (6), is smaller than or comparable to the
droplet radius x, . To estimate when this is valid,
use Eqs. (9) and (31) to determine that critical
and stable droplets become equal in size at 7,
=36nx/iI', $ in the scaled units of Sec. IID, at a
supersaturation given by p(n, )"-p(n) = (2n', $x'/9n)' ~'.

Since n an and no=n„ it is clear that 36np /zzz]
~ 1 is required. Since («1 for all electron-hole
liquids studied to date, one is assured that this
assumption will be valid for s'ome range of temp-

Kd'n m(n'u') S

dx 2n
+ p(n) —, p, (n, )+ m pu.

This may be integrated to give

(34)

eratures bounded on one side by T, =l.
The assumed narrowness of the interface width

compared to h, means that: (i) Ã can be ignored
except in the interface region so that (24) and (25)
a,re valid outside this region, (ii) quantities such
as nu and f ompu are constant through the interface
region, and (iii) the (2K/r)(dn/dh) term can be
dropped in calculating the interface density and
velocity profile. Then the interface equation is
given by

dn ' "- 2 m(nu)' 1 1 zlz
K —dh=K dn — ——+ ——p(n)+p(n ) —n[ p, (h, ) —p, (n)] +n [ }z(r,) —p, (n )dy „K 2 n n, S + s + ] (35)

4z "+

where n is chosen to match on to a solution of (24). This condition on n requires that u cannot exceed
the sound velocity. Here p, (h, ) = Iz(n, ) = f ", mpu dh. Note that Eq. (35) is not identical to the corresponding
Eq. (5) for a plane interface in the 1/h -0 limit. Therefore, setting this integral equal to the surface ten-
sion for a plane interface is a rough approximation which is best for small (. Note further that approxi-
mation (iii) above can be removed by iteration.

Multiplying (17) by dn/dr and integrating according to the procedures used for obtaining Eqs. (29) and

(31), as given in Appendix Bl leads to the relation

2K "- dn 2 "s 1 1 d w.n2u2
p(n~) —p(nn) = — — dr+ ' dr

d'v 0 n„n~ A 2

r K dn ' K dn
(n —n )mpu +——

d

(36)

Here Iz(n, ) = p, (nD) and )z(n, ) = lz. (zz)+ f," n~pu. In the
rest of this section the consequences of Eq. (36)
will be discussed in detail for the p-0 limit. The
treatment of nonzero P is presented in Appendix

C, as discussed in Sec. III.
For P-O, nD=n, and the left-hand side of this

equation is positive for n&n . The right-hand side
is manifestly positive definite. The first term is
large at small r, . The second term again varies
as mh,'noz/18h'n. The third term is zero since
P -0 is assumed. The fourth term according to
(24) diverges as the droplet size grows large
enough for u to approach the sound velocity. The
fifth term is negligible for $«1. Hence, the right-
hand side is large at small x, and large x, and has
a positive minimum somewhere betw'een. Thus,

, a minimum supersaturation n,.„&n~ or S,„O is
required for the existence of droplets. Above this
minimum stationary solutions corresponding to
both critical (small h, ) and stable droplets (large
r,) are found.

as a function of supersaturation can be obtained by
the substitution for Eq. (36)

'll'I7 n
T) +

18
', ' + 5(h, 3rnc(n)/

S

(37)
where the last term is a 5 functionof the argument.
Here o is the T =0 K value of the surface tension,
and the surface tension at finite T is o(T) =m(T)
Clearly a(T)-0 as T- T, . The second term again
corresponds to an assumption that n does not dif-
fer appreciably from n (thiswillbe removedlater).
The third term corresponds to the fourth term in

(36) which limits the velocity to less than the sound
velocity c(n) = [(ndp, /dn)/m]'Z'. Solution of (37)
can be divided into two regimes depending on wheth-
er the minimum of the sum of the first two terms
corresponds to an y, less than or more than the
sound velocity limit.

In the first case, (37) is a cubic equation for r,
whose two positive solutions are expressed in

terms of

C. Approximate analysis for isolated droplet properties

Simple formulas for the minimum stable radius,
minimum supersaturation, and' droplet properties

cosp= —ax(3)no/2n)' ' [p(n, ) —p(n)] ' ', (38)

where m& Q & —,'7I'. Then the solutions for i., are
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[p(n2) —p(n)] cos —
1 cos —+-s )zQ( 0 3 3 3

Here the cos —,'(I& solution corresponds to stable
droplets (large z, ), and the cos(2'&+ —,'zz) to critical
droplets (small z.,). These solutions are equal at
a minimum supersaturation p(z, ) p(n) =n, —"(=-.-,) . (47)

For E « I the right-hand side of (46) is much less
than one, which is consistent with the initial
assumption that S«1.

The minimum supersaturation, S,„remains
less than one for T, & T & T* so that

p(&z„) —p(zz ) = (—', Ez'x zz„'/!z)'/'

and a minimum stable radius

(40)
Here T, is defined by $,„=1, and S,.„ is given
approximately by

r, = (18rzzx/nz()'/'. (41)
S,.„=2)'/'zx/3n c'+zz /2n, (48)

In conventional units these equations read

P(n, ) —P(n) =(3. Zzzc'!222-/2r'zz)'/' (4o')

r, = (18r'm zz/»zzn„')'/' . (41')

r2 = 3!zc/( !12 (42)

In the second case, in the scaled units defined by
Sec. IIC and c =c(kT,/»z)'/'2, the minimum radius
and minimum supersaturation are determined by

for T, » T» T*. In this region z,11:n =exp(-4„/kT)
for an ideal gas. Equation (48) should be compared
with the nucleation kinetics result (El). Note that

T, is comparable in both theories and, in the ideal
gas limit, depends on the same combination of
variables (1/2/n T'/'. EIowever, the detailed de-
pendence on temperature of the minimum stable
7, and minimum supersaturation S,.„are quite
different in the two theories.

Kith increasing supersaturation, according to
(38) and (39), critical droplets get smaller and
tend toward the v'-independent droplets of Sec.
II A. Stable droplets get larger and tend toward
the 0-independent droplets of Sec. III. The sound
velocity limit on stable droplet size is reached
at a supersaturation S =n, /2n, .

p(!z,) —p(n) = 2t' 2znz, /3!zc+ —,nc' (43)
D. Isolated droplet solutions near the spinodal line

Note that c&1 and in the ideal-gas limit p=T' '.
In conventional units these equations read

'Y~ = 37!Zc(12)/P22 (42 ')

and

p(zz2) —p(zz) = 2zzz/37!Zc + 2!»c~zz. (43 ')

(PZ/Znl/2 1/zxl/2/c2/2)(2)1/2 (44)

Define a temperature T* by where (41) and (42)
become equal, and assume the supersaturation
S =(n —!z,)/!z. is small. Then T* is defined by

1 d p,
tz(n) = /z(n )+- —— (zz —!z )'

2 dn2 S
n

set x, to the value determined by the sound veloc-
ity limit

(49)

As ~z approaches the spinodal line c tends toward
zero and (37) would predict that z, would go toward
zero. This conclusion is spurious and an artifact
of the approximation (37) to the more general equa-
tion (36). Equation (37) assumes that n does not
depart significantly from P.

To see what happens near the spinodal line, ex-
pand /z(n) about the spinodal

Then for T & T", Eqs. (40) and (41) are applicable,
and for T& T*, Eqs. (42) and (43) are applicable.
For T& T*

9~'n' 2m dn'
S

(50)

s = (3 t'z'x'!n, c'2n, )'/' (45)
and plug into (21). This gives

so that S a: exp(+ 4„/3kT) and 7;~ exp( 4„/3kT), —
where 4„is the work function of the infinite liquid.
At T=T*

p(zz, ) —p(n) = [tfz /'n, czx(—', )]'/'.

n —n, = ——', n, ——', —,'n,'+ —,
' n —n, ' ' '. (51)

As n-n„!z —,'n, , and one may show fro—m (50)
and (51) that z, increases monotonically as zz- n, .
The maximum isolated stable droplet size is then
approximately
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4np' d'@ I /

3@En dn S
0 fI S

As T-O, n, -0, and, consequently, so does x, '".
An argument against the stability of isolated

droplet solutions for n&n, is as follows. A linear
analysis of (14) and (15) shows that the frequency
of density fluctuations of wavelength I/O is

Inside the spinodal line dp, /dn is negative, and

fluctuations for 0 in the range -(Prn/rn)(dp/dn)
~ k' ~ —(1/K)(d p. /dn) grow exponentially with time.
For a scaled k defined by k = k(kT, /Kn, )'~' this is
equivalently Pr $/(nd—p/dn) s k' ~ —dp, /dn. Thus,
the smallness of ( implies that most of the spin-
odal region is unstable.

While isolated droplet solutions cannot be stable
for n inside the spinodal (unsta, ble) region, inter-
acting droplet solutions do exist. A "cell model"
for their properties is presented in Appendix D.
This model does not alter the conclusion that as
T-0 the droplet size must go toward zero. The
behavior of critical droplets as n approaches n,
is the same as in the theory of Cahn and Hil-

x,/8~ 2x'/n, 'c', which is a number around one.
Thus, at low temperatures the conditions for ap-
plication of the approximations of Sec. IVB to
critical droplets are invalid. Solutions for critical
droplets might presumably be obtained numerically
as in Sec. IVA. However, the effect of statistical
fluctuations is almost certain to make the prop-
erties of these solutions unimportant. Estimates
of the number of particles in a maximum critical
droplet are easily obtained using the parameters
listed in Table I. The critical droplets are so
small (X& 100) that they do not act as a barrier to
nucleation and decay.

The hydrodynamic model does not require an
assumption of an ideal-gas phase. Hence it con-
tinues to predict the existence and properties of
isolated stable droplets in the T& T, region. A gas
density n ~ $'~'n, '/3 xvis required for the assump-
tions of Sec. IVB to be valid and, probably, also
for stable droplets to have a reasonably long life-
time against statistical fluctuations. The hydro-
dynamic model also predicts a region of absolute
instability in the phase diagram for n greater than
the spinodal line n, . This prediction is incom-
patible with the low-temperature phase diagram
suggested by Combescot and Combescot. "

V. CONCLUSIONS

E. Statistical fluctuations and the low-temperature region T(To

Nucleation and decay rates could presumably be

derived within the context of the hydrodynamic
model by adding statistical fluctuations to the
equations. " While this calculation has not been
performed, let us assume that the conclusions are
similar to those of nucleation kinetics. " These
are that (a) the smaller the difference in size be-
tween critical and stable droplets the faster the
decay rate, (b) the smaller the critical droplet
size the faster the nucleation rate, and (c) for f'
& T, regions of excitation n can be found where
neither nucleation or decay rates are large so
that a metastable state can exist.

At T& T, the assumptions of the nucleation
kinetics model fail. First, the assumption of an
ideal-gas phase fails since, within the context of
the model, the conc entration of dimer s, trimers,
etc. , become comparable to those of monomers.
Second, the assumption of ascribing macroscopic
properties, such as surface tension, to critical
droplets fails since the droplets contain only a few
particles.

In the hydrodynamic model, at T& T, the ratio of
the maximum critical size to the interface
width according to (42) and (45) is bounded by

A hydrodynamic model has been presented for
condensation in systems ef finite-lifetime par-
ticles such as electrons and holes in semiconduc-
tors. It is a natural extension of the theories of
critical droplets and spinodal decomposition for
ordinary phase transitions developed by Cahn and
Hilliard. It is an alternative theory to nucleation
kinetics which has the advantages of incorporating
transport effects, of being applicable to nonideal-
gas phases, and of predicting rather than postu-
lating droplet properties. In particular, the cap-
illarity approximation used in nucleation kinetics
is a consequence of the hydrodynamic model for
critical droplets but is not correct for the stable
droplets which are unique to electron-hole con-
densation.

An approximate analysis of stationary-droplet
properties was presented which took advantage of
the smallness for real electron-hole liquids of a
dimensionless parameter $ upon which both hy-
drodynamics and nucleation kinetics depend. The
droplets ar e characterized by a velocity as well
as a density profile. The velocity is maximum
and the density a minimum just outside the droplet
surface, even for negligible scattering from im-
purities or phonons. This leads to qua, ntitative dif-
ferences between hydrodynamics and the capillarity'



approximation commonly used in nucleation kin-
etics. A fundamental limit on the droplet size is
imposed by a requirement that the velocity does
not exceed the sound velocity. The kinetic energy
contribution to the Gibbs free energy is quite sig-
nificant. However, stable droplets do not corre-
spond to extrema, of any kind of "generalized Gibbs
free energy" as they do in nucleation kinetics. The
internal properties of droplets such as density
and chemical potential are weakly dependent on
the supersaturation.

The hydrodynamic model is characterized by
temperature ranges where particular physical ef-
fects are dominant. For temperatures greater
than that where GPrn /n, = 1, where P is an inverse
scattering time, the scattering modifies droplet
properties substantially. For temperatur es less
than that defined by (44), the sound-velocity limit
determines the minimum supersaturation and min-
imum stable radius. For temperatures less than
T„defined by the minimal supersaturation being
equal. to one, significa, nt departures from equilib-
rium liquid-gas behavior must occur. This is well
established experimentally in Ge and also appears
to be valid in Si. It is remarkable that both nu-
cleation kinetics and hydrodynamics give similar
quantitative values for T„as presented in Table I.
In view of the approximations involved and the un-
certainties in data, the differences in the value of
T„between nucleation kinetics and hydrodynamics
are probably not significant. At temperatures
much less than T„both theories do not allow
sizeable stationary-droplet solutions. Neverthe-
less, spectroscopic evidence suggests that size-
able volumes of electron-hole liquid exist at tem-
peratures well below T,. Perhaps this can be ex-
plained in terms of time-dependent solutions of
the hydrodynamic equations.

Other novel features of the hydrodynamics are
connected with its applicability to nonideal gases.
First, the structure of critical and stable droplets
continues to persist up to the critical tempera, —

ture. Second, a region of absolute instability
termed the spinodal region exists, where isolated
stable-droplet solutions cannot be found. . This is
especially important since it rules out a time-in-
dependent droplet description of the liquid-'gas
configuration under uniform steady-state excita-
tion at extremely low temperature (T«T,).

This theory in its present form is capable of
making quantitative predictions with the same
parameters as nucleation kinetics for experimen-
tally accessible quantities such as droplet size,
thresholds, number density, chemical potential,
etc. Considerable improvement will come with
the development of equations of state for electron-
hole fluids in semiconductors.

APPENDIX A: PROPERTIES OF THE MODEL EQUATION

OF STATE

For the numerical calculations a model equation
of state was chosen. which contained the ess'ential
physics of a, first-order phase transition and the
advantage of numerical simplicity. In the scaled
variables of Eq. (18), it, is the modified Van der
Waa]. 's equa, tion

p = an'+ n(T+ nc)/(1 —An) .

The term nc is added to allow for a finite eorn-
pressibility of the liquid phase at T=O'K. In order
for T, = 1 and n, = 1, one must have a= (3b —0') ',
c = (1 —3b)/(36 —6'), and 5 & 3-. The chemical po-
tentia, l is

n T+nc c
p, = -2an+ T ln — + — ——In(1 bn) T.

1 —An 1 —bn 6

(A2)

At T = 0 the density of the liquid phase is 3.0 =n,
regardless of the ratio c/a. The chemical poten-
tial of the liquid phase at T=0 varies between
—3.37(c/a = 0) and —1.50(c/a= 1). This implies a.

corresponding density of the gas phase at T = O'K
e+~(ng ) j, T

The surface-tension integral, Eq. (21), may also
be evaluated ana. lytically. One finds that x, de-
fined in Sec. IIC, varies between 5.30 (for c/a-0)
and 2.4 (for c/a- 1).

The spinodal line n, is defined by dp(n, )/dn = 0,
and is illustrated in Fig. 1. At very low tempera-
tures where bn, «1, n, =7/'(2a —2c —2Th) and so
goes to zero as T-0. Clearly n, »n by orders of
magnitude except near the critical temperature.
Whether this large difference between n, and n, is
valid for a realistic system depends on the equa-
tion of state. For the figures the value A = 0.233
corresponding to c/a = 0.3 was chosen.

APPENDIX 8; DERIVATION OF SUM RULES

In this Appendix details of manipulations which
lead to the sum rules (26) and (36) are presented.
The starting point is

Kd 'n 2K dn mu'
, +——=' + p. (n) —g(n, )+ mPudr.

cf'Y 'V A. 'Y 2

Consider first the limit K-0. Because u(n) is a
triple-valued function. below the critical tempera-
ture, there can be three types of solutions: (a) in
the high-density metastable and stable regions
n, (r), u, (r); (b) in the unstable region n, (r), u, (r);
and (c) in the low-density metastable and stable
regions n„(r),u, (r). For stationary spherical
droplets, solutions of type (a) for r less than the
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I(r,) =- p(n, ) p(n) mPu, (r) dr

surface radius r, lmust be matched on to solutions
of type c for r &r,. These solutions may be ob-
tained by integrating (24) and (25) subject to the
boundary conditions n, (0),u, (0) =n„0 and

nq(~), uq(~) =n, 0. The r = 0 boundary colldl'tloll

uniquely specifies the solution of type {a). How-

ever, the r = ~ boundary condition does not specify
the solution of type (c). The type (c) solution must
be determined by the matching condition at r =r, .
This Appendix is concerned with determining the
matching condition and with deriving two relations
among the three parameters n„n, and r,.

Clearly, from (Bl), one relation must be given
by I{r,) = 0, where

-+ 2K

= mn, u, —+——P(n )+P(n).1
n- n+

(87)

To manipulate (87) into the required form add and
subtract ((((n,) —P(ng to the right-hand side, where
nD is in the low-density metastable region and de-
fined by il(n, ) = i1(ng. Further needed relations
are first

region from r, &r, to r &r, . Assume that nu and
f„"mPudr are approximately constant across the
surface region. Assume further that the left-hand
side of (Bl) is important only for r, &r &r It. may
be verified by numerical solution that these as-
sumptions are valid for r, /'u( ~ 1. Then using (84)
one finds

mPu, (r) dr
p(nb - I (n.) = , dn, r,') dp,' ' n, (r,)—"[n, (h,')], (83)

S
In order to use this. relation one must know which

type (c) solution is needed to complete the last in-
tegl'Rl ill (82). Suppose Rt R pR1'tlculR1' choice of
n„n, and r, the higher density and corresponding
velocity are n, =n, (r,) and u, = u, (r,). In the low

density metastable or stable region another den-
sity n (r,) and corresponding velocity u (r,) may be
defined as follows. First, the particle fluxes
across the surface are equal

n (r, )u (r,) =n, (r,)u, (r,) .

Second, (81) must be obeyed in the K- 0 limit

and a similar relation for P(n ) —p(nJ. Then the
right-hand side of (87) ls

Z,„,=p(n, ) —p(nD)+mn, u, ——+—

d"'.„,&v( 3 d '-, du( '.

))dr ' dn, dr dn

Take the derivative with respect to r,. Then

dJ,„, 1 1 d . . . , 1 dn 1 dn.——+— — (mn', u',)+ mn'u', —
2n n, dr, ' ' "' n'dr, n', dr,

+ il(n ) = il(n, ) — mPu, (r) dr
0

dn, dp,
)

dn dil(n ) (810)

PEA '+ p. (ng.
2

(84) From (84) one has

Taking n, (r,) =n (r,) and u, (r, ) =u (r,) completely
specifies a type (c) solution which may be con-
tinued to large r» r, . [Note that dn (r, )/dr,
edn, (r,)/dr and du (r,)/dr„wdu, (r,)/dr Rather, .
they are determined through (83) and (84) by
dn, /dr and du, /dr evaluated at r, .] These can be
used in (82) by noting that

dI(h, ) = -mPu, (r,)+ mPu (r,) .
drs .no n

dp, dn 2dn 1 d pl'n u„

dp dn, 2dn, 1 d &in,Q,—VlQ —n,mfa, .'dn, dr, 'dr, n, dr, 2

(812)

[Note that (811) and (812) are not symmetric with
respect to +,—interchange because dI(r, )/Ch, c 0.]
One also has from (83) that d(n'u')/dr, =d(n', u', )/
dr, . Combining (810)—(812), one has

I(h, ) = il(n. ) —i1(n)— mP[u, (ri) —u (r,')]dr,', —+— — '-' + n —n, mPu, .

which has the advantage that it may be evaluated
without specifying the type (c) solution.

A second relation may be obtained by multiplying
(81) by dn/Ch and integrating across the surface

Putting (84) and (813) together and approximating
the 1/r in the third term on the left hand side of
(84) by 1/r„one obtains
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(B14)

which is the same as (36).
Equations (B6) and (B14) are the essential re-

sults. Note that f(r, ) =0 and (B14) may be calcu-
lated in terms of type (a) solutions which are com-
pletely specified by the input values of v, and n.
These forms are advantageous because the type
(a) solutions are easily approximated for n, /n,
«1. Similar relations may also be derived in
terms of type (c) solutions, but they do not lend
themselves easily to approximation.

Then use (16) and differentiate again to obtain

47rr'n ——+ (n -n) =0. (C4)
1 d, ~p dn mP

4mr2 dr Br& dr

For an ideal gas ndp, /dn is independent of n. In
the spirit of being able to linearize about n we
take n(dp/dn) =

,n(d p—/dn) , even in nonideal-gas re-
gions. Then the solution of (C4) which approaches
6 at large r»r, is

APPENDEX C: EFFECT OF FRICTION COEFFICIENT

n - n = (A/r) e '";

X' =mP/andy. /dn .
(c6)

0= + p, (n) p. (n) — mPudr,
2

(cl)

where

In this Appendix, details of the analysis of the
effect of the friction term are presented. In prac-
tice, the coefficient P will be density and temper-
ature dependent. In addition, there will be other
dissipative terms such as viscosity. The analysis
here will therefore be, indicative of the effect of
dissipative terms, but in no way is it meant to be
quantitatively compared to experiment. Only the
stable droplets of Sec. III will be considered.

The starting point is then the equation for stable
droplets

Note that (C3) imposes a, definite relation between
u and n -n, i.e.,

u 1 Bp. 1—+A.n-n mP ~n, „-
(c6)

which will be important in the following.
Second, in the limit f„mPu negligible it is true

that for r& r„4nr'nu (4mr,'n u, where, again, n„
and u are the values of n and u at r slightly larger
than r, . Further, 4wr'nu stays near the upper limit
as r gets large. As an approximation this will be
taken as an equality until the f„mPu teim becomes
comparable to the —,mu2 term. Thus using (C2) and

(Cl) and n =n~

p, (n~) = p, (n ) + mpu dr, (c2) ( ) ( ))
mr,'n'u' Pmr', n u' 1 1

2r Ãg) BD r

and p, (no) = p. (n~). The key to the analysis is to
consider limits of (Cl) where either the first term
—,'mu' or the fourth term f„mPu is negligible. So-
lutions of this equation in these limits will then be
joined at an appropriate point for a complete de-
scription. Throughout the following treatment it
will be assumed that n, »n, that one can linearize
about F7 for r)r„and that n varies little from ~,
for r(r, .

First, in the'limit &mu2 negligible, begin by
differentiating (Cl) with respect to r to obtain

~p, d/z
mPu= ———.

~n dr
'

(r,/r*)' = —(6PrnD/n, )[(r,/r*) —1], (c6)

if n u =n,r,/3r. -

Now insist that at r* the two solutions match.
This requires that (C6) be satisfied, i.e. ,

rn 1 ~p 1—+X
3&n~r*'(n~ —n) mP &n -„r*

Equation (C9) is quadratic in 1/r* and may be
solved in standard fashion to give

(c7)

The two terms on the right-hand side of (C7) be-
come comparable at an r* defined by

1 3&(n~ n) 1 Bp, 1 8p, -' 4X 8p, r'n,
mP ~n -„mp &n -„mp &n -„37n~(n~-n)

~

(C10)
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where the plus sign is chosen since by (C2) nD& n.
Equations (C8), (C9), and (29) which yield

'vBn r
D 0

(C11)

are sufficient to determine n„nD, and r, in terms
of n.

From (C8) and (C11} it is clear that the key pa-
rameter is 6prnn/n, which is &@=—6prn, ln, At l. ow

temperatures or short lifetimes q «1 and it is
clear that the effect of the friction term is a small
perturbation. This satisfies the requirement for
applicability of the hydrodynamic theory that the
effect of the dissipative terms is negligible in low-
density regions of the phase diagram where parti-
cle interactions are weak. At high temperatures
or long lifetimes g» 1 and the friction term be-
comes extremely important.

I et us, therefore, consider solution of (C8)-
(C11) in these two limits. First, when q» 1 one has
from (C8) that r* = r, Then. from (C9) and (C11),
and assuming 1/r, » X, one finds

persaturation the assumption 1/r* «X is no longer
satisfied; but the appropriate result may again be
obtained from (C8) -(C11).

It is evident from this analysis that & =1 defines
a temperature T' separating two regimes of drop-
let behavior. For g«l and T& T', the droplet
size is limited only by a requirement that the ex-
ternal velocity not exceed the sound speed. For
p» 1 and T & 7.' the external velocity is a.lways
less than the sound speed and according to (C13}
for large n» n the droplet size is only a. weak
function of n. Evidence for a limiting droplet size
has been observed by Bagaev et al. ' and inter-
preted as being due to effects of a friction con-
stant. There is also an a,lternative explanation
for this behavior due to Keldysh" in terms of pho-
nons emitted during recombination within droplets.
Inclusion of these phonon effects would require an
extension of the present model. .

APPENDIX D: CELL MODEL FOR INTERACTING DROPLETS

[P(n ) -P(n, )j dP

nD n
(c12)

u' = 2(n n,)c'/nq, - (C14)

where c is the speed of sound. Hence, for g»1
the velocity is always much less than the speed of
sound, and r, decreases with increasing P.

Consider next the other limit g« l. Then from
(C8)

so that na, n, go to constants independent of p, &,

or m. One may show from (C12) that to a good ap-
proximation nD is only slightly less than n~ and n,
=n, . Then, from (C11) and (C12)

r,' = 3r(n —n~)n~ d p /dn
~
„Imn, P, - (c13)

and the velocity at the droplet surface is

In this Appendix it is shown how the hydrodynam-
ic model may be applied to high excitation rates
n/n» 1 and how the lim„„4vr'nu c0 pathology of
the P-0 limit of the hydrodynamic model is re-
moved. The approach is to describe interacting
droplets. The problem is to determine droplet
size r„gas phase density, and droplet density n0
as functions of the concentration of droplets N, ex-
citation level n, and temperature. It is assumed
that N is determined by the history of the excita-
tion process. "'

The mode'1 proposed is that each droplet may be
considered to occupy a spherical cell of volume
1/N= —mr'„hwer re, is the cell radius. If n, is
the density at the cell surface, n, &n, and u(r, ) =0,
one may derive as ip Sec. IV and Appendix B, that

(r,l~*)' = 6PvnD/n,
'

If I/r*«& from (C9) one obtains

3(na n)'nnd p/dn I-„—
2p'n~m

(C15)

(C16)

P(n.) -u(n, ) =

2K '- dn
+ drr, „dr

and

P(n,*) —P(n)
n~ -n = —12' 'np' —1+ 1+8, ',p,d„/d i

(C I I)

for r, below the sound velocity limit. Here p, (n~)
= p, (n,). This relation determines r, in terms of
n ~

The sole difference in the model from Sec. IV is
the behavior at r, & r & r, . One has

where nf is defined by P, (n,*)= i&(n). From (C16)
and (Cl t} it is clear that at sufficiently large
supersaturation, S=—n/n —1, the droplet size tends
to a value independent of P. At smaller super-
saturation the droplet size is reduced below its
size in the P-0 limit. For extremely small su-

0=-,'mu'+ p. (n) —p, (n, ) (D2)

and Eq. (16) determine the density profile in the
r&r, region. For an approximate analysis for the
relation of n, to n, and N, let n in the integrand of
(16) be equal to na for x&r, and n, for x&r, Then.
u(r, ) =0 gives
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n, =(R-~V&,)/(I-hl). R =R,e"+ (-', x$)'i '(I/xT), (E3')

Here V= —, Yt'r', . One must have ns~nc ~min which
restricts the range over which N and n can vary.
The variation of nucleation rates with n, may place
an even more restrictive limit on the variation of
N and F7.

It is possible that a cell model might also be
used for m, &n, . In this case the density increases
as one approaches the droplet surface. The con-
straint is that the cell size must be small enough
that long-wavelength spinodal instabilities of the
type described by Eq. (53) cannot occur. A stabil-
ity analysis, perhaps using the Biemann method of
characteristics, is required,

APPENDIX E: RELEVANT EQUATIONS OF NUCLEATION

KINETICS

The droplet growth equation is6 ~

+N ~ex~ ex 20

dt n, n, g R~n, kr 7 rrR~2n, '

x'e" = 2o/3k Tv,„n,,7, (E2)

n =n, e"+ 2o/xkr3~v. „, (E3)

x =2a/It„n, ,kT . ' (E4)

It is interesting to put these equations into the
scaled variables def1.ned ln Sec. II C. Then

where v,„=(kT/2xm)~i' and Ã equals ~ mRN3n, The
minimum supersaturation and minimum stable ra-,
dius are determined by dIt„/dt =0 and d/dN(dA„/dt)
=0. This gives

S „=-(R-R,)/R,

(8 x()1/4 (]/T3/4 y I/Tl/4)
1

8g

A temperature To defined by S,.„=1 can be deter-
mined from (E6) and is tabulated for various elec-
tron-hole liquids in Table I as discussed in Sec.
IID.

At lower temperatures x becomes large and ap-
proaches 3.5/T if C„/kT, =3.5. Thus, the mini-
mum density for the existence of droplets ap-
proaches a temperature-independent value.-.,„= (-; &)"'(I/3.5) . (Ev)

These equations are to be compared to Eqs. (45)
and (46) of the text. It is particularly remarkable
that 8 „=1 occurs at a temperature To comparable
to that predicted by hydrodynamics and that the
lower limit on n, „ is comparable to that of hydro-
dynamics.

It is also of interest to calculate the limiting
droplet size from (El). In scaled units this gives

«RT i 3/R g
i (2&) i («)

(E4')

The scaled equations can be used to make predic-
tions which can directly be compared with hydro-
dynamics in the region of ideal-gas behavior where
nucleation kinetics is applicable. High tempera-
tures may be defined by $'i'/R «l. In this limit

1/4 +~~ ~

miII ~( Tl j 4 &

and the supersaturation ls approximately

x2ex (8 &()1/2(I/Z'Si2R ) (E2') which differs by a factor (2x)'i' from (46).
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