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Stability and melting of simple ionic systems
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A melting criterion for binary ionic compounds is formulated in terms of an instability due to the overlap

between the larger ions (generally anions). This model provides a simple explanation of the linear behavior of
the ratio of the ionic radii versus the square root of the melting temperature observed for alkali halides and

pointed out here for the first time, It is then shown that the variation of the melting temperature with

pressure is mainly due to the change of the force constants between the ions and that covalent or
polarization effects are essential for the stability of binary superionic conductors like AgI.

Of the most familiar phase transitions, conden-
sation and melting, the former is much better
understood than the latter. ' This is due to a va-
riety of reasons, for example, the identification
of the order parameter. In the case of condensa-
tion, the density is the proper order parameter,
while for melting a more sophisticated concept
is required.

A theory of melting should start from the eval-
uation of the free energies for the solid and liquid
phases. There is no need to comment about the
difficulty of calculating the difference of the co-
hesive energies of the two states. ' The entropy
change shows a simple behavior for monoatomic
systems, ' but already for binary compounds the
situation is much more complicated. 4"

The alternative, although empirica1. , approach
is to define melting as arising from an instability
of the solid or the liquid, the prototype of these
theories going back. to Lindemann. ' These methods
are not directly connected to free-energy consid-
erations and are justified only if a specific mech-
anism dominates the process that therefore shows
regularities with respect to an appropriate vari-
able. Within such a spirit the phase diagram of
simple semiconductors has been studied a few
years ago, "while for ionic crystals regularities
have been pointed out with respect to their dielec-
tric properties. "

In this paper I formulate a microscopic criterion
of melting for binary ioniccompounds based on a
lattice instability due to the overlap between ions
of the same kind (anions). This criterion allows
for a simple interpretation of the linear behavior
(repor ted here for the first time) of the ratio of
the ionic radii versus the square root of the melt-
ing temperature observed for alkali halides. I
then discuss the pressure dependence of the melt-
ing temperature and derive general conditions for
the stability of binary ionic systems.

I start from a picture of an ionic solid based on
hard spheres with Coulomb potentials. A, is the

radius of the larger ion (generally the anion) and

P, the radius of the smaller. In order to be stable
a given packing of hard spheres has to satisfy
simple geometrical conditions. " For example,
a rocksalt structure is stable only if

II,/A, & I+V%

In fact for It, /R, & I+ &%the anions come into
mutual contact and the symmetric position for the
cation is not any more stable (see the upper cor-
ner of Fig. I).

Suppose a system for which condition (I) is sat-
isfied. At zero temperature the distance a (Fig. I)
between nearest anions xs

s =MID, —(2 —W)R, .
Equation (2) holds if the lattice constant is equal
to the sum of the radii. For real systems there
are, in general, small differences' that I do not
consider here. Increasing the temperature the
effective distance between anions decreases be-
cause of the thermal motion and at a given tem-
perature t:he anions come into effective contact.
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FIG. l. Ratio of Pauling's ionic radii vs the
square root of the melting temperature for compounds
with rocksajt structure. The values of Tz are from
Hef. 5 (for the compound RbI'R& refers to the cation
and R& to the anion).
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In analogy with the static case I conjecture that
this effective contact between anions a,iso deter-
mines an instability that manifests now with the
melting. The melting criterion is, therefore,

(3)

where 5R, and I,' are the displacements from
equilibrium of two neighboring anions and 7„
is the melting temperature. Defining q as an
effective force constant far the relative motion of
the anions, taking the high-temperature limit
(for alkali halides T„»ev) and using the equi-
partition principle

(4)

where K is the Boltzmann constant.
From Eqs. (2)-(4) the melting criterion can be

rewritten

R,/R, = vY/(2 —vF) —[1/R, (2 —W)) (KT„/q)'

(5)

For a fixed R, and assuming g to be a weak func-
tion of R„Eq. (7) predicts a linearly decreasing
behavior of R,/R, vs T„. The idea is that the
effect of R, is predominant and this is what the
model explicitly contains.

This qualitative behavior is remarkably mell
verified for the class of alkali halides (see Fig. 1

in which Pauling's radii" have been used). This
set of radii is used here just as an example. It
is important to remark that the linear behavior
is also present if a different set of radii is used
(for example, the Fumi and Tosi radii").

In order to also obtain quantitative agreement
I consider a more realistic model. The standard
ionic radii are in fact defined to reproduce the
distance between unlike ions. For like ions the
hard-core part of the potential also plays a major
role in determining the distance of closest approach'
and justifies, a hard-sphere approach. But, of
course, this distance cannot be directly given by
the standard ionic radii. This explains why no

anomaly is observed in Fig. 1 for those compounds
(lithium ha, lides) that have the anions in contact
with respect to the standard radii. ' To take into

account this difference we have to allow a certain
overlap 5 between the anions before the instability
occurs. It is convenient to write 5 in terms of a
fractional overlap 6, as 5 =6+2. g is then re-
placed by

(6)

By using Eqs. (3) and (4) the new relation is

(7)

T~ =&u (y& R, —PR, ) (8)

having defined

p=2 —~-5 (9)

Note that the quantity &u defined in (9) is propor-
tional to the effective frequency for the relative,
motion of two nearest anions. By deriving Eq.
(8) with respect to the pressure P one obtains

From the experimental data of Fig. 1 (in particular
the v"!ue R, /R, extrapolated for each line at
T~ =0 one can deduce 5p for the various classes of
compounds. These values, all about 0.4, are re-
ported in Table I. The reason for these large
values can be found in the very simple model
used. The inclusion of thermal expansion in the
model reduces in fact the value of 5p. To see this,
one has to add to the expression (6) for g* the
extra distance between two anions (at the melting
temperature) due to the thermal expansion. This
extra distance is Q$p )pppQ where ~ is the linear
expansion coefficient and )p is the equilibrium
distance between anions at zero temperature.
Using the value of A, of NaCl at room temperature
& = (1/1 )(sl/ a1') =40.5x10 ' 'K ' (this corresponds
to a lower limit for al, ) one 'obtains a more re-
alistic upper limit for the fractional overlap:
5p ~ 0.2S. A further reduction of 5p of about 10/~
is obtained by taking into account anharmonic
contributions also in the expression (4) (see Ap-
pendix).

It is interesting to look at the pressure depen-.

dence of T„as given by Eq. (7). To this purpose
it is convenient to rewrite Eq. (7)

TABLE I: Values of the fractional overlap 50 behveen larger ions at the melting temperature
for the various classes of compounds. The values are obtained analyzing the data of Fig. 1
through Eq. (7). These values are appreciably reduced by including the effects of thermal ex-
pansion and anharmonicity (see text).

Li compounds Na compounds K compounds Hb compounds

0.43 0.39 0.42 0.37
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(vYJI, —p R2)' + 2~ (WIt, —prf2)

{10)

TABLE II: Values of d7.'&/dP as given by Eq. (10) com-
pared to the experimental results. The value of NaCl is
taken as reference to fix the effective Gruneisen param-
eter y' = 2.9.

Analytical expressions are now needed for the
terms dR, /dP (i =1, 2), d6, /dP, and d+/dP ap-
pearing in Eq. (10). To this purpose note that
the compressibility C for alkali halides" can be
fitted rather well by the analytical expression

C= u(A', +82) =C, +C, ,

NaC1
NaBr
NaI

0.023 8
0.028 7
0.032 7

dT~/dI'
calc

0.023 8
0.0274
0.033 6

where u = 6.2x 10 ' atm ' (this value is obtained
from the data of NaCl) is a constant for all the
compounds and C, (i= 1, 2) represents the partial
compressibility of each ionic species. One can
then write

(12)

From Eq. (12) and remembering the definition of
5, (fractional overlap between anions) there re-
suIts

(13)

For the last term one has

d~ V d~ 1 dV
dy V dP

where y' is the Griineisen parameter corresponding
to the effective frequency ~. Since this frequency
mainly refers to the border zone modes y' it is
expected to be larger than the average Griineisen
parameter y." By making use of Eqs. (12) —(14)
and deducing the value of ~ from the slope of the lines
in Fig. 1 [using Eq. (7)] one can finally evaluate
the various terms of Eq. (10). For NaCl and

taking y' ~y = 1.6, " there results dT~/dp ~ 0.013
'K/atm. The experimental value is 0.0238.' The
difference can be easily due to the Griineisen
parameter used. I then fix the effective Griineisen
parameter y' to fit the pressure dependence of
one compound (NaC1) and compute the pressure
dependence of the others. This gives y' =2.9. The
corresponding results, reported in Table II, are
in good agreement with the experimental values.
The same analysis, performed for I indemann
criterion, would instead yield too large a dif-
ference (a factor of 2) between the value for NaI
a.nd that for NaCl.

In Eq. {10)the term with d~/dp gives the largest
contribution. This means that pressure stabilizes
an ionic solid mainly by increasing the force con-
stant q (and frequency ~). The changes of the
ionic radii produce only a small effect. This
would also be the case for Lindemann criterion.

Important implications can be obtained about
the stability of the so-called superionic con-
ductors. '6 It can be recalled that a superionie
conductor, for example, AgI, is a material in
which one ionic species (Ag) has a. liquidlike
motion in the host lattice provided by the other
ionic species (I). Now, according to this melting
criterion based on hard spheres with Coulomb
potentials, this s ituation is uns table (s ee the up-
per corner of Fig. 1). This implies that these
materials cannot be simply described in terms
of hard spheres but covalent or polarization ef-
fects are essential for- their stability, Other silver
compounds" that present a rocksalt liquid tran-
sition, .in fa,ct, do not behave like alkali halides
(see Fig. 1). Of special relevance, in this respect,
are the molecular dynamics calculations recently
reported by Schommers. " In his calculations, in

fact, it was not possible to obtain a stable binary
superionic conductor with interionic interactions
simply described by Born-Mayer potentials. " I et
me point out that the other hypothesis on which
the model was based can also be tested by mo-
lecular dynamics calculations.

With respect to other melting theories like
I indemann' and the law of corresponding states"
I ean say that, while they are more concerned
about the absolute value of the melting temper-
ature, my arguments mainly refer to the relative
melting temperatures of various compounds.

In summary, I conclude that (a) in simple ionic
solids (alkali halides) the melting instability is
dominated by the dynamics of the larger ion; (b)
the variation of 7'„with pressure is mainly due
to the. change of the force constants between ions
and not to the change of their radii; and (c) co-
valent or polarization effects are essential for
the stability of binary superionie conductors like
A gl.
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APPENDIX: ANHARMONIC CONTRIBUTIONS

The inclusion of anharmonic effects modifies
expression (4) to

where q' is a parameter responsible for the an-
harmonic terms. The melting relation (7) is
correspondingly modified and the slope at a given

gg ls now given bp

From Ref. 21 one can estimate the anharmonic
contributions to the mean-square displacement
to be of the order of 20/(- for NaCl at melting
temperature. This fixes the ratio q'/q. Then,
by fitting the slope (A2) and the position of the
theoretical expression to the observed line (Fig.
l) one obtains the new q and 6,. The inclusion of
these anharmonic contributions has the effect to
reduce the value of g, of about 10'~/&.
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