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This paper presents several new considerations concerning angle-resolved x-ray photoemission. Phonon-

assisted processes are explicitly considered; it is found that even when such processes dominate direct

transitions, agreement between theoretical predictions and experiment is obtained only if the final states are

treated as Bloch-like and highly mixed. The use of augmented-plane-wave final states and a proper statistical

treatment of the x-ray photon field is outlined, for copper and found to yield nearly quantitative agreement

with experimental results. The relationship between this and older plane-wave model calculations is discussed

in detail, as is the physical significance of the new results.

I. INTRODUCTION

Recently, a great deal of research and contro-
versy has centered about angle-resolved x-ray-
photoemission-spectra (ARXPS) measurements of
the valence-band spectra of the noble metals. Fol-
lowing the initial observation by Baird et al. ' that
the ARXPS of the gold valence bands showed dis-
tinctly different shapes depending upon the direc-
tion of photoelectron propagation, two conflicting
theories were proposed. Baird, Wagner, and Fad-
ley argued that the anisotropies arise from the
severe constraints of wave-vector conservation
with the matrix elements for the photoionization
process contributing negligibly to the anisotropy.
The alternative theory was given by McFeely et
al. ,"who argued that plane-wave mixing in the final
states made wave-vector conservation unimportant
in determing the shape of the spectra. They argued
instead that the dipole matrix elements for the
photoionization process exhibited angular anisot-
ropies and calculated these anisotropies based
upon the assumption of plane-wave final states.
In particular, they noted that in spectra collected
from photoelectrons propagating along (ill) axes,
only the t~-type d-band states had nonzero matrix
elements; for spectra obtained along {I00)axes,
only e, character was active. It was therefore as-
serted by the authors that these experiments pro-
vided a direct measure of the t~ and e projections
of the d'-band density of states. Wehner et al. '
compared the two theories for the case of the
Cu(001) surface and found that the plane-wave
matrix-element model of McFeely et al. gave ex-
cellent agreement with experiments for five out
of six spectra. Relatively poor agreement was
obtained for the [001]propagation direction, which
we shall see was both significant and systematic.

It has recently been demonstrated, both theoreti-
cally and experimentally, that due to thermal dis-

order the number of direct wave-vector-conserv-
ing transitions in these spectra is negligible.
Thus, the angle dependence of the dipole matrix
elements must be responsible for the spectral
variations.

For these effects to be spectroscopically useful
(as opposed to nuisances precluding straight-
forward spectral analysis), it is necessary that
a model be developed that explains the spectra
quantitatively and in detail. In this paper we pre-
sent calculations which accomplish this task.
These calculations show that none of the angle-
resolved spectra of the noble metals hitherto re-
ported in the literature represents a pure t~ or
e partial density of states, and that a good deal
of the apparent success of the original plane-wave
model applied to Cu by Wehner et al. and Apai et
al. 4 is due to cancellation of errors. We also
demonstrate the importance of the explicit in-
clusion of the photon polarization effects in order
to explain the details of the spectra.

In Sec. II, we describe the theoretical basis of
our calculations. These calculations are then
compared with experiment and with the earlier
plane-wave cal.culations in Sec. III. General con-
clusions concerning these methods are given in
See. IV.

II. THEORETICAL DISCUSSION

A. Role of phonnns and the final-state manifold

As has been pointed out by Shevchik"' and indi-
cated in experiments by Williams et al. ,

' the as-
sumption of a direct-transition model in the x-ray-
photoemission-spectra (XPS) regime is generally
invalid. A simple Debye treatment of the oscilla-
tion of Cu atoms about their equilibrium positions
reveals that for a photon energy of 1487 eV, rough-
ly 9~% of all. transitions fail to co'nserve momen-
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turn. A thoroughgoing atomic-scale treatment of
vibrations in solids shows that such transitions
may be considered as phonon-assisted processes.
We begin therefore by exploring the nature of such
processes; for simplicity, only one-phonon pro-
cesses will be considered for the rnornent.

Indirect transitions can be considered as two-
step processes. Consequently, second-order
time-dependent perturbation theory, which ex-
plicitly connects initial and final states through
virtual intermediate levels, is appropriate. We
may write the perturbing Hamiltonian for the

coupled photon-phonon system

H'(r, t) = p 4 (r)(e' '+ e '"')

+ 2 V'(~)(e'"~'+ e '"&'),

where &u and A"(r) characterize the photon ab-
sorption, and V'(r) and &u, characterize the phonon
scattering. Following methods given, for example,
by Wooten, ' we get the result for the transition
rate between initial state IO) and final state If)
that

The first term in the brackets corresponds to an
"off-resonance" photoabsorption from

I
0) to an

intermediate state Ii) followed by phonon scatter-
ing from Ii) into the final state; an equivalent
process corresponding to the second term is the
photoabsorption from a second "intermediate"
state Ii') to

I
f), followed by scattering of the

hole at li') back to I0).
Due to the high photon energies and angular reso-

lution involved in the ARXPS experiment, the
formidable form Eq. (2) is considerably simpli-
fied. Equation (2) shows that an accurate pre-
diction of spectral angular dependence depends
on accurate photon matrix elements, which in
turn entails the use of correct final-state wave
functions. A good, first choice for this purpose
would be a superposition of augmented plane
waves (APW's); these functions adequately rep-
resent the wave function in the atomic cores which
dominate the photoexcitation step. Thus,

portant to
I f), variations in IG I

are unimportant;
these constraints enable one to calculate the re-
quired photon matrix element using a very small
set of G's, and this element will depend only upon
the direction of propagation and the relative avail-
ability of the final state as manifested in the co-
efficient a-(k).

We now must consider the nature of the final
states described by Eq. (3). This is a result of
the factors (&E) ' in the transition rate (2), which
could lead to appreciable sensitivity of the spec-
trum to the density of final states. We consider
as illustration the consequences of Eq. (2) under
two previous models which had some success in
explaining angle-resolved x-ray photoemission
spectra.

Baird, Wagner, and Fadley' proposed a final-
state manifold which is completely free-electron-
like in nature. This constraint coupled with that
of restricting transitions to be energy conserving
and "direct" allows transitions from only a small
"disk" of states in the first Brillouin zone (BZ),
the location of this disk, as a function of photo-
electron propagation direction being the determi-
nant of the spectral angular dependence.

One might suppose that the coupling of phonon
and electron momenta would automatically scram-
ble the sampling of k states and allow transition
from the entire first BZ to a given final state.
Nonetheless, nondirect transitions would be
strongly suppressed to a degree leaving the disk
model intact. In the XPS experiment, a typical
value of

I
G

I
is -12(2v/a) and the resulting change

in energy across a band is (13' —ll') (2v/a)'=50
Ry. The factors (AE) ' in Eq. (2) consequently
suppress transitions other than those very nearly
vertical (i.e. , nearly direct), and one would be
left with Brillouin-zone selective photoemission
due to a resonance enhancement. This result
is not paradoxical in relation to Shevchik's in that
his result indicated the fraction of direct and in-
direct transitions involved, and said nothing of
how "nonvertical" transitions must be.

The second term of Eq. (2) involving phonon
scattering from I0) to Ii') and photoabsorption
from Ii') to

I f) does not alter this conclusion.
Since the phonon-scattering process is isoergic
to within a few meV, an indirect process occurs
only if IO) and Ii') are degenerate. Therefore,

If) = Q & o(") I
AP W(k+ G) ) . (3) the disk of states giving BZ selective photoemis-

sion can be mapped into a new set of states
I
0)

which give rise to spectral features identical to
This function describes a set of partial waves,
each propagating in the direction k+ G. Of these,
the angular resolution of our experiments selects
only one partial-wave component (and those paral-
lel to it). Moreover, within the range of G's im-

those of the Ii') disk. Therefore, the constraints
of energy conservation and free-electron disper-
sion relation alone are sufficient to generate disk-
model effects. 'The difficulties encountered in
predicting angular dependences have been docu-
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mented by Wehner et al. ,
' and suggest that the

free-electron curve yields a seriously inaccurate
final density of states.

We adopt then a viewpoint similar to that of
McFeely et a/. ' These authors argue that the
crystal potential strongly mixes partial waves of
nearly the same direction. This destroys any
simple energy-photoelectron-momentum relation
and so gives rise to sampling throughout the first
BZ. The theoretical grounds discussed by the
original authors, and the more recent evidence
of the failure of the disk model forms the basis
for our adoption of this viewpoint.

Our approach to the high-energy photoemission
process may then be termed a "statistical" one.
Based on simpl. e models of the phonon-electron
interaction, ' we assume the phonon matrix ele-
ments V~« to be isotropic and of equal magnitude
at the energies involved; their role is to permit
transitions from any point in the first BZ to any
given final momentum. The high density of states
resulting from partial-wave mixing- moreover al-
lows us to assume that all transitions have an
equal likelihood of being "on-resonance" and of
propagating in a detectable direction. The prob-
lem of calculating the transition rate to a given
energy and momentum then reduces to a, calcula-
tion of a photon matrix element between valence-
band states and an "average" final-state wave
function. As was seen above, this function is of
the form of one (or a few) partial-wave compon'ents
of an AP%'.

Lastly, one must be concerned with the conse-
quences of calculating matrix elements for inter-
mediate states as opposed to the final state. On
the scale of electronic energy bands, phonons are
essen'tlally dispel slonless' their effect can be
to perturb the propagation direction of the photo-
electron from that. of the intermediate to the final
state. Since the matrix elements are slow func-
tions of angle, it is sufficient to show that the
intermediate and final states do not correspond
to propagation in significantly different direc-
tlOns.

We may now remove a restriction employed
earlier and treat N phonon processes; that is,
processes in which K phonons, each uncorrelated
with the others, combine to give a resultant
phonon to which the electron couples. The ques-
tion of interest then is what is the average angle
between an intermediate state (of wave vector G)
and a final state (of wave vector G+Q). The aver-
age angle between IQ I, , and 6 is 57', and so we
have

tang...= I@ I .s'n(» )~[IGI+ I@l-.cos(» )~.
(4)

ql... and

q corresponds to a one-phonon process, may be
treated as a three-dimensional random-walk prob-
lem with variable step-length distribution. The
absence of correlation between steps gives us in
general

Employing a spherical-BZ approximation (i.e. ,
a Debye model) gives a probability distribution in
the magnitude of q

where qa is the familiar Debye cutoff value. Put-
ting Eq. (6) into Eq. (5), taking

I
G

I

= 12, and in-
serting these results into Eci. (4) gives the result

tan(e), ,= 0.622 v'X/(12'+ 0.44 vN ) .
For N as high as 4, the value of 8, , does not ex-
ceed 3.5', which is essentially the angle of spec-
trometer acceptance. Even for the unreasonably
high value X= 40, the angular dispersion is only
slightly. in excess of 5'. Thus, there is a slight
"blurring" of the angular distribution, but one
which is entirely insignificant in its effects.

B. Calculation of the matrix elements

The matrix-element calculations presented here
diffeI in two fundamental ways from the earlier
work of McFeely et al. ' and Apai et al.~ First,
more accurate final-state wave functions are em-
ployed, and second, a proper statistical treatment
of the impinging electromagnetic fieM is made.
Both of these points mill be seen to be important
to a proper quantitative understanding of the
spectra.

The evaluation of (f I

v
I
c) was effected by em-

ploying the customary dipole approximation. Con-
sistent with our statistical approach, the final-
state partial APW which propagates into the de-
tector is assumed to have a constant amplitude
independent of the initial states. The initial states
themselves are treated in the modified tight-bind-
ing scheme previously employed by McFeely et al.'
and Apai et al.' and, as in the previous work, only
the d-band components of the states are explicitly
considered. 'The matrix element was factorized
into radial and angular parts. 'The radial factors
were treated numerically in the acceleration rep-
resentation (r) -(-VV(x))z, , where V(r) is the
self-consistent muffin-tin potential of an atom in
the lattice. V(r) was calculated by an Xc.—self-
consistent-field (SCF) method (o. = 1) and placed in
a Herman-Skillman mesh. The potential was used
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as input to a program which numerically integrates
the Schrodinger equation, the algorithm being
based on the lunge-Kutta-Gill method. The same
potential was used for both initial and final states;
the energies at which the integrations were per-
formed were the SCF d-orbital energy for the
initial state, and I487 eV for the final state.
('VV)„was then estimated at each point of the
integration, and the element &-VV(x))&,. approxi-
mated as the sum

(-VV)„.= -g P„,(f, Z„~,)VV(~. ,).
where P„., and P,, are the final- and initial-state
wave function, respectively. The mesh typically
had -500 points between x = 0.0005 a.u. and the
muffin-tin radius, where the integration was
terminated. The angular factors were treated
after a method outlined by Gadzuk, ' and reduced
in essence to a sum of Gaunt coefficients multi-
plied by spherical harmonics in momentum space,
the sum running over all nz values consistent with
dipole-allowed final-state p- and f-channel tran-
sitions.

Taking the values of 7',.
&

as determined, then,
one is left with the problem of evaluating the
square of the term i V',.&. Previous approaches
simply called e a scalar constant for simplicity
on the grounds that the radiation was unpolarized.
However, this simplification" is the physical
equivalent of assuming the radiation is polarized,
with polarization vector given by

i = (1/v 3 )(x+ y+ Z) .

+ 2«.,PP (d,")*(d,')& ~.e&) . (10)

This is certainly incorrect, and, as we shall show,
can lead to serious errors. The x-ray source is
sufficiently beamlike that it will have a well-de-
fined propagation vector q„, in the crystal frame;
as a transverse field, the x radiation will have no
component al.ong this beam. Use of Eq. (9) as a
representation of this state of affairs is generally
inappropriate to light other than that polarized
along the [111)direction. Rather, one should
take an ensemble average of (e V,.z)' and then
sum this value over all symmetry-related degen-
erate states in the other irreducible parts of the
BZ. When this is done, the final form of the ma-
trix element is given by

& ~.e, ) =&E.z, ) i'lal', (13)

and replacing the ensemble average by a time
average, in which the polarization vector may be
considered to rotate sinusoidally about the axis
q, we arrive at the final result

&e-eo&='(~. 8
—qa qadi'» (14)

where 6„8 is the Kronecker delta.
For polarized light, of course, the matrix corn-

ponent &e e~) is given as the product of the n and

P components of the polarization vector.

Ill. COMPARISON WITH EXPERIMENT

The results of the statistical final-state model
developed above have been calculated for photo-
emission along the [001] and [lllj directions from
copper, and compared with the high-resolution
angle-resolved XPS results of Apai et al.' Phese
ARXP S r esults of Apai et al. ' These directions
were chosen because of the high resolution of these
experiments and because the simpler plane-wave
matrix-element theory of McFeely et al, ,

' suggests
that these spectra should show maximal dissimi-
larity. Therefore, a model capable of predicting
both spectra accurately should probably be capable
of predicting less extreme cases as well.

Much of the following discussion concerns the
superiority of the representation of the final state
as a single APW component over that of a plane
wave. As has been noted by Shevchik, "a plane-
wave function does not possess the proper sym-
metry in the vicintiy of the atomic cores, where
photoabsorption occurs. In consequence, he sug-
gests that APW's should be superior to some de-

Here d, (i= 1, . . . , 5) corresponds to matrix ele-
ments for d„„d„,d„„d„2,2, and d,2, respec-

c I'+ Ic, l',
e~„= l chal'+ Ic2I'+ 1&31' wh~~~ the c,. are coef-
ficients of the d orbitals determined in the tight-
bznding form for Ix).

This leaves the "polarization matrix" (effec-
tively, the density matrix of the photons) to be
evaluated. For unpolarized light, this is trivially
done by mriting the electromagnetic vectors E
and H as monochromatic plane waves, e.g. ,

E = E, Bexp[z(j„„r—u&f),
(11)

H = H, exp[i(j „„.r —~t)] .
A straightforward evaluation of Maxwell's equa-
tions for V'&&K and V'&&8 then leads to the result

E = (1 —q „,Iaq„„)E, !12)

where q„„ is the unit propagation vector of E, 1 is
a unit matrix, and (3 denotes an outer product.
Noting that
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FIG. 1. Densities of electronic states in the valence
bands of copper. (a) Polycrystalline Cu XPS spectrum
taken from Ref. 4. (b) Predicted density of states based
on the formulation and constants used in Hef. 4. (c)
Predicted density of states based on the same formula-
tion as (b), but with a different set of modeling con-
stants.

gree in representing the final state. The principal
consequence of our work is a quantitative appre-
ciation for just where and how the plane wave is
inadequate, and the demonstration that single com-
ponents of APW's can usefully predict high-energy
photoemission spectra.

If one is to make meaningful detailed compari-
sons between theoretical predictions and angle-
resolved experiments, we feel that it is essential
to have a method which accurately represents the
valence-band density of states of the crystal. If
this condition is not fulfilled, one should not ex-
pect spectra which represent small perturbations
on that density of states to agree with theoretical

spectral shapes. If good agreement is in fact
found, it must be considered a fortuitous cancel-
lation of errors. Unfortunately, in prior calcu-
lations, insufficient attention has been given to
this important point. The degree of these inac-
curacies can be seen in Fig. 1. The experimental
spectrum is that of Apai et a/. 4 of polycrystalline
Cu, and as an effectively angle-averaged spec-
trum should be an accurate representation of the
density of states. In comparison to this are the
theoretical densities of states used by Wehner
et al. ' and Apai et af. [curve (b)] and by us [curve
(c)] for the calculation of angle-resolved spectra

Both of these curves have been calculated using
the Hodges -Ehrenreich orthogonalized-plane-
+ave-tight-binding interpolation scheme sampling
308 points in an irreducible —th of the fcc Bril-

48
louin zone. The only difference between the two
lies in the choice of the interpolation-scheme
parameters. Both of the theoretical spectra have
been broadened by 0.8 eV to simulate the experi-
mental spectrum. We note three important fea-
tures in the experimental density of states. I"irst,
a peak labeled A. at 2.5 eV binding energy, a sec-
ond peak B at 3 eV, and an inflection point C at
4.25 eV. It is clear that there are substantial dis-
crepancies between the Hamiltonian of Fig. 1(b)
and experiment, particularly in the relative
heights of peaks A and B. Experimentally, peak
A is the highest point in the spectrum, while thi:s
density of states has peak B higher than A. Thus
while earlier plane-wave matrix-element calcula-
tions predict that for [111]propagation directions
the peaks A and B in the angle-resolved spectra
should be of equal height, in excellent agreement
with experiment, this result should be viewed
with some scepticism. This is because the plane-
wave matrix elements predict a lowering of the
ratio of the intensities of peak B to pe~ A, while
experimentally this ratio is increased. To avoid
such ambiguities we have optimized our Hamil-
tonian to yield a density of states, which is in
reasonable quantitative agreement with experi-
ment. The major residual discrepancy is that peak
B is, still slightly too high with respect to peak A;
however, this, error is relatively small, and should
not preclude a. straightforward evaluation of the
efficacy of the angle-resolved spectra calculated
from it.

In Fig. 2 we compare the results of our APW
calculations with the experimental results of Apai
et a/. We also show the results of a plane-wave
matrix-element calculation using the same Ham-
iltonian in order that the two degrees of approxi-
mation may be compared. We shall discuss the
[111]and [100] experiments in turn.

The [111]experimental geometry gives rise to
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a spectrum which is rather similar to the poly-
crystalline spectrum [see Fig. 2(a)]. The princi-
pal difference between the two is an increase in
the height of peak B relative to peak A in the
angle-resolved experiment. With the new Hamil-
tonian, the plane-wave matrix-element calculation
[Fig. 2(b)] successfully predicts this trend, and is
still qualitatively in agreement with experiment,
although the height of peak B is severely exag-
gerated. The APW calculation [Fig. 2(c)] clearly
is superior in predicting the experimental result.
The only significant error of this calculation is
that it predicts that peak 8 should be about Vfp

higher than peak A, while experimentally they are
about equal. Actually, this is about all the accu-
racy one could expect from this calculation, as the
theoretical density of states used also slightly
exaggerates the height of peak I3 relative to peak
A as compared to the experimental result. There-
fore, accuracy much better than exhibited by Fig.
2(c) would of necessity have been somewhat for-
tuitous.

As has been previously shown, the plane-wave
calculation [Fig. 2(b)] represents the f, partial
Qensity of states of the d band. As is obvious from
the disparity, the APW calculation does not. It is
equally clear that the-two calculations give rather
similar results. In fact for this propagation di-

rection, the two ar'e indeed closely related. To
see this consider the matrix element A between
the state d„~ „2 and a final state I':

A. = e (2nz —nx —ny) . (17)

In the theory presented by Apai ef, al. , 7 is at this
point effectively assumed to be of the form &

=x'+y+z, yielding

A= 2n —a —n =0.
This describes the "turning off' of this basis
function in the [111]direction.

Actually, the proper procedure to follow with
Eq. (17) is to square it as it stands and take the
averages of the polarization vector components
as described in Sec. II. For plane-wave final
states, both procedures yield identical results

%e break up the integral into three parts,

A = e [2&E
~

v
~

(z'/r) E(~)& &E
~

v
~

(x'/r) E—(r)&

-& E
~

v
~
( y'/~) E(~)&) . (16)

Since the final state, be it APW, or plane wave, is
propagating in a direction defined by x =y =z, it is
clear that the three integrals are equal. 'There-
fore,
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because a=0. For APW's however, n is a finite
number. Thus while the application of the equa-
tions of Apai et al. to an APW final state would

yield a spectrum identical to that obtained in the
plane-wave theory, (i.e. , a f, projection), the
proper treatment of the electromagnetic field re-
sults in differently weighted cross terms in the
square of Eq. (17). The effect of these terms is
to allow a small, but non-negligible contribution
to the spectrum from the e, states. Based upon
our analysis we conclude that due to the nature of
the averaging over the orientations of the photon

'

electric vector, it is impossible to eliminate e
states from the spectra, although they may be
strongly suppressed. A pure t„spectrum could
be obtained only by the use of polarized light,
with the polarization vector aligned along a [111j
crystal axis.

In contrast to the case of the [111]-axis experi-
mental geometry, the two calculations for the
[100] spectra appear to be quite different. The
experimental spectrum [Fig. 2(d)], has basically
a one-peaked rather than a two-peaked shape. 'The

highest point in the spectrum, peak A' at 2.9 eV,
is shifted in energy from its counterpart peak A

in the [111]spectrum by -0.2 eV. There follows
a distinct shoulder B' at 3.65 eV and a more prom-
inent shoulder C' at 4.65 eV. The plane-wave cal-
culation [Fig. 2(e)], as has been found previously
for this propagation direction, is notably at vari-
ance with the experiment. Here we note that
shoulder B' is completely missing from the spec-
trum and shoulder C' is so exaggerated that the
calculation bears little qualitative resemblance to
experiment. On the other hand, the APW calcula-
tion provides an excellent description of this
spectrum. Both shoulders B' and C' occur at the
correct energies and have relatively correct
shapes. The height of the onset of the shoulder
C' is furthermore about half the height of peak
A', in agreement with the experiment. This cal-
culation represents the first reasonably success-
ful attempt to describe an ABXPS spectrum of a
noble metal for an (001j propagation.

There is again a straightforward interpretation
of why the plane-wave approximation fails, and

why it is so much worse for this experiment than
for the [111]direction. The plane-wave calcula-
tion predicts that for final-state propagation along
the z axis, for example, we have

For an APW final state, this relation does not
hold. This can easily be seen from the matching
condition between spherical and plane waves at
the APW sphere boundary. A plane wave propa-

gating along the z axis can only be matched onto
spherical waves with m = 0. Therefore, the d„,
matrix element is zero because d„, is composed
of -rn = +2 states, and &m = + 2 transitions are dipole
forbidden. The d„and d„, states, however, are
made up of m=+1 states, and thus the dipole tran-
sitions will be allowed. These states make an
important contribution to the spectrum. Further
smaller contributions to the spectrum from t, ~
states arise from polarization averaging effects
as in the [111]direction. The fundamental differ-
ence is that in this case there is no photon polar-
ization condition that could make the plane-wave
result correct.

In fact, if one were to search for an experi-
mental angle of photoemission which maximizes
the suppression of t, orbitals from the spectrum,
the [100] axis would not be the best choice. Figure
3 shows the total relative contribution to the d-
band spectra for t, and e states for the hypo-
thetical experiment of polarized x rays with &

= (x+ y+ z)/M2. This is the physical situation corre-
sponding to the neglect of the photon polarization
in the formalism of Apai et a/. As ean be seen
from the figure, at a position -15' from the [001]
axis in the direction of [110], the f, intensity
goes to zero. This is a dynamical, rather than a
symmetry-based effect, as the position of the zero
is a weak function of the ratio of d-p to d-f
radial matrix elements. The zero is due to inter-
ference primarily between the +3 and +1m, cornpo-
nents of the f channel, which drives the value of
the matrix element negative at small angles. The
shift in zero comes about through a slight positive
shift in value when p contributions are added in.
Finally, the radial-matrix-element integral has
la.rge contributions only at radii less than 60/o

of the muffin-tin sphere. Therefore, these matrix
elements are insensitive to the wave-function dis-
continuity at the sphere boundary, and are there-
fore probably quite accurate. On this basis, we
expect that a photoemiSsion spectrum of Cu taken
at this angle would be quite similar in appearance
to that of Fig. 2(e). The discrepancies between
that figure and the proposed experiment would
result from photon averaging effects, and would
be on the same order of error as that of the [111]-
axis plane-wave calculation.

Finally, it is desirable to explain the good re-
sults achieved by Wehner et al. ' in their plane-
wave calculations. An examination of Fig. 3
shows that all of their spectra, except the [001]
direction, were obtained in the region for which
the APW and plane-wave d-orbital matrix ele-
ments do not grossly differ. If one employed a
Hamiltonian aeeurately representing the valence-
band density of states and thereby eliminated those
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FIQ. 3. comparison of plane-wave (-—) and APW

( — ) matrix elements as functions of polar angle. (a)
Shows matrix elements for states transforming under
the e~ irreducible representation; (b) serves similarly
for the t&z orbitals. These calculations are carried out
under the condition that the impinging radiation field is
polarized along [lllj, the consequences of which are
explained in the text.

IV. CONCLUSIONS

In this paper we have developed a statistical
model of the high-energy photoemission process.

fortuitous cancellations of error remarked upon
earlier, one would expect to see the two become
basically indistinguishable (in the incorrect po-
larization formulation) and to see errors in the
pla, ne have result relative to the APW calculation,
and experiment of the order of those seen in the
[lllj spectrum.

This model requires not only indirect transitions,
but also highly mixed final states. This model of
the fi.nal electronic states implies that even if
thermal disorder were minimized by low crystal
temperatures, and the fraction of direct transi-
tions became important, the effect on the ob-
served spectral features would be quite small.
We have further demonstrated the necessity of
including both an accurate representation of the
final-state wave function in the core region, and
an accurate treatment of the x-ray electromag-
netic field. We feel that this approach contains all
of the essential physics of these experiments
and can be used to predict the outcome of other
ABXPS experiments with an accuracy similar to
that obtained here. As an additional fea.ture it
would be straightforward to include the s-P bands
in the calculated spectra, which would probably in-
crease the accuracy of the calculations by smooth-
ing out the slightly excessive modulations that still
remain. We have omitted this contribution here
only to facilitate a more straightforward compari-
son with pl evlous work.

Finally, we wish to reemphasize that the model
we have developed is valid only in the limit of
high photon energy. It would be inappropriate to
apply it to ultraviolet-photoemission-spectra ex-
periments at high temperatures, for instance,
since the equivalence between intermediate and
final states demonstrated in Sec. II for XPS would
not obtain, nor mould phonon contributions to the
momentum of the detected electron be insignifi-
cant. The use of single APW matrix elements to
describe w'ave-vector-conserving transitions
might also be ill-advised, as in this case, detailed
knowledge of the AP% expansion coefficients in the
final-state wave function would probably be re-
quired for accurate results.
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