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Magnetic susceptibility of an electron gas in the random-phase approximation*
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The equivalence of several recent results on the spin susceptibility of the electron gas to the calculation of
Brueckner and Sawada using the random-phase approximation (RPA) is reported. An error is pointed out in
the exact high-density expansion of this quantity and a formula presented which is exact in the high-density
limit and also accurately describes the RPA result at metallic densities.

I. INTRODUCTION

The magnetic (spin) susceptibility of paramagnet-
ic metals has continued to receive much atten-
tion, ' ' both from theoretical and experimental
workers. Recent accurate experiments on the
magnitude'' and volume dependence' of the suscep-
tibility of the alkali metals provide a fresh impetus
to the search for a comprehensive theory for this
quantity. A detailed comparison of theory and
experiment should contribute substantially to our un-
derstanding of the role of electron-electron inter-
actions in metals. (The relative insensitivity of the
susceptibility to the complication of electron-pho-
non interactions' makes the comparison more un-
ambiguous. ) Any satisfactory theory for the sus-
ceptibility must take into account two distinct as-
pects of the problem, namely, the solid-state (i.e. ,
band-structure) effects and the many-body effects.
A frontal attack on the problem therefore involves
the calculation of many-body effects in the Bloch
basis, a formidable task indeed. A promising
first-principles approach due to Kohn and Sham'
seeks to circumvent this by decoupling the two as-
pects. This method requires independent calcula-
tions of the band structure and of. the susceptibility
of the (uniform) electron gas' which is a somewhat
simpler proposition. These calculations are finally
synthesized according to a given prescription to
yield the metallic susceptibility. In practice, how-
ever, their final result has not been very satisfac-
tory and no agreement between theory and experi-
ment seems possible. (The discrepancy for a sim-
ple metal like sodium4 is much less than that for a
complicated metal such as a-cerium. ') Vosko and
Perdew' have recently pointed out some weaknes-
ses in the assumptions made by Kohn and Sham,
and have proposed a new scheme for the suscepti-
bility which avoids these.

Vosko and co-workers' have pointed that many
recent calculations of the electron-gas suscepti-
bility have begun to agree with each other. The
calculations of Dupree and Geldart" (DG), von
Ba.rth and Hedin" (vBH), Hamann and Overhauser"

g= ——s a. = (4i9v)'/s= 0.521
er

(1.2)

and X~ is the noninteracting Pauli susceptibility
[see Eq. (2.12)j. It is to be understood in what fol-
lows that the symbol O(r,') includes terms like
(logr, )r2 We must clarify at the outset that by the
term RPA, we refer to the full formal expressions
(obtained by summing the ring diagrams) rather
than to just the high-density expansions, which are

(HO), and Vasishta and Singwi" are all performed
in different formalisms, and yet the final results,
intriguingly enough, are the same (to within a few
percent). This common result has been used by
Vosko et al. to calculate magnitude' and the volume
dependence" of the susceptibility for the alkali me-
tals. The good overall agreement with experiments
has vindicated the electron-gas susceptibility used
by them, ' at least for r, (4 [in terms of the electron
density n a,nd Bohr radius a, ; r, = (3/4mn)'~'a', j.
The agreement for alkali metals is very promising
for the general scheme of Vosko and Perdew as
well, although application of their theory to more
complicated metals should present a more difficult
challenge.

In this work, we examine the above-mentioned
electron-gas susceptibility in detail. Since some
of the authors (DG, vBH, HO) use perturbation theo-
ry in one form or another, we look for possible
formal equivalences among themselves. In addi-
tion, we look for connections, if any, with the ran-
dom-phase approximation (RPA) of Brueckner and
Sawada" (BS). The interest in establishing this
contact lies in the fact that the BS calculations is
one of the very few exact results in this area.
They show rigorously that at high densities, the
susceptibility cannot be expanded in a power series
in x, alone, and |;hat the long-range Coulomb in-
teraction gives rise to lnr, terms just as in the
ground state energy. " Their result can be con-
veniently expressed as

Xa, =x~[1 X+ —,'X'(1.534 —ink)+O(Xs)j ', (l.l)
where
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of course latent in the former. (RPA in this sense
was first used by Hubbard" to compute the ground-
state energy and. seems to have been first sug-
gested by Herring" in the context of the suscepti-
bility. )

The main difficulty in examining these relation-
ships is that the techniques and approximations
used by the above authors are very different in de-
tail, a fact which obscures the correspondences, if
any. The two main methods used to calculate the
susceptibility are (a) the linear-response theory
where the susceptibility is expressed in terms of
Green's functions, and (b) by calculating the
ground-state energy of the system as a function of
the magnetization M and using the relation"

d 2Z(m)
dM'

There is also a, third method (c) which is very
closely related to method (b) where the formal ex-
pression for the ground-state energy is used to de-
rive the Landau-interaction function from which the
susceptibility may be obtained by using the I,andau-
theory results. " Method (a) has been used by DG
and HO, and method (b) by vBH and BS. Method'(c)
has been pursued in detail by Herring ' and Rice. '
We have attacked the problem by calculating the
susceptibility in a careful and complete manner by
both method (a) and method (b) from the common
starting point of the RPA self-energy. The ap-
proximations made are carefully kept track of, and
the final results explicitly displayed to facilitate
various comparisons.

The plan of the paper is as follows. Section II
contains the calculation by method (a). We have
developed what appears to be the simplest possible
formalism within this framework. Our method re-
quires the knowledge of only the single-particle
Green's function, which after all is the simplest
object that one studies in many-body theory. We
express the susceptibility exactly, in terms of the
magnetic field derivative of the self-energy and
use the well-known RPA expression for this quanti-
ty" to derive RPA integral equations. These are
tackled by methods familiar from a many body ap-
proach to Landau's Fermi-liquid theory. "

In Sec. III we obtain the susceptibility from the
RPA ground-state energy. We establish contact
with the BS calculation by expanding the expres-
sions in the high-density limit. We carefully ex-
tract the high-density expansion'and correct an er-
ror in the BS result [Eq. (1.1)], thus establishing
the exact high-density susceptibility.

We must mention that the RPA expressions for
effective-mass (m*) compressibility v a.nd suscep-
tibility were first given by Rice" and computed by
Lam" for x'~&6. Nevertheless we present in Sec.

Dt7 our somewhat more-extensive computations for
m*, v, arid X in RPA and compare with their high-
density expansions (latent in RPA) and also with
other more-recent calculations, which does not
seem to have been done before. " One of the useful
byproducts is an empirical formula for the suscep-
tibility which is exact to O(x, ) and accurately de-
scribes the RPA values at metallic densities.

In Sec. 7, we point out the formal relationship
between the work of most of the authors mentioned
above and the RPA of Brueckner and Sawada. We
comment on the important question of the range of
validity of RPA in light of our work and discuss a
possible future approach.

II. SUSCEPTIBILITY BY THE GREEN'S-FUNCTION METHOD

The one-electron Green's function is defined in
standard notation" as

iG 0(k, t) =( O~T(a„- (t)a;0(0)) ~0)

ik t G (k) 0

27r
' (2.1)

where k—= (k, k, ). In the presence of an infinitesi-
mal magnetic field H =h/p~ along the z axis, the
up- and down-spin Green's functions are inequiva-
lent and we denote them by G i (k) a.nd G

&
(k). In

terms of the populations N& and N& of electrons
with spin up and down, the magnetization is given
by

M= p~(N& N&), -
with

N, =-Tr„G,(k)e' o", 7I=O'.

We have introduced the notation

(2.2)

(2.3)

dk dko

(2 )' 2v
(2.4)

Ni ) 2N mph+0(h'), ——

where

(2.5)

p= ——Tr„G&(k)e' 0" =—Tr~G&(k)e' 0". (2 ~)

(The limit h-0 is implicit everywhere. ) The mag-
netization can be written

M =2Pa P h =2Pa2PH .

The susceptibility is thus given by

X=2p~P.

(2.7)

(2.8)

This equation is formally exact. The quantity p
is to be obtained from the Green's function which is

and set the sample volume at unity for convenience.
For small fields we can expand N, in powers of h
as
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given by Dyson's equation" as

G.-'(k) = G-'(k) —&.(k) . (2.9)

&(p, —E») plays the role of a & function restricting kto
the Fermi surface and write R(k) more convenient-
ly as

8(e„—»»+ k) 8(»» —k —»~)
k, —e»+k —ig k, —e»+k+iri' (2.10)

where e»=h'k'/2m and (.'~=a»z. G, &
is obtained

from the above by changing the sign of h. Note that
we have neglected the variation of the chemical po-
tential with respect to k [which is of O(k') (Ref. 29)j
in Eq. (2.10).

For orientation, let us calculate the noninteract-
ing susceptibility by this method. Differentiating
(2.10) with respect to k we get

—G, i (k) = —G,'(k) + (2))i)6(k, —e„)6(»» —e~) . (2.11)d

From (2.6) and (2.8) we get the familiar Pauli sus-
ceptibility

It, =2i,'n(~, ),

n(e~) = =,6(e-» —e~) .3N dk
E 4g (2~ 3» E (2.12)

It is convenient to define P in terms of the field
derivative of the self-energy. To do this, we use
(2.9) from which we get

dZ) k, h

x ljm(Gi (k, k)Gi (k, 0)$. (2.13)

The self-energy Z, is well studied in literature and
can be expanded in a perturbation series in terms
of the interparticle potential. The noninteracting

.Green's function G« is given by

R{k)=-(2))i)Z;(m*/m)5(»» —e~)5(k, —p), (2.18)

with

m dEq

F

The susceptibility can finally be written

x=2'', Yr, (G'(k)+R(k)]((- '
)

(2.19)

(2.20)

We now specialize to the RPA where the self-en-
ergy is given by"

~ {")=Tr» V»-» G {") (2.21)

where V, is the screened Coulomb interaction

V, =v;/e(q), n;=4me'/~q~', (2.22)

and the dielectric function is

e ((I) = I + e; Q T r, G.(k + q)G. (k ) . (2.23)

These equations are a generalized form of RPA
(termed the V, approximation by Baym a,nd Kada, n-
off) since one is using G's to define e in (2.23) and
also Z in {2.21). Equation (2.21) together with Dy-
son's equation forms a self-consistent approxima-
tion. In our work we are notparticularly concerned
with the self-c onsistenc y and make the approximation
that we can replace G by G0 at a sufficiently later
stage so that we pick up much of the information
contained in these equations. We differentiate
(2.21) with respect to k and obta. in the integral
equation

The limit in (2.13) .has to be taken ca.refully since
the poles of the Green's function pinch the real k0
axis when k0 equals p, , the chemical potential. The
details are given in Appendix A and we get

y(k) =1+Tr,,V„, [G'(k').+a(k')]y(k'),

where

(2.24)

(2.26)

qqGi()')=-(G'()')+" ()')I (( — ' ),
where

A(k) = (2mi)Z', 6—(k, —p)6(E»- —p),

(2.14)

(2.16)

Note that p, , Z~, and ~* in R now refer to the RPA
values'rather than the exact ones. Similarly we
differentiate (2.21) with respect to k, and obtain
another integral equation

sZ (k)
k

0

and E„- is the solution of the equation

E» = e»+ He Z (k, E»)

(2.16)

(2.17)

Q(k) =1 +rTV,»„,G'(k')P(k'),

where

1 9Z(k)
Z~ Bk0

(2.26)

(2.27)

The quantity Z-„ is the discontinuity in occupation
probability at the Fermi surface and E"„ is the
quasiparticle energy ( p, =E&~). We note that f,, = V, +T,„V,G'(k )f„,, (2.28)

It is convenient to introduce an auxiliary integral
equation
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Q(k) =1+Tr» f» „,G'(k'). (2.29)

which defines the function f. It. is clear that
G'(k')f„», is the resolvent kernel of (2.26) from
which we get

using Eqs. (2.19), (2.17), and (2.21). The calcula-
tion is strai. ghtforward, 3o and gives

'dq 1

~RPA(qq 0)

The formal solutions for (t), (t), and f are

g = [1 —V(G'+R)]-' I, P = (1 —VG') 'I,
f= (1 —vG')-'v.

The solution for g can be written in the form

(2.30)

with

OO OO

1
dqdx . —() k(q, x),

0 'E Rp A q q
Iqu

(2.37)

tJ) = [1—V(G'+R)] '(1 —VG')Q,

which simplifies to

4=(I fR) '4-.

'This equation can be rewritten

g(k) =Q(k)+Tr», f, »R( k')g( k')

(2.31a)

(2.31b)

(2.32)

1

F (q, u) = ln + ( + ~q)
u'+ (1 ——,'q)'

2+q ' 2 q
u'+ (1+—;q)' u'+ (1 ——;q)'' (2.36)

This gives the final expression for the BPA sus-
ceptibility as

'The 6-function property of R reduces the above
equation to an algebraic equation. Thus both P and
(t) are determined by the function f. We can re-
write (2.32) on using (2.18) as

x F(q, u) (2.39)

1
XRpA X~ 1 —X ——' dq dQ —1

0 0 ~RPA(q, fqu)

q(k)=q(k), q(k, )( Z; x(q, )

xff(k, k')
q ), (2.33)

The last term on the right-hand side represents the
correlation correction to the susceptibility and is
evaluated in Sec. IV. Explicit formulas for EppA
are given in Appendix B.

with g(kp):—P(kp, p). Using (2.20), (2.25), (2.27),
(2.29), and (2.33) we get

l

2p, Bk
",=-Tr, G(k)+Tr»R(k)g(k)

III. SUSCEPTIBILITY FROM THE GROUND-STATE ENERGY
AND THE EXACT HIGH-DENSITY EXPANSION

We constrain the N-electron system to a mag-
netized state with a polarization P given byI

+ Z» n(ep)(1 —Z» )(lf(kp). (2.34) P = (Nt —Nt )/N . (3.1)

The first term vanishes on integrating by parts and
the remaining terms can be collected together and
give

vl ddq 1
XRpA Xp mq & ( 0)0 q. &RpA q~

(2.36)

The calculation of m/m* in RPA can be done by

~ —Z~ n E~ k~, k~ . 2.35

This equation is of the Landau-theory form if we
identify Z', f»», as the exchange interaction func-
tion of Landau. " We still need to solve the integral
equation (2.28) to obtain f but we can seek iterative
solutions which are-to the lowest order in the
screened interaction (the RPA solution). To this
order, it is clear that we can replace f by VRp„ in
(2.35) and also set Z„as unity. [V„p„now stands
for v/eRPA, where (2.23) is evaluated with G, 's ra-
ther than G's. ] After scaling the momenta by kp
and frequencies by 2&~, the expression can be
written in high-density units as

The Fermi momenta of the spin-up and -down elec-
trons are given by

kp, = kP(1 +p)'f '. (3.2)

The ground-state energy E(P) in this constrained
situation can be used to obtain the susceptibility
through the well known relation"

p d2E p (3.3)

where E,(p) is the non interacting case energy.
Thus an approximation for the ground state energy
automatically generates one for the susceptibility.
The interaction energy (E,.„,=E —E,) is well
known" to be expressible in terms of the self-en-
ergy and the Green's function as

1 ' dA. '
E t = —— Tlg, eill 2 yf

0

x [Z", (k)G", (k) + z", (k)G", (k)], (3.4)

where the coupling constant is taken as X'e' in
place of e'. Therefore as in Sec. II, . an approxima-
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tion for the self-energy is sufficient to calculate
the susceptibility.

We have already noted the RPA expression for
the self-energy in Eq. (2.21). We can directly set
the G's in Eq. (2.21) and (2.23) as G,'s, i.e., the
noninteracting Green's function [explicit expres-
sions for Q, in the polarized case is given in Ap-
pendix 8, Eq. (83)]. This self-energy can be sub-
stituted in (3.4) and G~ replaced by G, to get the in-
teraction energy to Eosoest ordez in the screened-
Coul 0mb interaction. The coupling- constant inte-
gration is trivial and gives the correlation energy
(defined as E —E„F, where HF stands for Hartree-
Fock) in RPA as

Ecccc(p) = -2 TI~[ln&„p„(k)+ 1 —&„p„(k)]. (3.5)

4qF(q, u) =(,), (3.10)

As a result n, is logarithmica:lly divergent in the
limit A, 0 and has the behavior

n, = a, +a, Ink+0(X) .
0

Thus a calculation of a, and a, gives the suscepti-
bility correct to O(x,'). In order to obtain the log-
arithmic term a„ it suffices to cut the q integra-
tion off (at q= 1 for convenience), and to replace
the integrand by the small-q behavior. Thus we
define

(3.11)

tract the high-density behavior directly from (3.9).
In order to do this, we first observe that

The momenta are scaled by k~ and frequencies by
2ez to give the correlation energy per particle (in
rydbergs) as

8 "
Q (u)

1n 37)4 (1 +u2)2
Q' dg

q'+ (x/m)Q, (u)
'

(3.12)

2,~„„-(p) (3.7)

We can use the well-known expressions" for E,(P)
and E,„,„„(P)io arrive at the expression for the
susceptibility

„„(P)=,—, k'dk du[in 6„p„(k,Lku)
3 1

2g' A.

+ 1 ERp)) (k) 'Lku)]

(3.6)
We have used the analyticity of Eppg as a function
of frequency in the first. and third quadrants' to
transform the integration to the imaginary axis.
This equation, together with Eqs. (81) and (85) is
identical to Eq. (5) of BS. Following BS, we define

We can use Eq. (813) for Q, to get

2 8 " du
a, „=—,ln4Z+ — .),, C(u) l ))(u)}.

(3.i3)
The second term is precisely (InR),„of BS which
they have numerically evaluated as -0.534. Thus
we get

n, „=(2/37)') (0.534 —In4X) .
It is clear from (3.14) that a, = -2/3m'. The quanti-
ty n,„also contains a part of the constant term a, .
In order to get the remaining contribution to a, we
must take the difference of Eqs. (3.9) and (3.14)
which is finite in the limit X-0. Thus define

X = X~[1—X+-.~'X'o..] '. (3.8) n") -=Iim (o., n,„). — (3.15)
It is worth mentioning that this equation would be
exact if n, were exactly known.

To proceed further, we substitute for ERpA from
(89) and use (3.6) in (3.7) to get the RPA expres-
sion for Q~ as

=2 Q, (u)+c 3 c dqdu 2
( / ) (

)F(q, u) . (3.9)

This equation can be combined with (3.8) and it is
readily seen that the susceptibility obtained is
identical to Eq. (2.39). Thus we have established
that the same expression for susceptibility results
both by method (a) and (b).

As already mentioned in Sec. I, Brueckner and
Sawada were primarily interested in the high-den-
sity limit. They did not obtain Eq. (3.9) (where the
small r, assumption has not been made) but rather,
directly analyzed the series obtainable from Eq.
(3.6) for small x, . It is very illuminating, how-
ever, to follow an alternative procedure and to ex-

In terms of n"', it is clear that

a, = n "'+ (2/3m') (0.534 —ln4) . (3.16)

The expression for n"' is readily obtained from
(3.9) and (3.12) as

n =lim, —, du(o) ~

rf»0 371 7T
—,Q, (u)E(q, u)

16 "duR(u) 'dq
v 0 (1+u')' „q (3.i7)

This integral can be numerically evaluated (by the
method discussed" in Sec. IV) and gives

o. (o) = (2/3v') (1.157) . (3.18)

This is very different from the value (2/3))' )(2.386)
obtai'ned by BS, and led us to reexamine their
lengthy and 'involved calculation. To reestablish
contact we rewrite (3.17) in terms of Q; and Q, as
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llm

«[q (Q)q'(~) —t)(l —q)Q, (&)Q;(&)] .
0

(3.19)
he integration over u is readily performed on

using the integral representation (B6) for Q, (u) and
the result is expressible as

where K is independent of x. The limit is now triv-
ial and results in

f(x, x) = —(3/2m' ) [x'K+x'qt) (0) lnx] . (3.27)

Thus the assertion of BS is not correct and f(x, x)
has a x' lnx term in addition to the x' term, and
hence their identity equation (A5) is not applicable.
'The log term however enters the above equation
with the well-known coefficient"

1 82
~ (0) f((I +p)l/3 y)4 8P2

where

P=Op &=1

(3.20)
P (0) =—', ))'(I —ln2) .

We can use Eq. (3.27) to derive an identity"

(3.28)

1
h(x, y;q) =— d k, dk2

q (k, +k, +q)

xe(. h, )e(lk, +ql-x)

xe(y —h, )e(lk. +ql- y).
We can set (1+P)'~'=x in (3.20) which gives

o. ' = — —2 —f(x, y)(0) 4 8 8

9 8x' 8x

y), , y)= (,)
iim f [q(q—y;q),

e(1 q)h(x, y; 0)]

(3.21)

(3.22)

(3.23)

, —2—+ xy =——, 0 .

82

8„8 f(x, y)
l= ——,(ln2+ —,) .

X=ly &=I
(3.30)

We obtain o. ") from (3.23), (3.28), and (3.30) as

o."' = (2/3w')(6 ln2 —3), (3.31)

which clearly agrees with (3.18), and together with
(3.8) and (3.16) gives the exact high-density sus-
ceptibility

g~[1 —y). + 2k.'(0.306 —ink)+O(X')] '.

(3.29)

This is the same a.s identity (A5) of BS except for
the term on the right-hand side. The first term
has already been evaluated by BS as

h(x, x; q) =x'qt)(q/x) .
This may be substituted in (3.21) and gives

(3.24)

mp "dt-
f(q, q)=q' —,iim q(0) Inq+ —q(q)) .

271 g/x

(3.25)
The second term can be integrated in a small
neighborhood of the lower limit and gives

f(x, x) =x'(—3/2vq) lim [it) (0) In)I+K —qt)(0) In()7/x)] y

(3.26)

It is clear that (3.21) and (3.23) are identica, l to
Eqs. (A2) and (A4) of BS [since n") = (4/P') (6(P)
—6(0)) in their notation]. In order to proceed fur-
ther BS assert that f(x, x) is proportional to x',
which leads to a considerable simplification since
we can then transform (3.23) into a, form involving
only

8'f(x, y)
8x8$

[This quantity is much simpler to evaluate since
the mixed derivative leads to 5 functions'in (3.22)
constraining both k, and k, to the Fermi surface. ]
This assertion is prompted by the scaling proper-
ty of h:

(3.32)

IV. NUMERICAL RESULTS

f(A) = 1.168K —0.900K'+ 0.383y).'. (4.1b)

The RPA susceptibility expression (2.39) involves
a double integral which was evaluated as follows.
The algebraic substitutions x=q/(1+q) a,nd y =u/
(I+u) convert the area, of integration into the unit
square. The-unit square was subdivided systemat-
ically into several small squares (-200) and the
contribution from each was evaluated by a nine-
point two-dimensional Gaussian quadrature formu-
la." The weak singularity of the integrand at u =0,
q-2 was handled accurately by separating the x in-
terval into two regions corresponding to q &2, and
q&2, and by rescaling the rectangles into squares
by suitable substitutions. The results are present-
ed in Table I and compared with the high-density
formula, (3.32). Our computation can be accurately
fitted in the metallic density range x, &6 by the for-
mula

(I —y). + —'y). [0.309 —In X+ f(y).)]j ',
(4.1a)

where
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Susceptibility X/XP for various r$ (XP
——2.589r$ xf0 cgs volume units).

$

RPA
Eq. (2.39)

High density
Eq. (3.32) $

RPA
Eq. (2.39)

High density
Eq. (3.32)

0.5
1

1.5
2
2.5
3

1.079
1.155
1.233
1.311
1.393
1.477

1.079
1.158
1.244
1.341
1.455
1.596

3.5

4.5
5
5,5
6

.1.566
1.658
1.756
1.859
1.969
2.086

1.777
2.024
2.379 .
2.902
3.948
6.32

This formula was obtained by a least-squares fit
after removing the known logarithmic term, and
incidently provides an independent check on the ex-
act result (3.32). The formula has the virtue of be-
ing formally exact to O(x,') and should be useful in
calculations based on the theory of Vosko and Per-
dew. 4"

In Fig. 1, we compare the exact result for the in-
verse susceptibility y~/y [Eq. (3.32)] with the
Brueckner-Sawada result [Eq. (1.1)] to give an idea
of the numerical difference made by our correction
of their result. For comparison we have also plot-
ted the RPA susceptibility inverse obtained by our
computation of Eq. (2.39). It is readily seen from
the figure that the exact result (3.32) and the RPA
are nearly identical for x, ~ 2.5, which is, of
course, as it should be. We have also included the
Hartree-Fock result (1 —X) for comparison since it
is exact to O(x,). By a coincidence the RPA and the
BS susceptibilities blow up at nearly the same val-
ue of x, (-18), and the Hartree-Fock as well as our
exact result also [Eq. (3.32)] blow up for x, -6.

In Table II we present the RPA effective mass m*.
[see Eq. (2.37)] compared with the results of other
theories and also with the high density expansion of

KF gP

~RPA ~ 0 0

1
Q' dg' dQ

q'e»A(q, iqu)

& ln
u'+ (1+—,'q)'
u'+ (1 ——,'q)'

(4.3)
We compare the result with those of other theoreti-
cal calculations and also with the high-density ex-
pansion" (obtained from the Gell-Mann-Brueckner
calculation" )

—= 1 —X —(1 —ln2)X'+O(A. ') .K~
(4 4)

The remarkable point to note in fables II and III is
that although the high-density results (latent in
RPA) are not close to those of more-sophisticated
theories at metallic densities, the RPA results are
very close indeed, and have the added virtue of be-
ing exact at high densities. An analogous behavior
of the correlation energy was first pointed out by
Hubbard. "

this quantity given by"

m/m* = 1-X(I+—,
' In&)+O(X'). (4.2)

In Table III we present the RPA compressibility
given by"

I, O

0.9
0,8

0.7
Xp

0,6
X

0.5
0.4

0.3
0.2
O. I

I."s —I8 72

3

FIG. l. Inverse susceptibility for various values of
A, (= r$ /6. 029). The curve marked Brueckner-Sawada is
from Ref. 15 [see Eq. (l.l.)]. The curve marked "ex-
act high density" is a result of this work where we have
corrected one of the two terms obtained by BS f see Sec.
III, Eq. (3.32)l. The RPA curve is obtained from a com-
putation of Eq. (2.39).

TABLE II. Effective mass m*/rn in various theories.

RPA Exact
{present high density Nozieres-Pines Hubbard
paper) Eq. (4.2) (Ref. 22) (Ref. 40)

1 O.968 f.017
2 0.992 1.174
3 1 026 1479
4 1.065 2.115
5 1.106
6 f.f49

1.02
1.05

0.963
0.985
1.019
1.057
1.099
f .144

V. DISCUSSION AND CONCLUSION

One of the main results of this work is Eq. (3.32),
the exact high-density expansion of the susceptibil-
ity to O(x,'). It is clear from Fig. 1 that the change
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TABLE III. Compressibility ratio K&/K in various theories.

K$

RPA
(present
paper)

Exact high
density

Eq. (4.4)
Hubbard
(Ref. 40)

Wigner
(Ref. 22)

Nozieres-
Pines

(Ref. 22)

Vasishta-
Singwi
(Ref. 42)

i
2'

4
5
6

0.827
0.642
0.446
0.242
0.03i

-0.i 87

0.827
0.634
0.426
0.20i

-0.04

0.83 i
0.665
0.472
0.282
0.086

-O. i i6

0.83
0.66
0.46

. 0.26

0.83
0.65
0.46
0.27

0.839
0.653
0.454
0.246
0.032
O. i86

in the magnitude of the O(x2) term from 1.534 to
0.306 makes a substantial difference in the be-
havior of the susceptibility. Our susceptibility is
larger than She BS result for all densities. The
RPA susceptibility is almost identical to the high-
density result for x, ~2.5 and is smaller for x,
&2.5. We note that our high-density susceptibility
diverges at x, = 6.6 and the RPA at x, = 18.72. It
seems difficult, however, to identify this with a
physical instability of the electron gas towards a
magnetically ordered phase in view of the fact that
the compressibility already blows up for a smaller
value of r, (-5.1).

Turning to the formal problem, we summarize
the main steps involved in obtaining the suscepti-
bility by the two methods (a) and (b) used in Secs.,

II and III. We have deliberately chosen a common
starting point for both calculations, namely, the
self-energy expression Equation (2.21), in order to
give the reader a clear idea of the relative effort
involved in the two methods. In method (a) we first
set up integral equations for certain derivatives of
the self-energy and obta, in a. formal solution (2.35)
for the inverse suscePtibility X~/X in terms of an
"interaction function" which obeys another integral
equation. The' RPA susceptibility .is then obtained
on approximating the formal solution by throwing
out terms which are of second and higher order in
the RPA screened-Coulomb interaction. In method

. (b), however, we directly approximate the self-en-
ergy by the RPA expression (i.e. , replace G's by
G, 's) and differentiate this with respect to the po-
larization to get the RPA expression for y„/y.
Thus, method (b) gives the same results as method
(a) with considerably less effort.

Among the calculations mentioned in Sec. I, Du-
pree and Geldart use method (a). They define a
triplet vertex part A~(k) that obeys an integral
equation in which the limit k-0, 0, -0;k,/~k~-0 is
identical to ours [Eq. (2.24)] (which could be the
consequence of a possible Ward identity). The de-
tails of their calculation are unfortunately not giv-
en, but one may infer that their approximations
amount to just. the RPA. We mention in the passing

that the dynamically screened interaction in Eq.
(2.24) is often approximated by"" "a statically
screened (Yukawa) interaction. The integral equa-
tion then reduces to an algebraic one, which is
readily solved' '"'" and has the same form as
(2.36) (with a different expression for m*/m), but
does not give the correct high-density behavior
(3.32). Thus the frequenc'y dependence of e»„ is
crucial in obtaining the correct high-density limit.

The calculation of Hamann and Overhauser is al-
so based on method (a). They have avoided the use
of field-theoretic methods and instead use a canon-
ical transformation to derive an integral equation.
Their equation (25) in the limit q-0 is equivalent
to our equation (2.24) with the approximations after
(2.35) already made. They have not used the sim-
plification resulting from a transformation of the
frequency integral to the imaginary axis, but di-
rectly compute the express ions . . Thus they have
also rediscovered the RPA in another form.

We have already made explicit contact with the
Brueckner-Sawada calculation in Sec. II. The cal-
culation of von Barth and Hedin is identical, in
Principle, to our calculation since their "two-bub-
ble" approximation for the proper polarization part
is nothing but the RPA. They evaluate the correla-
tion energy for various values of the polarization
and differentiate this quantity numerically rather
than analytically (which should account for the
small discrepancies between their values and
ours). They have expressed suiprise that their
seemingly naive approach gives the same results
as those of a much more sophisticated theory such
as that of DG. It should, however, be clea, r.from
our discussion that the coincidence of results is
due to the fact that both VBg and DG as well as HO
have merely rediscovered the RPA by various me-
thods.

We mentioned the method (c) (i.e., the Landau
theory) briefly in Sec. I as a variant of method (b).
As mentioned in Sec. IV, explicit calculation of the
RPA susceptibility by this method has been given
by Rice.""The resulting expressions, not unex-
pectedly, are the same as ours.
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In conclusion, it is pertinent to remark on the
range of validity of RPA and possibilities of future
developments of the theory, based on the facts that
we have encountered so far. Our demonstration
that several authors have rediscovered the RPA by
various methods implies that the validity of the
common result of high densities, say x, ~ 2.5 is as-
sured on rigorous grounds. On the other hand, it
also implies that the agreement among the authors
cannot be cited as a "proof" of the essential cor-
rectness of the final result, and hence one could
expect departures from the RPA at lower densities.
As mentioned in Sec. I, experiments support the
RPA result in the density range x, ~4. This fact,
together with the closeness of RPA results for m*,
v and correlation energy with other contemporary
(nonperturbative) theories, strongly indicates that
the non-RPA terms are numerically negligible in
the density range x', ~ 4. Thus any departure of the
susceptibility from the RPA can be expected to oc-
cur only for x, &4, especially since the RPA com-
pressibility diverges at r, -5.1 (see Table III) sig-
naling a breakdown of the approximation.

A possible approach to go beyond RPA is sug-
gested by the approximations we made in Sec. II.
We found that the RPA was obtained by retaining
all terms which are of "first order" in the RPA
screened-Coulomb interaction v/c»„. This cer-
tainly is not perturbation theory of the usual kind
since v/E»„ is a function and not a parameter.
This suggests that we can think of an interesting
rearrangement of terms in the perturbation theory
(for instance, by regrouping Feynman diagrams) to
obtain a formal development of the relevant quanti-
ties (self-energy, etc. ) in terms of the function v/
e»„(which would mimic the role of a coupling
consta. nt in order counting). Thus RPA would be
the lowest-order theory in this sense, and a logical
sequel would involve retention of all terms con-
taining two RPA interactions. [Based on our dis-
cussion of the two methods (a) and (b), this should
be simpler by method (b).] We ha.ve started work

j

on such a program and hope to present the results
soon.

Note added in proof. A brief announcement of
the exact result Eq. (3.32) has appeared recently. ~

+ Z»/ [k, —E;+i r) 'sign(E» —p)] . (Al)

where G&,-„, is the coherent part of the Green's
function which is smooth as k, passes through E-„.
As usual the poles have been displaced above (be-
low) the rea. l axis for E„&p, (E„)p).

In the presence of a small magnetic field we note
from (2.9) that GI'(k, h) has a zero for k, =E"„
—n"„h, where n» =Z» [1—d&& (k, h)/dh]. Thus the
Green's function can be decomposed as before into
a pole part and an incoherent part. For h-0, k

-k~, we have

G I (k, h) = G ),"„,(k, h) + Z»/ [ko —E»+ n"„h

+ir) sign(E» —n", h —p, )] . '

(A2)

When we multiply (A1) with (A2) and take limit h

-0, we would merely get a factor G~& (k, 0) but for
the singular terms arising from the two pole parts,
when the poles are on the opposite sides of the real
axis. To simplify the calculation, we use the sym-
bolic identity

1/(x +i@)=p(1/x) +iv6(x)

in the pole term of (A2). Thus we write

(A3)

APPENDIX A: THE LIMIT OF (G, (k,k)G, (k, o)}ASk ~ Q

This limit is very similar to the limit q -O, q,
-OG(k+q)G(k), which is considered in detail by
Nozieres. " Let us recall the paramagnetic phase
where we note from Dyson's equation (2.9) that
GI (k, 0) ha. s a pole at k, =E„which is the solution of
Eq. (2.17), with residue Z, . (The imaginary part
of Z is vanishingly small for k-kr. ) Thus the
Green's function may be decomposed for k-k~ as

GI (k, 0) =Gt,„,(k, 0)

~k
k, —E",+ n;h+ i@sign(E", —n;h —p) k, —E;+n;&+i' sign(&; —p)

+ivZ, 6(k, —E»+ n;h) [sign(E-„—P) —sign(E", —n»h —p)] . (A4)

We can multiply the first term by the pole part of
(Al) and get terms which have poles on same side
of the real axis, in which the limit h —0 may be ta-
ken without difficulty. .The second term of the
right-hand side can be multiplied by the pole part
of (4.4) and gives

» 5(k, E»~n;h) [sign(E„" p, )-n„"h
—sign(E"„—n» h —p)] . (A5)

I

The limit h-0 can now be taken, and on using (d/
dx) sign(x) = 25(x), we see that (A5) is nothing but

II(k) defined in (2.15). All the rema. ining terms add

up to give G'(k) and hence the result (2.14).

APPENDIX B: SOME USEFUL PROPERTIES OF CRp~

In this appendix we collect some well-known""
properties of the RPA dielectric function and de-
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~„,(q) =1+ 2 [Q$ (q)+ Q/ (q)], (Bl)

rive a useful expansion for small spin polarization.
The propagating RPA dielectric function can be
written [see Eq. (2.23) with noninteracting Green's
functions]

RPA(q iqu) = 1 + (~/vq') [Q (u) + 2 p'Q,"'(u)] + 0(p').

(B9)

The term Q,'
' can be conveniently obtained from

(B7) using (B4) since

where

Q, (q) =2m; Tr, G„(k+q)G„(k) . (B2)

= 6'(1 —k') .dp2f k
p=o

The integration is straightforward and gives

ko —6~ —2'g ko —6~+ &'g
(Bs)

where the Fermi functions are defined as usual:

The noninteracting Green's function in the spin-po-
larized case is given by Q,"'(u) = —(—,

' v)(1/q)F (q, u),

where F(q, u) has already been defined in Eq.
(2.88).

In the paramagnetic phase we have

(B10)

f;=g(k, k) = g(1—+p —k'/k,') . (B4) e»A(q, iqu) = 1+ (X/nq')Q (u) . (B11)

[We have used Eq. (3.2) to express k~, in ter'ms of
the polarization. ] The k, integration in (B2) is
st.raightforward and we get

The function Q, (u) is well known" in literature

Q, (u)=2m 1 —u tan' +tan'1+2q, l - ~q
'M R

Q t & (q, iqu) = (X/vq')Q, '(u), (B6)

where Q', (u) is the Gell-Mann-Brueckner screening
function

Q', ( ) = dk f'.(1 —f.+ -) ~ (B6)"u'q'+(-,'q'+k q)'
It is simple to show that the Pauli principle re-
s triction can be dropped in this case and we get the
useful representation

u' y 1 ——,'q' u'+ (1+—,'q)'
2q u'+ (1 ——,'q)'

For small q, we have

Q, (u) =41r R(u),

with

R (u) = 1 —u tan '(1/u) .

(B12)

2 — k.2(-,q +k q)
u'q'+(-,'q'+k q)'

For small P, we can expand Q,
' as follows:

Q,'(u) = Q, (u) +pQ,"'(u) + —,
' p'Q,"'(u) + ~ ~ ~ .

(B7)

(B8)

Therefore, the dielectric function has the expan-
sion
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