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Hall effect in finite specimens of arbitrary hfetime and trap content
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This paper presents a linearized Hall-effect theory, applicable to specimens of arbitrary size, carrier
concentration, lifetime, dielectric relaxation time, concentration of (single level) recombination centers, and
surface properties. Along the lines of Van Roosbroeck and Casey, the distinction is made between the
behavior of lifetime and relaxation semiconductors. By analogy with Popescu and Henisch, who dealt with

injection, the Hall effect also involves "lifetime regimes" and "relaxation regime, " depending on whether

carriers are augmented or depleted in certain regions. The present analysis, which avoids the a priori
assumption of space-charge neutrality, is one-dimensional and limited to small magnetic fields. The boundary
conditions at the Hall electrodes are assumed to depend on effective surface recombination velocities for
electrons and holes of arbitrary value. The results show that the corrective terms involving surface
properties and sample size can be of either sign and of magnitude comparable to the value, of the Hall

voltage calculated by conventional method. As expected, this is most important when the specimen
dimensions in the direction of the Hall field are of the same order as the ambipolar diffusion length. The
typical examples calculated include high-lifetime germanium.

I. INTRODUCTION

The analysis of problems involving the simul-
taneous transport of electrons and holes by drift
and diffusion is handicapped by the fact that the
transport equations defy explicit solution for the
general case. The choice has therefore to be
made between computer-derived numerical solu-
tions of the complete equations for particular
parameters and boundary conditions or else ex-
plicit solution of the equations with sufficient
ad koc assumptions (e g , bulk. n. eutrality, zero
recombination, freedom from traps, etc.) to per-
mit their solution. The former course is cumber-
some and excessively specific for many purposes;
the latter dangerous and often misleading, be-
cause the precise consequences of ad hoc assump-
tions cannot be easily foreseen. There are, how-
ever, instances where apparently innocent "simp-
lifying" assumptions distort the entire physical
picture. A third possibility has recently been ex-
plored, namely, explicit solutions of the equations
in linearized form, but without any other simplify-
ing assumptions. ' The significance of the results
is theri limited to the realm of low currents
("small signal theory") but the conclusions are
otherwise general.

In the ordinary way, Hall-effect theory treats
the specimen as infinite in the direction of the
Hall field. An equivalent simpLification is to as-
sume that the carrier concentrations are every-
where in equilibrium ('lifetime r, = 0). An altern-
ative simplification is to assume w, = ~.' Some
attempts are on record~' in which the 'presence
of surfaces (characterized by variable surface

recombination velocities) has been taken into ac-
count. However, none of the hitherto available
solutions has been free from arbitrary assump-
tions, e.g., concerning neutrality, recombination
conditions, dielectric relaxation time, etc. I,in-
earized transport theory, on the other hand, lends
itself very well to the analysis of this problem.
It can be shown that E„=E„,+ ~, where E» is
the Hall field calculated in the conventional way
(r, =0 or specimen assumed infinite) and r E a
correction term dependent on specimen size and
the nature of the surfaces and the prevailing re-
combination statistics. The results demonstrate
that &E can be comparable with E«and can even
exceed it in magnitude. Moreover, hE can be of
either sign, which means that geometrical, life-
time, and surface considerations can bring about
a highly misleading reversal of Hall polarity. A
series of concentration and field contours is pre-
sented, corresponding to cases of special interest,
some relating to materials of arbitrary parameters
and some to germanium and gallium arsenide.
The development of this "low-signal theory" is
analogous to the linearized treatment of minority-
carrier injection through a boundary, as previous-
ly discussed, "' along lines based on earlier
work by Pan Boosbroeck" and Casey. ' As far
as the concentration contours are concerned, here
too the consequences of finite specimen size can
be divided into lifetime and relaxation regimes.
But for the Hall voltage the corrective terms are
most important for the high-lifetime case. The
important parameter is the relative width of the
specimen (in the Hall-field direction) as com-
pared with the ambipolar diffusion length.

3926 1978 The American Physical Society



HALL EFFECT IN FINITE SPECIMENS OF ARBITRARY. . .

II. HALL EFFECT FOR FINITE SPECIMEN SIZE;

SMALL-SIGNAL THEORY

In the one-dimensional analysis which follows,
it has been assumed in the first instance that
trppping is absent, that the specimen is isotropic,
that the electron and hole concentrations are main-
tained by a bimolecular recombination mechanism
which permits a constant (excitation independent)
diffusion-length lifetime 7, to be defined, and that
the Hall mobilities and conductivity mobiliti, es
of the carriers are equal. Under the heading of
"small-signal theory, " the phenomena are further
assumed to be linear with magnetic fields. %e
concern ourselves only with the case of small
applied magnetic field, The standard transport
relationships for the steady state involve Poisson's
equation, hvo equations for the electron and hole
currents, and two continuity relationships. As- .

suming complete ionization of the impurities levels

SE„(z) q
ag

=—(p-p —n+n )8

8nj„(z)=qp, „nE„-qp2nBE„+p,„kT—
eg

J p(&) = q P pPE~+ q 4pPBE„-P p kT
S

en nP. n,P, — 8(nE„), en

bole have their usual meanings (see also Fig. 1).
Wry*ting-the departures from the equilibrium con-
centrations n, and p, as bn=e —e, and hp=p-p„
and neglecting the products which are of the sec-
ond order in the magnetic field, namely: ATE~,
hpEz, b,nB, and dpB and the product hnhp in the
recombination term, we obtain

H( ) q (gp g )'dg f.

d4~j„(z)= q p,n, Ez , —q p,
2 n, BE„+p,„kT

jp(&) =q&pPeEpl+qP pPpBE)) —PpkT
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~,4p+p, M dE~ p, „kTd'an

~,(n, +p,)

Equations (6) and (10), and equations (6) and (9)
give

d 6p g p~
dg' al T: arrl, r, (n +p )). .

+~n q P' qP' =0, (11)ekT kT pp7', (n, +p,)

p„kT 8 g
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SP nP —neP p e(PEn) 2 eP
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E„is the longitudinal electric field, 8 the magnetic
field, Es(z) the Hall field, and the remaining sym- .

0 +e 6'pe

))
' caT kT'g„v,(n. +p.))

+~p q '- q' =0. (12)fkT kT p„Tp(nq+p. )))

It will be seen that the last two equations (as a-
result of linearization) are independent of both
the. magnetic and longitudinal electric fields. The
total transverse current density j~„)must be
zero, which yields

q(p, „n,+ happ, )E„+qBE„(p2pp,—p, '„n,)

+AT jL~ —pp =0 . 13
dion dip

+6

~~ 0

This gives the Hall field E«,&, after solving Eqs.
(11) and (12) for n(z) and p(s) and the correspond-
ing gradients. These solutions are

FIG. 1. Schematic sketch of the sample, E„,gi', EH
are, respectively, the longitudinal electric fieM, the
magnetic field, arid the resultant Hall field.

+8(l —A„)axg, „~,),(~0De&
(14)
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A„=e/qp„7,(n, +p, ) =A,/b (16)

AP = @exp +C exp

'1/2

(~0 +g j

Q, C, R, and S are integration constants which
must be determined by reference to the boundary
conditions, and A.„and &~ are defined as follows:

but the contribution (if any) to the total Hall voltage
made by that "very small distance" is not included

in the considerations. Recombination on other
faces is neglected. These approximations are
id only for small departures from equilibrium,

..~., for, bp &p, and An&n„as already postulated.
It should be noted here that the case of symmetric
surface recombinahon dealt with in this paper
ensures antisymmetric solutions for iin(z) and

~p( ).
Neutrality over the Hall cross section is then

obtained

L, = [.uT/q'(n, +p, )]' i',
the Debye length, &= E Ep E. being the dielectric
constant, and

r +il

hP —hn dz=0,

leading to

(21)

D.=»(n.+p.)V.I,/q(i .n. + V,p.),
the ambipolar diffusion constant.

III. BOUNDARY CONDITIONS

(18) E„(a)=E„(a) . -

IV. SOLUTIONS

(22)

At the two surfaces a =+a, we have the effective
surface recombination velocities s„and s~. A

deeper analysis of surface recombination as such
would have to take account of the surface traps,
as well as any departures from neutrality at the
surface and in its immediate vicinity. However,
the concept used here is that of the "effective re-
combination velocity, " related to the excess con-
centrations and the current through Eqs. (19) and

(2o):

j (a) = qs hp(a) =qs„nn(a) = -j„(a), (19)

j~(-a) = -qs~Ap( a) = -qs„an(--a)= -j„(-a). (20)

This also means that Ln(a) and Ap(a) are here
the extra carrier concentrations notionally at
z =+a, but in fact just inside the surface by a very
small distance. This is the conventional approach,

Application of the above boundary conditions
shows at once that Q =-C and R = -S. %hen Q and
C are evaluated, we obtain

(
sinh[z/(v, D,)'~']

~ sinh[a/(v, D,)'~']

+P n n p p(1 —A„)s„—(1-A~)s~ sinh(z/Lv)
s„n,+ s~P, sinh(a/Lv)

(28)

(1 A sinh[z/(7, D,)'"]
" sinh[a/(7, D,)'~']

(1 —A„)s„—(1 —A~)s~ sinh(z/Lv)
PEg s„n,+ s~p, sinh(a/Lv)

(24)

Equation (13) gives the Hall field E„,

kT (1-A„)s„—(1-A~)s~ cosh(z/ID) p.,—p„cosh[z/(v, D,)' ']
q

" ' (s„n,+s~p, )Lv sinh(a/Lv) (p,„,np~+p, )(r D,)'D~ sinh[a/(7 DD,)'~z]. (25)

in which E~, is the standard Hall field, defined for the case of zero lifetime

E„,= [(p'„n,—p,'p, )/(p„n, ,+ ppp, )]&E„.
Taking the zero of potential at @=0 we also have V„(z)= —J;E„(z')dz', which gives

sinh(z/Lv) p~ —p, „sinh[z/(~, D,)'~']
sinh(a/Lv) p„n,+ g~ p;, sinh[a/(v, D,)' ~']( )

kT (1 —A„)s„—(1 A~)s~-
q

" ' (s n+s~p)

(2 6)

(27)

In these relations, C, is given by

(u.+ l,) i .V, .n.p( /. in+ V,p.)(1 —6I)

s„s&(n +p )/(s„n,+ s&p, ) +D/(&DD )~~2 coth a/(~, ,D, )'~' ' (28)
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with

LD (b+ p,)A„(b+p, )A~
7 D, (1+p,) (b+ bp, )

(29)

In the Appendix, we give details of the procedure
for the case with traps, but it can, of course, be
applied to the trap free case also. The following
comments refer to these equations: (i} The car-
rier concentration hn(z) and Ap(z) and the poten-
tial V»(z) are odd functions of z. The Hall field
E»(z) is an even function. (ii) The equations sug-
gest that there is a discontinuity for 8=1, but
this is not so, as numerator and denominator both
go to zero. (iii) It will be seen from Eqs. (23)
and (24) that in the region where the carriers are
expected to accumulate under the action of the
magnetic force, (z &0), hn and bp can in fact be
either positive or negative, depending on the val-
ues of 8, A„,A~, s„,and s~. There is therefore
an analogy between the present situation and the
case of minority carrier injection through a bound-
ary. ""' Here, for n-type material Ap&0, An&0is
analogous to a "lifetime regime, " and Ap & 0, An &0
to a "relaxa. tion regime" (see Fig. 2). It will be
seen from Eq. (23) that the condition A~= 1 together
with s„=0represent a boundary, for which Ap is

V. HALL VOLTAGE

We have

U» ——V»(a) V»(-a), (30}

where V„(a)and V„(-a)come from Eq. (27). The
effects here discussed can best be presented as the
ratio of the real Hall voltage V~ to the standard
Hall voltage U„,(for zero lifetime), namely

zero, irrespective of z and An. Correspondingly,
A„=1,and s~=0 is the boundary for A~=0, ir-
respective of z and Ap. Similar boundary con-
ditions can be devised for the case of minority
carrier injection through a boundary'. (iv) For
the special case where the surface densities are
equal ~n(a) = ~p(a), corresponding to s„/s~=s=1,
one can show that neutrality prevails everywhere
if i/, „/i/~= b= I leading to E„(z)=E« for any value
of z. Thus, s=b= 1, a very special case, is
equivalent to making the specimen infinite in the
z direction. (v) For a» (v, D,)'/' and Ls, the
consequences of the finite sample width are im-
portant only in the vicinity of z = +a. In these cases
simplifications can occur, as the terms involving
hyperbolic functions in Eqs. (23)-(25) and (27)
become, respectively, exp[(z —a) /(r, D)' /'] and

exp[(z —a)/LD].

10

[:QNj—
I:DP3—

I:QNl, kAPJ A= IO-4

2 2

V = -2ggE n

p, „-f2~+p, pp~

Thus,

U// I n p (i/, + i//, )(s, I// —s/ P,)

(31)

IO-4—

T=300K ~„=IO

P = IO-' b=lo-'
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S I}

= 4.7 x IO

Qg=

(y D )&/2 ( D )1/2
(32)
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FlG. 2. Concentration contours near the plane z=a~.
n-type semiconductor; ~ =10 cm", p =108 cm 3.
The three values of Q, 10 4, 1, 10~ correspond to life-
times of ~O-1.08 && 10, 1.08 && 10, and 1.08 &&10 8 sec
respectively.

The following conclusions arise from this equa-
tion.

(a) It will be clear by inspection, that the cor-
rection term is important when one is dealing with
material, for which the normal Hall effect is
small, by virtue of p, 2„n,—p, ~2P, =O. In particular,
this would be true for near-intrinsic materials
for which the mobility ratio happens to be close
to unity.

(b) The sign of the correction term depends on

(s„y~—s~p„). If s„p~—s~p„=0, and only then,
we have V~= V„„whichmeans that the finite size
of the semiconductor does not enter into the con-
siderations. This is not in conflict wi;th the state-
ment under (iv) above, since we are here con-
cerned with the field integral. Even when E„is



not everywhere equal to E„,(case corresponding
to s = b ~1) the integrals can be the same.

(c) For a large effect, the denominator in Eq.
(32) must be small. Of its two terms, the second
is the more sensitively variable; that term must
therefore be small. It is easy to show that [a/
(v, D,)'~'] coth[a/(r, D,)'~'] is always greater than
one and its smallest value is in fact unity. For
that term to be close to unity, it is necessary
that the length a be smaller than or of the same
order as (~,D,)'~', i.e., the width of the sample
in the direction of the Hall field should be com-
parable with the ambipolar diffusion length. To
obtain this with a sample of convenient operational
size, the diffusion length lifetime should be high.
(Alternatively, the carrier mobilities should have
high va, lues. )

(d) It will be shown in the Appendix, that trapping
considerations do not change the Hall voltage V„,
everything else being equal. Concentrations and
field contours are modified, but not the integral
between z = -a and z =+ a of the Hall field V„.

VI. NORMALIZATION

The compl exi ty of the above equations make s it
desirable to use them in normalized form. Nor-

qV z qLD
kT ' I ' kTD

LJ= B =By,
~ bT(n, +p,) '-

(33)

s„pI~n,
p, ~ ST

(n, +p,)

s„S„
sp Sp

Quantities whose real values are represented by
lower case letters are given in their normalized
form either as capitals, or else with the sub-
script N. With these the equations become(see
Appendix):

malized versions are presented below, covering
in fact the more general case of a material with
a single set of recombination centers. They cor-
respond to the above equations by putting the nor-
malized recombination center density M, (=N, /n, )
equal to zero. The symbols are defined as fol-
lows:

sinh(8'~'Z) [(1+p -A~) —(1+ n -A„)s] sinh(q'~'Z)
sinh(8'~'aN) ' P, + s i sn(qh'~'a )N

(34)

sinh(8'~'Z) [(1+P -A, ) —(1+ n -A„)s] sinh(q'~2Z)
" sinh(8' 2a„) P, + s sinh(rp~'aN) - ' (36)

,i, (1+ p) —b(1+ n) cosh(8'i'Z)», (1+ p-A, ) —(1+n-A„)s cosh(q'i'Z)
b+ P, sinh(8'~'aN) P, + s sinh(q'~'aN) - ' (36)

I

(1+ p) —b(1+ n) sinh(8'~'Z) (1+ p-A~) —(1+ n -A„)s sinh(8'~'Z) ~

b+P sinh(8'&'g ) P + s sinh(q'&2g )
(37)

V„N [P,(l+b)(s —b)]/[(P, +s)(b' —P,)]
V a (1+P,)(b+P,)S„/b(P +s)+a 8'~2coth(8'~2a )

(38)

(b P,)-
NON N XN (b+p) (39)

being the normalized Hall field, for zero lifetime material, and (see Appendix for-the definition of the traps
parameter N„p„~)

r/(1+N, ) P,/(P, +P~) 1+P+P,(l+n)
01+N~+v(p, +P~)' I+N, +~(P,+P,)

' 1+P,

P,(l+ b)/(q-8)(1+P, )" [(1+P,)(b+ P,)/b][S„/(P,+ s)]+8' ' coth(8' 'aN)

(40)
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yII. COMMENTS

A. Zero lifetime limit

%hen 7'0-0, the three quantities 8, A.„,A.~-~.
It can be easily shown that Eq. (36) then gives

E H~(g) Eso~+ const/8

and so EH~=@Ho~ and Vz~= Vzo~. e obtain thus
the well known relationship (39) corresponding to
a zero lifetime semiconductor. Carrier equilibri-
um prevails everywhere (bA = bP =0).

lo

CANl-
CAP3-

IO '—

/. . /
I / / I

T = 500 K += 2 x IQ
"

Pe= I b =2
s - 0,5 BNExN- IQ

Sz = 3.8 x IO 4

o~ = 5000
Mo=O

~CQN3, MP3
'/

I:-EH3

lo-'
- EEH3

IQ

B. Infinite lifetime limit

If 7', -~, then 8, A„,A~-0. In practice this
case implies M, =O, i.e., q= 1, n=P=0 [cf. Eqs.
(40)], and S„=S~-0.Using appropriate asymptotic
limits for the hyperbolic functions, we obtain via
Eq. (36),

E„„=B„E [(h —P,)/(I+P, )], (41)

or in ugnormalized form:

E„=BE„[(p,„n,—p ~P,)/(n, +P,)]
This equation w'as first derived (using a, different
method) by Fowler. '

VIII. RESULTS AND DISCUSSION

A number of cases have been quantitatively eval-
uated for illustrative purposes: Figure 2 shows
the variation of the carrier densities as a function
of Z, close to Z=a„,when the parameter 8 is
varied between 10 ~ and 10'. The three values
correspond to lifetimes of 1.08 x 10 ', 1.08 & 10 6,

and 1.08 && 10~ sec, respectively. The Debye
length is 1.19 && 10 ' cm, and the surface recom-
bination is assumed to be very low. The semi-
conductor is n-type, ~ and ~ are even functions
of Z [cf. Eqs. (34) and (35)]. It will be seen that
6=10 ~ corresponds to a lifetime regime; ~ and~ are nearly equal right to the boundary Z=a„.-
Nevertheless (though this cannot be seen on Fig.
2), the corrective term ~—~ is here more
important in influencing the Hall voltage than it
is for the other cases, characterized by much
smaller concentration increments. Conversely,
for 8= 10', i.e., low carrier lifetimes, we have
a relaxation regime, i.e., majority carrier de-
pletion. This occurs everywhere in the bulk, ex-
cept in the immediate surface region wheie the
boundary conditions demand ~(a) = ~(a). The
carrier concentrations are governed by "zero
recombination, " i.e., P,Mf+1V,~=0, and this
is again analogous to the injection of minority
carriers into a relaxation semiconductor. '"'

Figures 3-6 correspond to intrinsic germanium
of high lifetime. %e have 6=2x10 ' in all cases,

/I: Eqo3
IQ /, /

. I:EH3

—IO-'

IO-~
0 l00

I I

2980 2990
IO-'

3000

FIG. 3. Concentration and field contours near the
plane Z=az. Intrinsic high lifetime germanium; dif-
fusion length lifetime To ——380 psec; ambipolar diffusion
length (7 0&, )' =0.154 cm, s& &s„.

with a lifetime of w, =380 Jj.sec. The Debye length
is 1.~= 6.9& 10 ' cm and the ambipolar diffusion
length (~, D,)'~'=0.154 cm. The sample width in
the z direction, 2a = 0.415 cm, is of the same order
as the ambipolar diffusion length, to illustrate the,

[:QN3
(&P3

lo— IO-'

IO-'—

T=300 K +=2 xlo ~

Pe= I b=2
s -5 BNExN- lO

5 f)
= 5.8 x 10

aq = 5000
Mo= 0 ~I:~P1,l:«l

/

IO

lo

Shallow Hall Field mi

$E„o3
IO / IO

lo I /, II
IQQ'

I I I I
-5

2980 2990 3000

I IG. 4. Concentration and field contours near the
plane g =a&. Intrinsic high lifetime germanium; 7 0
=380 @sec (7-Q } ~ =0.154 cm, s& &s„.Inset: Schema-
tic carrier concentration showing a crossover corres-
ponding to a pall-field 1& minimum.
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FIG ' Concentration and field contours near thee3,

i hplane &=aN. Intrinsic compensated germanium; hig
lifetime. Single level of recombination centers below
the Fermi level, Nt ——2.4 & 10 cm . q.

p
— p.'4 - ' = 380 sec

(~ ~, )
'~ = 0.154 cm, sp &s„.

10-
L 6Nl-
LQP3
I ~Q,j

/ I I

T =300K A, = 2 x lo ~

P =I b=2e
0.5 BNExN IO 4

S„=3.8 x 10 4

aN = 3000
Pt =O. l N(=10

Ma= IO

I

—IO

LEHj

IO-'—
/-~'
/-i'
/i'
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Q 100 2980
10

2990
Z
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FIG. 6. Concentration and field contours near the
plane g =aN. Intrinsic compensated germanium, high
lifetime. Single level of recombination centers above
the Fermi level, +t —-2.4 &&10 cm 3. T p-—380 @sec,
( pD ) ~2=-0154 c, )

importance of the correction effects in that situa-
tion.

Figures 3 and 4 relate to a case without traps,
for varying ratios of the surface recombination

l 't' The effective surface recombination
velocities themselves are a.ssumed to be ig;h h.

„=5OO '( f. F g.
3) but entirely plausible, e.g. , for grounded Ge
surfa. ces. In thxs case, UHN, UHoN

— .7,.74 with

Vzo„=—0.8 as evaluated using Eq. (38). This
give s UH = -15 mV. The measured Hall voltage
is thus about 74% of the value which would cor-
respond to zero lifetime. Figure 3 shows the
carrier concentrations and the field contour. It
will be seen that a field inversion occurs within
a few Debye lengths of the surface. Nevertheless,
the contribution which the immediate surface
region makes to the field integral (the Hall vol-
tage) is by no means negligible.

Figure 4 represents essentially the same case,
but with the ratio of surface recombination vel-
ocities reversed: s„=500 cm sec ', s~ = 0= 100
cm sec '. For the measured Hall voltage, this
situation yields U„„/V„0„=1.24, and the same
value of U o= —15 mV. Comparison with Fig. 3HO

shows that close to the surface the relative mag-
nitudes of ~' and ~ are now reversed. Over
most of the specimen ~ is nearly equal to ~,
but actually greater, to an extent which cannot
be seen on the scale of the representation in Fig.
4. The insert shows this situation schematically.
There is a crossover in the concentration con-
tours, corresponding to a field minimum.

Figures 5 and 6 deal also with a case similar
to that in Fig. 3, except that traps are now en-
visaged, in Fig. 5 below the Fermi level, in Fig.
6, above. Trap density: R, =2.4 x 10'~ cm~. The
quantities 2V P and & which characterize the1p

10traps according to the Shockley-Bead model,
are further discussed in the Appendix. An ad-
equate concentration of donor or acceptor levels
is assumed to be present, so as to keep the mater-
ial intrinsic. The concentration contours are now
no longer coincident in the bulk, because quasi-
neutrality is maintained through ~g„the charge
in traps. As between Figs. 5 and 6, the r'elative
magnitudes of ~ and ~ are again reversed.
When the recombination centers are located be-
low the Fermi level, they fill preferentially with
holes AQ, &0 (see Fig. 5). The reverse situation
prevails when the recombination center is above
the Fermi level. It is important to note that, in
both cases, the measured Hall voltage would be

UHN ' UHON &

i.e., equal to the value without traps (Fig. 3). This
reflects the properties of Eq. (32) or (38).

Figure 7 corresponds to the case of intrinsic
gallium arsenide, for a sample width 2a =0.84
cm in the z direction. The Debye length is here
I ~ =8.4 && 10 ' cm. This means that the specimen
is only a few Debye lengths wide, instead of thou-
sands as above. The value of 8 has been chosen
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to be 10', corresponding to a lifetime of H. b JLl, sec.
The two surface recombination velocities are
s~ = 1000 cm sec ' and s„=500 cm see '. The cal-
culated value of Va„/Vzo„——0.99 for these para-
meters. IV«=0.51 Vt. The correction term is
therefore very weak. This is so because the low
lifetime makes the ambipolar diffusion length
small and, in this case, much smaller than the
specimen dimensions. It will be seen that biV

and ~I' are nevertheless highly nonuniform. The
relative magnitudes of ~N and 4P are again governed
by the "zero net recombination" condition, i.e., I',DN

+N,~ = 0, that is, ~= -~- for an intrinsic sam-
ple. Near the boundary the conditions for surface
recombination, Eqs. (19) and (20), lead to a re-
versal of sign for b2'. Figure 8 will serve as a
schematic summary of these relationships, in
terms of V„„/V«~.This ratio is. plotted as a
function of a„8'~'=a/(v, D,)'~' for several values
of s and b. As discussed in connection with Eq.
(32) or (38), a/(v, D,)' ' is the important quantity

here. We have seen that for very low lifetime
(high value of a/(7', D,)'~'), V„„=V«~. Th. is is as
expected, because the real width of the sample is
then much greater than the ambipolar diffusion
length. The correction terms become unimpor-
tant. On the other hand, when the lifetime is high,
the correction terms, which may be positive or
negative, are high also. As an example: for
n, =p, =v && 10' cm, T= 300 K, z„=10, I ~ is

IOG

O
C5

o 10—
u,

cu

Z
CI

10 ' —,
s=0.5 s=l

b=2
s=3

10-3 '
I I ~ I I I I I

-1.8 -I V„/V„o I 12

FIG. 8. The ratio VH&/VHoz as a function of ~zQ /

=&j(T pD& ), for several values of the parameters s
and b. b = 2; s = 3, 1, 0.5; VHO&= —4 x10, i.e., V&o
=-10 mV. b=l.l; s=0.5; Vaox 4 1 ~ ~ VHo
= —1 mV.

IV. CONCLUSIONS

equal to 10~ cm. For IU, ~=2000 era'V"'sec"', b=2,
a~=20; a„8''=1 corresponds to w, =590 p, sec and

(r, D,)' '=2 x10 ' cm and a„8''=100 to ~, =5.9
x10~ sec and (v, D,)' '=2x 10 ' cm. For the
curve on Fig. 8 which relates to b = 1.1 and s =0.5,
(other parameters constant), the measured Hall
effect should reverse when the lifetime goes up
from a few tenths of a microsecond to a few hun-
dred microseconds. The measured Hall voltage
V„~as such is then low (V» = -1 mV) but the
corrective factor is substantial, and the total
result highly misleadi:ng.

Io-'

+= IO

1.2
ExN =O. I

IP-I

10-4 IO 2

0
Z

FIG. 7. Concentration arid field contours along an
intrinsic Qa-As sample, & p

= 3.6 p sec, (7-
p D, )

' '
=8.4 x10 3 cm, s„&s&.

The results show that, as one would expect,
the corrective terms arising from finite speci-
men. size and surface properties are important
when the specimen dimensions in the direction
of the Hall field are comparable to the ambi-
polar diffusion length. In the ordinary way, this
could be so only in high lifetime materials and
this is as far as the present model goes. How-
ever, the ultimate range of the theory may be
wider. Thus it is 'conceivable that the n-type Hall
effect observed in high resistivity glasses ' (which
are otherwise p-type conducting) might also be
interpreted along the present lines. This does
not follow immediately from the above, because
the model, in its present state, does not distin-
guish between recombination centers and trapping
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centers. However, such a distinction could be
introduced and corresponds, indeed, to observa-
tional necessities. Its consequences cannot be
intuitively predicted with high reliability, but a
more elaborate model which includes trapping as
well as recombination will also multiply the cir-
cumstances under which Hall effect reversals
can occur.
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d'~ P,A„+1+ P A.„—1 —n
dZ2 1+P, 1+P,

In a sxmxlar way

(4f)

d LP Aq —1 —P Ap+P + nP,
dZ' 1+Pe e —

1+
(48)

These two differential equations are readily solved
by differentiating equation (48) twice, and using
Eq. (47). We obtain:

in which the space charge arising from nonequil-
ibrium occupation of the recombination centers
is given by

(48)

with cr and P given by Eq. (40)

APPENDIX: SMALL SIGNAL THEORY IN THE PRESENCE
OF A SINGLE MONOVALENT RECOMBINATION I.EVEL

d4AP d2~
&Z,

——(q+8), +q8~=0.
dZ- (49)

The presence of a recombination center mod-
ifies the transport equations through the recom-
bination term and Poisson's equation. For Shock-
ley-Bead recombination, "the recombination rate
is of the form:

In the above, use has also been made of relations
(29) and (40). A similar expression involving ~
can be obtained along the same lines. The solu-
tions a.re

ft =(np n, p,)/[v„,(p-+p, )+ v~, (n+n, )],
where r„„r~„v=r„,/v~„n„andp, have their
usual meaning according to this model. The as-
sumption of a fixed hn/&P ratio through the oper-
ation of constant carrier lifetimes'2 is here avoid-
ed. Within the limitations of a "small signal the-
ory" Eq. (42) reduces to

B= (nnp, + ap n,)/~, (n, +p,),
with

nP =Q exp(q' 'Z)+C exp( rp 'Z)-
+ R(1+ P —A~) exp(Q' ~'Z)

+ S(l+ P -A~) exp(-8'~'Z),

du%=- —exp('g Z) ——exp(-q Z)Q x]'2 C jj2
Pe Pe

+R(l+ o -A„)exp(8'~'Z)

+ S(1+n, -A„)exp(-8" ~'Z) .

(50)

7', (n, +p,) =7~,[(n, +n, )+ r(p, +p,)]. (44)

Equation (44) relates the value of 7;: "diffusion
length lifetime" defined by Van Hoosbroeck' to
the trap parameters. Following the lines dis-
cussed previously"' and using the normalization
relations defined by Eq. (33) it can be shown that
Poisson's equation becomes

The total transverse current density j (Z) must
be zero, leading to the Hall field E„„(Z):

( )
1 (d~ d~

e

(82)

flN(Z) (~ ~+ gq )dZ 1+P,
Using boundary conditions similar to Eqs. (19)
and (20), Eqs. (34)-(38) in the text are obtained.
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