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Wave-vector-nonconserving optical transitions in a model dilute alloy
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We explore the theory of the imaginary part e2(co) of the dielectric constant for a simple model alloy, with

emphasis on the possibility of studying critical points in the host band structure through wave-vector-

nonconserving transitions induced by impurities. We find Van Hove singularities in the host band structure
produce discontinuities in slope of 8a,(co)/ace at photon energies equal to the absolute magnitude of the
difference between the Fermi energy and those of the critical points. The paper presents a study of e,(m) and

its frequency derivative for a single impurity. placed in a host with nondegenerate conduction band of tight-

binding form.

I. INIODUCTION

For many years the study of optical absorption
in solids has been a primary method of probing
their electronic band structure. If one considers

, optical absorption in a perfectly pure crystal with
rigid lattice, a photon can be absorbed by inducing
a, transition between an occupied electron state
of wave vector k in band n and an empty state of
wave vector k in a different band n'. The struc-
ture in e,(~), the imaginary part of the dielectric
constant, produced by such transitions occurs
at the Van Hove critical points of the joint density
of states formed from the appropriate convolution
of the density of states of the occupied levels with
that of the empty levels. The locations of the Van
Hove singularities in the joint density of states
are controlled by the relative position of singular
features in the host band structure. If E, and E,
are the energies of two such features, the struc-
ture in e,(w) occurs when kur=E, —E, for E,& E,

If a small concentration of impurities is in-
troduced into the rigid lattice, the presence of
the impurities produces transitions which do not
conserve wave vector. The purpose of the present
paper is to study theoretically the structure in

e, (&u) produced by such wave-vector-nonconserving
transitions in a model sufficiently simple to allow
explicit and detailed calculation, yet with Van
Hove critical points in the host band structure
representative of real metals in three dimensions.

Although it is well known that such wave-vector-
nonconserving optical transitions occur in solids,
theorists have devoted rather little attention to
this area. Earlier studies' of optical absorption
in dilute alloys focus primary attention on the
use of this method to study virtual levels induced
by the impurities. In these theories, the host
electronic density of states is taken to be struc-
tureless. Velicky and Levin' have presented a
theoretical stud. y close in spirit to the present.

Indeed, for reasons discussed below, we have
re-examined the same basic model that forms the
basis of their work. Finally, the present authors
have studied the behavior of e,(ar) in a model in-
sulator in one dimension, ' with a single impurity
present. The impurity-induced indirect transi-
tions (wave-vector-nonconserving transitions) .

produced step discontinuities in e, (&u) at photon
energies where structure is absent for the pure
matrix. While this calculation shows dramatic
structure in e,(u) can be produced by an impurity,
it is of more general interest to explore e,(u&)

in a three-dimensional model, where the Van
Hove singularities in the electronic density of
states are less violent than those found in one
dimension.

In the present study, we explore the behavior
of the impurity induced contribution to &,(a) for
a simple-cubic model solid with a nondegenerate
partially filled conduction band. An impurity is
introduced that perturbs the electrons by means
of a localized potential.

As remarked above, Velicky and Levin studied
impurity-induce* absorption for the same model.
They calculate e, (ur) to find gentle structure at
some (but not all) transitions between the Fermi
level and energies characteristic of Van Hove
singularities in the one-electron density of states
of the host. Our study was motivated by the desire
to understand more fully the nature of the sin-
gularity in e,(v) present at such energies. Velicky
and Levin use the coherent-potential-approxi-
mation (CPA) to study by numerical methods op-
tical absorption in a rather concentrated alloy
(impurity concentration 10 at.%), where lifetime
effects present in the CPA-may blur out the sin-
gularities in e, (&u). Thus, we wish to study optical
absorption induced by a single isolated impurity
to analyze the nature of the singularities in e2(u).

We find e,(ar) to have continuous slop with con-
tinuous derivative ee, (ur)/s&u at these energies,
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while B«,(m)/B&u has a discontinuity in slope there.
The critical-point structure in «,(ar) is thus quite
hard to perceive even in our study of the one-
irnpurity problem. As in the paper of Velicky
and Levin, we find some but not all critical points
can be seen as subtle features in «, (u). There
seems to be no obvious reason why some critical
points fail to show up, save for the fact that the
features are sufficiently delicate that their pres-
ence may not be noted, in calculations at our
level of precision. However, when we examine
B«,/B(d at the same level of computational pre-
cision, we find a/l of the critical points show up
cleanly.

The remarks in the preceding paragraph sug-
gest that the study of optical absorption in dilute
alloys may be a powerful method of studying the
absolute (not relative) position of critical points
in the host band structure. Following Velicky
and Levin, we find the photon energies at which
the structure occurs equalI the magnitude of
the difference between the energy of the critical
point and the Fermi energy. This means one
can study either critical points above or those
below the Fermi energy, to locate thei, r absolute
position with the Fermi energy as a fiducial mark.
In essence, the impurity can serve as a point
probe that can be used to elucidate features in
the host band structure, provided the alloy is
sufficiently dilute that the process of alloying
does not perturb the host band structure. Our
result that structures show clearly in B«,/Bur,
but are difficult to see in e, itself, suggests use
of derivative spectroscopy to study B«,/B(d (or
better yet B'«, /Ba', where step discontinuities
will occur quite similar to those we found in e,
in our earlier study of the one dimensional ex-
arnple).

In a pure material, thermal vibrations (phonons)
produce disorder, to produce wave-vector-non-
conserving transitions qualitatively similar to
the impurity-induced transitions studied here.
These phonon-assisted indirect transitions should
also produce (temperature-dependent) features
in B«,((d)/B~ We und. erstand this phenomenon
is under investigation by Allen and his co-
workers. '

The present paper is a full account of material
discussed by us in a brief and preliminary fashion
at a recent conf e rene e.'

II. GENERAL REMARKS

In our preceding paper, ' the general expression
for «2((d) provided by the one electron theory of
solids was expressed in terms of the Green's
functions that describe electron propagation in

the disordered material. These results are easily
reduced to expressions suitable for the present
study by suppressing band indices (we consider
here a metal with a single nondegenerate con-
duction band) and making some minor rearrange-
ments. The fundamental quantity that enters is
a, spectral density function p(k, k', «) defined by
the statement

p(k, k', «) = (1/i7() [G (k, k', «+ iq)

-G(k, k', « —iq],

G(k, k', e)=&kI(a-z) 'Ik'&,

with II the Hamiltonian that describes the dis-
ordered material, and Ik&, Ik') are Bloch states
of the pure host matrix. If ~ is the volume of
the crystal and m is the free-electron mass,
then for an opt;ically isotropic material

4n'e'

«2 f «f(»)(( f(» )-1+
~ ~OO

x Re [(k'Ip. Ik'& &kIp, I k&p(» k' «&

x p(k', k; «+ Q7)]. (3)

Here f(«) =[exp [IB(« —p)J+ I] ' is the Fermi-Dirac
function, and p„ is the x component of the electron
momentum. The momentum matrix elements in
Eq. (3) may be related to the group velocity
v„(k)=h 'BE(k)/Bk„by the result'

&rIp„Ir& = m.„(r), (4)

so we have, using units where 8= 1,
4z'e'

«, ((u)= fl
', (I —e-'")

«f («) [I f(«+ ~)]p(«, ~)-, (5)

where

(»0(«, (0) = g v„(k) v„(k ) p(k, k;«)'
x p(k', k; «+~) .

We consider a single impurity placed at the
origin in a monatomic simple-cubic lattice. The
conduction band of the host is described by the
Hamiltonian

If, = Q E(k)c~f c-,

where

E(k) = -& W [cos k„g,+ cos k, it, + cos k, ft, ) (8)
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G(k, k;z)=G, (k, z) 5gf, + &G(k, k', z),
where G,(k, z) = [E(k) -z] ' and

v Go(k, z) Go(k', z)
N 1+v E(z)

(10)

(1la)

describes the conduction band of tight-binding
form with first neighbors overlaps. The bottom
of the conduction band is at -W, and the top is
at+ W, with 2W its width. The impurity produces
a localized perturbation that we write

v ~
V = —~ c&c". .

N kk

The Green's function G(k, k', z) has the well-
known Slater-Koster form that formed the basis
of our earlier analysis of the two-band insulator

and

E(z) = —EG,(k, z) . (»b)

p(k, k', e) = 5g 5(E(k) —e)+ —6 p(k, k', &) . (12)

The imaginary part of the dielectric constant
then becomes

e,(ur) = c~(~)+ e»(~)+ e„(&u),

with

Here N is the number of unit cells in the crystal.
Following Eq. (10), the spectral density will

be split into two pa, rts

4n 2e2e„(&o)=, (1 —e z")—+v„'(k)f(E(k)) [1-f(E(k)+&u)] Lp(k, k;E(k)+ &u),
0 k

(13b)

4n 2e2e»(m)=, (1 —e z") —Zv„'(k)f(E(k) —&u) [l-f(E(k))]AP(k, k;E(k) —~),
0 k

(13c)

and

4m2e2 +QQ

e„(&u)=, (1 —e ") «f(e) [1-f(&+&u)] —,g v„(k)v„(k') Ap(k', k;&+ &u) 6 p(k, k', e).
BOCA ~00

(13d)

In our model, the impurity potential produces
s wave scattering only, and as a consequence
b p(k, k', e) depends on k and k' in a separable
manner and is independent of their relative
directions. It follows that e„(ur) vanishes iden-
tica,lly. This is a special feature of the model
used here and, in general, all three terms will
be nonvanishing. We note that the decoupling pro-
cedure used by Velicky and Levin fails to produce
a contribution to e, (&u) analogous to that in Eq.
(13d). Thus, in general, their decoupling scheme
fails to produce the proper expression for e,(~)
in the one impurity limit. However, because s
wave scattering only is present in the model ex-
plored by them (and by us), in this special case
they recover the proper one impurity limit. As
we remarked earlier, ' in language appropriate
to a, treatment based on the Boltzmann equation,
their decoupling scheme is equivalent to ignoring
the "scattering in" terms which in general are
the same order of magnitude as the "scattering
out" terms.

After some straightforward algebra, e~(u) and

e»(u&) may be cast into the form (for 7= 0),

4m2e2
&z,(~) =

Q(d4

v2(e) p(e)p(z+ ~)«
[1+v Ez(6+ (d)] + 7f v p (e+ (d)

. (14a)

v„'(z) = E v„'(k)5(e —z(k)) . (15)

It is convenient to define a frequency-dependent
relaxation time r(ur) for the electrons by com-
paring the forms in Eqs. (14) to the result of the
Drude model of conductivity in the limit w7(&a)

4g 2e2
E2g((d) =

4 v
Qco

f v„'(~)p(~)p(~ —~)«
[1+v ER(& —&d)] + 1T v P (z —(0)

(14b)

In these expressions, e~ is the Fermi energy,
p(e) the host density of states, ER(z) the real
part of E(e+ iq) [Eq. (ll.b)], and we introduce
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If n is the electron density, we have

e,((u) = (4vne'/m(u') [I/r(u))],

so comparison with Eqs. (14) yields

I/r(~) = I /r, ((u)+ I/v', ((u),

state 6+ A, where it scatters from the impurity.
Equation (19b) describes an event where the hole
scatters off the impurity to break down wave-
vector conservation. As ~-0, the relaxation
time r(~) defined above reduces to

where
1 . 2 mv~~(e)

sin'B(e~) . (20)

7Tm v

r, (~) Qn

v„'(e)p(e)p(e + ~)de
[1+v E (e+ a)]'+m'v'p'(e+ u) '

For a parabolic band, with mvz(ez) = k„and n
=k„'/8v', [the explicit factor of 2 for spin has
been omitted from Eqs. (19)], we have the standard
result'

(18a) I/v. (0) = (4v/Amkr) sin'[B(e~)] . (21)

and

7tm

r,((u) Qn

v.'(e )p(e)p(e —~)«
[1+v En(e —~)]'+ n'v'p(e —(u)

'

(18b)

The relaxation rate defined above may be ex-
pressed conveniently in terms of the energy de-
pendent phase shift B(e)= tan '[n'vp(e)/[I+ v Ez(e)])
for scattering from the impurity. One has

m

r, ((u)

zion(u

'F v'.(e)p(e)
p(e+ N)

x sin'[B(e+ u)]de, (19a)

1 m '&'" v'(e)p(e)
T&((d) 7TQn(d p(e —(d)

x sin'[B(e —Id)]de . (19b)

From the form of Eq. (19a), it is evident that
I/r, (w) has its origin in processes where the
photon lifts an electron of energy e to the final

In Sec. III, we explore the behavior of 7 (&u) quan-
titatively.

III. RESULTS AND DISCUSSION

From the general structure of the expressions
in Eqs. (18a) and (18b), it is quite clear that
v(~) ' will be influenced only modestly by the Van
Hove singularities in the density of states p(z).
In our model, as in any three-dimensional model,
the Van Hove singularities are discontinuities in
slope of p(e), at certain special energies. The
products p(&)p(e + &u) are the controlling factors
in Eqs. (18a) and (18b), but since they appear
under the integral sign, the influence of the Van
Hove singularities can at most be very subtle
and hard to perceive.

A much more satisfactory procedure is to study
not r(&u) ', but rather its frequency derivative
From the experimental point of view, this suggests
use of derivative spectroscopy in the study of the
optical spectrum of alloys. Upon differentiating
Eq. (18a) with respect to frequency, we find

B 1 vm v' v„'(ez)p(ez)p(ez+ ~)
B&a v, (~) Qn ~ [1+v Es(er+ ~)]'+ v'v'P'(er+ co)

1 1 '71m v + dep(e+ 4)) B
[ 2( ) ( )]

(u r, (&u) On (u, „[1+vEn(e+ &u)]'+ v'v'p'(e+ u)) Be
(22)

A similar expression obtains for the frequency
derivative of r~(v) '.

The first term in Eq. (22) allows the Van Hove
singularities in the density of states to be probed
directly through the factor p(e~+ &u). Structure
in the frequency derivative Be,(u&)/Bu (discon-
tinuities in slope) whenever w matches the dif-
ference between the Fermi energy and the energy
of a critical point located above the Fermi level.

The frequency derivative Br~(u) '/Bu contains
a similar term with p(ez —u) rather than p(ez+ &u),

so one also obtains structure when v matches the
difference in energy between the Fermi energy
and that of a critical point located heloise the Fer-
mi level.

In Eq. (22), the structure in B[r,(u&)] '/Ba at
a Van Hove critical point is controlled by the first
term, with the remaining two terms only modestly
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FIG. 2. Ratios (a) v(0)/w{~) and (b) r(~) for the po-
tential v =0.02W and for the Fermi energy illustrated in
the inset. The relevant transition energies are indicat-
ed by arrows in (b).

FIG. 1. Ratios (a) 7(0)/ v(u) and (b) r(co) for the po-
tential v = 0.02%", and for the Fermi energy illustrated
in the inset. The relevant transition energies are in-
dicated by arrows in (b).

affected. We have already argued that r, (u&)
'

itself shows no discontinuity in slope, and for
our model we may show that the combination
n„'(e)p(e) is smoothly varying with continuous slope
throughout the band, with no Van Hove singular-
ities. Thus, like [r,(e)J itself, the third term
in Eq. (22) is smooth near the critical points.

We now turn to our numerical calculations, which
serve to illustrate these points. For the energy
band functionjn Eq. (8), the band width is 2W with
the zero of energy at the midpoint of the band.
The density of states is symmetrical about the
midpoint of the band, with critical points located
at the energies+ & W. Of course, the band edges
are also critical points, since the slope of p(e)
jumps from +~ (at the bottom) to zero, or -~ (at
the top)-to zero. We shall calculate the dimension-
less ratio r(0)/v'(&u) and also r(u)= W7(0)8[v(u)] '/
8&. These twoquantities may be calculated once
the value of the two dimensionless parameters
Ez/W and n/W are given.

In Figs. I and 2, we show the behavior of r(0)/
r(&u) and of x(m) for the weak scattering limit with
v = 0.02 W. We have chosen two positions of the
Fermi level, as indicated on the insets. The

strength for the potential is that used in the earlier
work of Velicky and Levin. The calculated curves
of 7(0)/r(a) are very similar to theirs, as they
should be. We remark that we have used the
Green's functions computed by Qitmaa' in all the
numerical work reported here.

Close inspection of the behavior of 7(+) ' shows
gentle structure appears at some of the transition
energies between the Fermi level and the critical
points. Not all of the transitions can be perceived
by the eye in v(m) ', and the ones that appear are
'gentle. This is the case also in the earlier work
of Velicky and Levin.

The frequency derivative r(m) does display clear
discontinuities in slope at each critical point, as
indicated in the Fig. 1 and 2. The structure should
be even more prominent in the second derivative
Rt(&u)/sto of th'e relaxation rate, although we have
not calculated the second derivative. ',

In our earlier study of the one dimensional model
insulator, we noted that while the position of the
impurity-induced structure is controlled (in the
dilute limit) by the position of the critical points
in the host band structure, the shape of the fea-
tures is controlled by the details and strength of
the impurity potential. We find similar results
in the present study. We illustrate this in Figs.
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FIG. 3. Ratios T(0)/T(cu) and r ((d), for v = ~ g 3 and

E& = + 0.2W. The values of 7 (0)/T(co) and x{cu) are to be
read from the right-hand scale.

3 and 4, where both r(0)/w(a)) and y(a)) are dis-
played for the Fermi energy fixed as in Fig. 2,
but for various values of the scattering potential
n. Figure 3 is particularly dramatic, with a
scattering resonance located near one of the crit-
ical energies.

It is evident from Figs. 1- 3 that no simple gen-
eral statement can be made about the shape of the
impurity induced structure in a&, (a))/acd. Indeed,
if calculations such as those presented here can
be carried out for models of real metals, the

FIG. 4. Ratios (a) 7(0)/T(co) and (b) x(co) for the poten-
tial v =W, andEf =+ 0.2W.

shape of the critical-point structures in ac, (&u)/a~

may provide detailed information about the poten-
tial near the impurity. %e are presently exploring
the possibility of calculating ae, (&)/aa) for a tight
binding description of the d bands in Ni based
alloys.
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