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Surface-exciton polaritons with spatial dispersion are investigated theoretically. We give a complete
physical description of these eigenstates of the interface between a crystal having spatial dispersion and an
adjacent medium. We show a detailed picture of the electric fields on either side of the boundary, derive the
dispersion relation, and explore its solutions by an extensive numerical evaluation. The excitonic Brewster-
angle condition is shown to be connected with the dispersion relation of surface-exciton polaritons. Finally,
we derive the response function for surface-exciton polaritons. The discussion yields an extended
understanding of the coupling to these modes, their damping mechanism, and their different behavior

compared with surface-phonon polaritons.

1. INTRODUCTION

Surface-exciton polaritons are electromagnetic
modes propagating along the surface of a crystal
which has Wannier-type excitons as bulk excita-
tion. These surface modes are eigenstates of the
interface between the crystal and the adjacent
medium. They are associated with macroscopic
electromagnetic fields which decrease exponential-
ly in amplitude with distance from the surface.

We are dealing here only with Wannier-type exci-
tons in semiconductors which are delocalized in
the crystal.

Surface-exciton polaritons have recently become
an active field of research. Experimentally, the
attenuated-total-reflection technique has been em-
ployed for the excitation of these modes.'™® The
excitation by a nonlinear process has been re-
ported also.® For a discussion of localized Fren-
kel-type excitons in molecular crystals see Ref. 7.

Maradudin and Mills® introduced the basic theo-
retical concept of Wannier-type surface-exciton
polaritons and described some of the fundamental
properties. Simuitaneously, Agarwal® calculated
a dispersion relation of surface-exciton polaritons.
Many authors followed these ideas and extended
the theoretical knowledge about surface-exciton
polaritons.? 3 10-17

The theoretical problems associated with sur-
face-exciton polaritons arise mainly from spatial
dispersion, i.e., the wave-vector dependence of
the dielectric function. The total energy of the
bulk exciton consists of the eigenenergy and the
wave-vector-dependent kinetic energy of the ex-
citon. This wave-vector dependence results in a
coexistence of two transverse waves with different
wave vectors at the same frequency within the
crystal.

Figure 1 shows the schematic energy versus real
wave-vector dispersion relations in the bulk for
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phonon polaritons without spatial dispersion (upper
part) and for exciton polaritons with spatial dis-
persion (lower part). The phonon energy is wave-
vector independent. Thus, the lower (1) and upper
(2) polariton branches are well separated in ener-
gy. This separation occurs no longer for exciton
polaritons with spatial dispersion (lower part of
Fig. 1).

The coexistence cf two transverse waves at the
same frequency implies that the reflectivity and
the surface-exciton-polariton dispersion relation
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TFIG. 1. Schematic energy vs real wave-vector disper=-
sion relations for phonon polaritons without spatial
dispersion (upper part) and exciton polaritons with spa-
tial dispersion (lower part). (e, signifies, only in this
figure, e= éo for w— 0; throughout the rest of the paper
€, is the dielectric constant of the adjacent medium).
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of a spatially dispersive medium cannot be calcu-
lated from Maxwell equations and Maxwell bound-
ary conditions alone. Additional information is re-
quired about the microscopic behavior of the di-
electric function at the surface. This behavior can
be described in macroscopic terms by so-called
additional boundary conditions, which have been
discussed for long time in the literature.'®

In the present paper we search for the eigen- -
states of the boundary between a spatially disper-
sive medium with excitons and an adjacent medi-
um. We give a complete physical description of
surface-exciton polaritons which are these eigen-
states. We investigate the properties of the elec-
tric fields on either side of the boundary and com-
pare it with the much simpler case of surface-
phonon polaritons.

After general remarks and definitions (Sec. IIA)
we start with the Maxwell boundary conditions
(Sec. II B). In Sec. II.C we introduce the additional
boundary condition of Pekar'® and Hopfield and
Thomas.?® They proposed that the excitonic polar-
ization vanishes at the boundary. The formalism
used in the present paper, however, could as well
be used in connection with other additional bound-
ary conditions. The Maxwell and additional bound-
ary conditions lead to the dispersion relation in
Sec. IID.

In Sec. III, we give a detailed discussion of the
dispersion curve for surface-exciton polaritons
obtained from our derivation. Further, we discuss
in Sec. IV the dispersion curve for the excitonic
Brewster-angle condition which is connected with
the dispersion relation for surface-exciton polar-
itons.

In Sec. V, we turn finally to a calculation of the
response function for surface-exciton polaritons.
This function is useful to discuss the excitation of
the complex surface eigenstate with real and imag-
inary parts by only real frequency and real wave
vector, which is relevant for experiments.

II. FROM BOUNDARY CONDITIONS TO DISPERSION
RELATION

In this section, we define the dielectric function
of the crystal in the exciton energy region and the
electromagnetic fields to be used. The Maxwell
and additional boundary conditions lead to the dis-
persion relation.

A. General remarks

The dielectric behavior of a crystal with one ex-
citonic resonance showing spatial dispersion is
characterized for given wave vector k and fre-
quency w by the dielectric function € (Ref. 20):

€(w, k) =€, [1+ (0} - w})/(wf - W*+BE —iwD)], (1)

with' €, being a frequency- and wave-vector-inde-
pendent background dielectric constant (e =€, for
w=), wyand w, the transverse and longitudinal
resonance frequencies at £=0, and I" the empiri-
cal damping constant ({=V=1 ). The influence of
spatial dispersion is described by Bk®= (wp/M)E?,
where M is the effective exciton mass and 7 is
Planck’s constant divided by 27.

Equation (1) leads to the energy versus wave-
vector dispersion relation of an exciton polariton
with spatial dispersion propagating in the bulk of
the crystal. The dielectric functions of the trans-
verse lower polariton branch (1) and upper polari-
ton branch (2) in the bulk are determined as solu-
tions of the condition

€(w, k) =F3%c?/w?. (2)

For given w, Eq. (2) is quadratic in 2%. There are
two transverse modes 1 and 2 with dielectric func~
tions €, and €,, which may propagate in the same
direction of the crystal and with the same polari-
zation and frequency (¢ is the vacuum velocity of
light).

The longitudinal solution is defined by

€, (w,k)=0 (3a)
or after rearranging by
w?= Wl +BR (3b)

which leads to one longitudinal mode at a given
frequency in the bulk. .

Let us now consider the boundary between a ho-
mogeneous insulating crystal of the described be-
havior and an adjacent medium of frequency-inde-
pendent dielectric constant €,=nZ (for vacuum:
ny,=1) which both fill up infinite half-spaces.

We search for the eigenstates of this boundary
between the crystal with excitons having spatial
dispersion and the adjacent medium. The eigen-
states of thé boundary are electromagnetic waves,
one transverse mode outside the crystal (called
mode “0”’) obeying the dispersion relation k,=n,w/
¢, and three modes inside the crystal belonging to
the two transverse polariton modes (called mode
“1” and “2”) and to the longitudinal one (called
mode “L”). All these modes are matched together
at the crystal surface by the Maxwell and addition-
al boundary conditions to form the eigenstate of
the boundary. We call this eigenstate of the bound-
ary a surface-exciton polariton, if the mode “0”
is localized at the boundary and is traveling near-
ly parallel to it.

The Brewster angle of reflection in case of ex-
citons is described by the second solution of the
eigenstate condition of the boundary which yields
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a nonlocalized mode “0” outside the crystal: only
one traveling incoming wave, but no reflected
wave. )

The surface-exciton polariton and the excitonic
Brewster angle are solutions of the same eigen-
state condition, but with different interpretations
depending on the localization or nonlocalization of
the waves at the boundary. This connection was
already pointed out for phonon polaritons whose
dielectric function, however, leads to only one
transverse and no longitudinal polariton mode in-
side the crystal.”!

It should be noted, that the behavior of the sur-
face eigenstates is determined only by the dielec~
tric function of the crystal bulk and by the refrac-
tive index of the adjacent medium. In the dielec-
tric continuum theory there is no need of a special
dielectric function close to the crystal surface for
Wannier-type excitons considered in this paper.
The eigenstate arises by the existence of the
boundary and may be determined inthe framework
of Maxwell’s theory.

B. Maxwell boundary conditions

Before we define the electric fields of the polar-
iton modes we split the wave vectors into compo-
nents parallel and perpendicular to the surface.
The component &, parallel to the surface is the
same for all waves outside and inside the crystal
because of the phase-matching condition. This
common %, together with the dielectric functions
of all modes describe the eigenstate of the bound-
ary. Therefore, &, is usually plotted in energy
versus wave-vector dispersion relations of surface
polaritons and of the Brewster angle.

The components perpendicular to the surface are
then given by

k?i=k?_k12\=61k5_klzl (j:O, 192;L)3 (4)

with the wave vector in vacuum being &, = w/c.

If k7, is negative and therefore k;, imaginary,
the corresponding mode j is exponentially decaying
perpendicular to the surface and periodically tra-
veling parallel to the surface, thus being localized
at the boundary. I &k, >0, then mode j is not lo-
calized. .

According to Fig. 2, we define the electric field
amplitudes —}Eo of the transverse mode “0” outside
the crystal, the amplitudes E, and E, of the trans-
verse modes, and EL of the longitudinal mode in
the crystal. The electric fields are all polarized
parallel to the x-z plane because only this geome-
try yields eigenstates of the boundary:

=E;(=k; /Ry, 0, ky/By)etFiF gtPia2 g =10t (5)

E,
EL =E (—k“/kL, 0, —kL_L/kL)eik”x etfr iz mivt
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FIG. 2. Boundary between the crystal (z <0) and the
adjacent medium (z >0). The wave vectors % and the
electric field amplitudes E of one wave outside the
crystal (mode “0”) and three waves inside the crystal
(modes “1”, “2”, and “L”) are shown.

for (j=0,1,2). These are waves traveling in +x
and +z direction if Rek; >0 and Rek, >0.

The conservation of the tangential component of
the electric field amplitude and of the magnetic
field amplitude are the two Maxwell boundary con-
ditions of the considered eigenstate. They connect
the electric field amplitudes at the crystal surface
of one wave outside and three waves inside the
crystal which all have the same % but different %, .

We replace E, and E; by the amplitude ratios
F,,, and F, as introduced by Skettrup®:

F21P:E2/E17 FLl:(kn/ko,L)(EL/El)- . (6)

The division of the first by the second Maxwell
boundary equation gives the condition for an eigen-
state of the boundary

€oRoy

€koy —€okyy | €3Ro) —€oky, - F. =
7 F 7 F 1=0.

(M

Equation (7) is the dispersion relation between
the wave vector k, and the frequency w of surface-
exciton polaritons and of the Brewster-angle con-
dition. The dispersion relation in this form con-
tains the still unknown parameters F, , and Fy .

The same dispersion relation can be obtained by
setting the reflectivity in the exciton energy re-
gion® equal to zero. Setting the amplitude ratios
F,,, and F,, equal to zero in Eq. (7) yields the
well-known dispersion relation for surface phonon
polaritons.*

21p kL

C. Additional boundary conditions

Spatial dispersion leads to more than two un-~
known electric field amplitudes at the boundary.
More equations are required to solve the system,
the so-called additional boundary conditions (ABC).
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The ABC connect the electric field amplitude of the
upper transverse and the longitudinal polariton
branch with that of the lower transverse polariton
branch.

The explicit behavior of the surface eigenstate
depends on the chosen ABC. One special ABC
yields, for example, the dispersion relation ob-
tained by Maradudin and Mills.? The appropriate
ABC may be found empirically or derived more
generally as a consequence of the Maxwell equa-
tions and the properties of the boundary. A recent
publication by Garcia-Moliner and Flores'® about
spatial dispersion summarizes different additional
boundary conditions.?®

We use the ABC proposed by Pekar'® and applied
also by Hopfield and Thomas,? who claimed that
the excitonic polarization vanishes at the surface.
We consider this ABC to be reasonable for Wan-
nier-type excitons in view of a comparison between
our experimental attenuated-total-reflection spec-
tra on ZnO and calculated spectra.? However, a
definite decision about the appropriate ABC based
on measured surface-exciton-polariton dispersion
curves is not yet possible.. The available experi-
mental results are confined to small wave vectors
where dispersion curves calculated with different
ABC still coincide.. A comparison of such calcu-
lated dispersion curves is given in a forthcoming
review.?® Attenuated-total-reflection spectra at
small wave vectors may yield information about
the ABC only by a careful line-shape analysis,
which is in progress in this laboratory.

The ABC proposed by Pekar yields two equations
for the eigenstate of the boundary after splitting
the polarization and thus the electric field vectors
into components parallel and perpendicular to the
surface:

E1(€1‘€«:)ku + E2<€2—€w)k2l - ELeookll =0:
ky ky kg ’
, ®
E\(e, —€)ky Eylea—€L)ky Eresky, _
., + % + ks =0.
(9)

Thus, the amplitude ratios' F,,, and F, have the *
following forms?”: T

E €,—¢€ ky EE+k R
F = 22 - _ =1 © 2 Il LL™1L . 10
i 1 €r—€o Ry KitRp Ry ] (10)
ot kyy E, € Ry koL klzl”*kLLsz_

(11)

D. Dispersion relation

We obtain the dispersion relation of surface-ex-
citon polaritons and of the excitonic Brewster-
angle condition from Egs. (7), (10), and (11):

€ (€~ €a)(€nkor =€k )]
—€yl€, —€)(€ukoL — €y, )R}
te ky [€,(€s—€0)ko Pay
—€y(e,—€ )Ry by, tegle, —€)k, Ry =0, (12)

The excitonic dispersion relation cannot be given
in-an explicit equation of j, which is possible in
the.case of phonons. A rearrangement of Eq. (12)
yields a polynomial of twelfth order in & which is,
however, rather cumbersome.

Equation (12) contains, in general, complex
quantities because the wave vectors k, perpendicu-
lar to the surface may have imaginary parts even
without any empirical damping I', as discussed
earlier. Thus, the eigenstate of the boundary must
have complex solutions for the wave vector % or
the frequency w, as has already been found for
other additional boundary conditions.?® *?

A complex wave vector &, describes the spatial
damping of the eigenstate of the boundary if the
eigenstate is excited in some manner at position x.’
Formally, the situation is equivalent to an infinite
amount of energy being supplied to the system at
x ==, The spatial damping along the boundary is
the same for all four modes whereas their wave-
vector components k;, perpendicular to the surface
are different (j=0,1,2,L). The k;, have real and
imaginary parts because they are given by

kal=€jk§—k‘2|. (13)

All modes must have constant electric field am-
plitudes along their traveling direction K,
=(ky, 0, k;,) if empirical damping I is omitted and
thus €; is real.

Introducing real and imaginary parts into Eq.
(13) yields in case of spatial damping (k, taken
complex) with T'=0 and thus real €;:

(Rek;,)? - (Imk, )= ¢; k2 — (Rek,)?+ (Imk,)®  (14)
and
Rek;, Imk;, + RekImk, =0. (15)

We may write Eq. (15) as a scalar product of two
vectors:

(Rek;,, 0, Reky) * (Imk; ;,0,Imk)=0. (16)
This relation shows that the real part of k; is al-
ways perpendicular to the imaginary part of Ej in
the case of spatial damping with I"=0.

Temporal damping with complex frequency w and
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real wave vector k; describes the time behavior of
the eigenstate of the boundary if the system is ex-
cited in some manner at a time { with constant am-
plitude along the surface. This situation corres-
ponds formally to an infinite amount of energy hav-
ing been supplied to the system at time ¢=—~x.2®

In this case, all modes must have constant electric
field amplitudes parallel to the boundary, whereas
the imaginary part of Ej is always perpendicular

to the boundary.

Several authors have already derived dispersion
relations of surface-exciton polaritons using par-
ticular additional boundary conditions, but did not
discuss the dispersion relation in detail.”3"1517
Maradudin and Mills® gave an extensive discussion
of the influence of spatial dispersion on the prop-
erties of surface-exciton polaritons. They devel-
oped the dispersion relation using their additional
boundary condition and explained the radiation
damping. Further, they discussed special limits
of the dispersion relation, but they did not show
explicitly an energy versus wave-vector diagram.
Rimbey*? used the method of surface impedances
and presented energy versus wave-vector disper-
sion plots for special additional boundary condi-
tions. The same method was applied by Fischer
and Queisser'® who, however, dealt only with the
real part of the dispersion relation, which is rel-
evant mainly for attenuated-total-reflection experi-
ments.

What is lacking in all these publications is a de-
tailed picture of the electromagnetic waves which
build up the surface-exciton polariton, a complete
evaluation of the dispersion relation for complex
wave vector and frequency, and a connection be-
tween the dispersion relation of surface-exciton
polaritons and the excitonic Brewster angle. This
information is contained in Secs. III-V. )

III. SOLUTION OF THE DISPERSION RELATION FOR
SURFACE EXCITON POLARITONS

Equation (12) gives the dispersion relation of the
surface eigenstate which is described for fixed
frequency w by the same wave vector &, for all
four modes j (j=0,1,2,L) and the resulting &;, of
Eq. (13). This Eq. (13) is quadratic in %;, and
gives two solutions for &;,:

Ry, =x(e; k2~ k)Y2. (17)

Caution must be exercised regarding the deter-
mination of the sign of the root in Eq. (17) to find
the solution of the surface eigenstate. The real
part of &;, determines the traveling direction of
each mode j, the imaginary part the direction of
the spatial decay.

We found for the surface-exciton-polariton re-
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TABLE I. Solutions of the dispersion relation for sur-
face-exciton polaritons of the C1 exciton in ZnO at 7w
=8.43 eV with ny=1 and I'=0.

Wave vector (10¢ em™1) Decay length (nm)

k“ 522.8+4.2i 240
Ry, =—6.1+ 15.5¢ 65
by, =—443.2+ 0.2¢ 5880 (increase)
ky =3.0—31.8% 31
kr,=0.3—213.2¢ 4

gion that the following signs give a physically
meaningful solution of the dispersion relation:

Rek,, <0 with Imk,, >0 (outside the crystal) ,
Rek,, <0 with Imk,, >0 (lower polariton branch),
Rek,, >0 with Imk,, <0 (upper polariton branch),

Reky, >0 with Imk;, <0 (longitudinal polariton
branch) . (18)

Other combinations seem to be unphysical because
the amplitudes of their waves bound to the surface
increase with increasing distance from the sur-
face.

For illustration we made a numerical evaluation
without empirical damping (I'=0) for the C1 exci-
ton in ZnO neglecting the anisotropy of this crys-
tal.? The solution of the dispersion relation and
the distances in which the electric field amplitudes
decrease by a factor of 1/e are given in Table I
for fixed frequency.

Figure 3 shows a picture of the electromagnetic
waves which build up the surface-exciton polariton
for complex wave vector &, and real frequency w
at fixed time. "The upper part represents the half-
space of the adjacent medium which is separated
by the boundary from the crystal in the lower half-
space. The thicknesses of the wave fronts repre-
sent the electric field amplitudes.

The upper part of Fig. 3 shows the mode “0”
outside the crystal. This mode is nearly an eva-
nescent wave propagating along and bound to the
surface with constant amplitude along the propaga-
tion direction Rek,. The electric field amplitude
is decreasing weakly along the surface and de-
creasing strongly perpendicular to the surface.
The propagation direction ReEo is not exactly par-
allel to the surface but slightly tilted with respect
to the surface, because of the complex wave vector
k. It must be tilted to the surface because the
amplitude is constant along the propagation direc-
tion, but is decreasing with the complex wave vec-
tor & along the surface.

The lower part of Fig. 3, which represents the
crystal, is split for clarity into three internal sec-
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FIG. 3. Picture at fixed time of the electromagnetic
waves which build up the surface-exciton polariton for
complex wave vector %, and real frequency w. Upper
part: adjacent medium. Lower part: crystal with
waves of the three modes which have to be extended
throughout the whole crystal and have to be superim-
posed.

tions. However, the waves of all three sections
have to be extended throughout the half-space of the
crystal and have to be superimposed. The relative
amplitudes of all waves are chosen to be equal at
the boundary. In reality, they have to be calculated
from the additional boundary conditions.

On the left-hand side and in the middle of Fig. 3
the evanescent bound waves of mode “2” and mode
“L” are shown. They are also slightly tilted with
respect to the surface, and they have the same be-
havior as mode “0” outside the crystal.

Mode “1” is shown on the right-hand side of Fig.
3. This mode gives the eigenstate a contribution
‘which is mainly periodic in the direction perpen-
dicular to the surface because Rek,, > Imk,,. Par-
allel to the surface the amplitude is slightly de-
creasing as shown in the magnified inset. This
periodic mode is responsible for the damping of
the surface-exciton polariton because it carries
energy from the surface into the crystal bulk. The
propagation directions of the other modes bound to
the surface are tilted to the surface because their
amplitudes are coupled to that of mode “1” at the
surface by the boundary conditions. The ampli-
tudes have to decrease because of the energy
transport by mode “1”. ’

Surface-phonon polaritons which are damped by
an empirical damping parameter show a similar
behavior. The propagation directions inside and
outside the crystal are also tilted to the surface,
because the energy dissipates in the crystal due
to the damping. In the case of excitons this tilting
occurs even without empirical damping.

Recently, Garcia-Moliner and Flores'® showed
that the surface-exciton polariton is not damped by
the periodical mode “1’ if the vanishing derivative
of the excitonic polarization at the surface is taken

as an additional boundary condition.
We add one detail concerning the choice of the

‘sign in Eq. (17). The positive imaginary part of

k;, describes an amplitude which is exponentially
increasing perpendicular to the surface (see Table
I). This increase seems at first glance not to be
physically meaningful. However, the amplitude at
a point (x,z) originates from the point (x —5,0) at
the boundary. The amplitude at (x -5, 0) has al-
ready been greater than at (x, 0) because the am-
plitude is decreasing along the surface from (x -9,
0) to (x,0). Therefore, the positive imaginary
part of 2,, is an artifact of splitting the wave vec-
tors into components.

Changing the frequency yields a change of all
real and imaginary parts of the wave vectors which
solve the surface eigenstate condition of Eq. (12).
We evaluated the dispersion relation for varied
frequency with both complex wave vector %, and
complex frequency w. In this section we restrict
ourselves to the surface-exciton-polariton region
where k&, >k,, which excludes radiation into the ad-
jacent medium. The results are given in Figs. 4—
6. '

Figure 4 shows the dispersion relation projected
into the real-w real-%#* plane. The dashed and
dotted lines give the energy versus wave-vector
dispersion relations of three bulk modes and asym-
ptotic curves as explained in Fig. 4. The full lines
show the dispersion relation of the surface eigen-
state solution: the real part of the wave vector &,
versus the real part of the frequency w.

The dispersion of the surface-exciton polariton
lies at frequencies above the transverse resonance
frequency w,and at wave vectors above that of the
mode “0” because they are localized at the sur-
face. ' The dispersion relation splits in this region
of Fig. 4 into two parts, for complex %, and for
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FIG. 4. Real parts of energy vs wave vector of the
dispersion relation for the surface eigenstate including

spatial dispersion (full lines for complex w and k).
(mg=1; I'=0. For parameters see Ref. 2).
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FIG.5. Imaginary part of the wave vector &, vs the
energy for real w corresponding to Fig. 4.

complex w. This splitting is due to the projection
of a function of two complex variables into a two-

dimensional plane along the real 2, or real w axes.

Similar effects are known from surface-phonon
polaritons with damping.?® This connection shows
again the similar behavior of damped phonons and
undamped excitons with spatial dispersion.

At higher wave vectors the dispersion relation
crosses the dispersion curve of mode “L”. Mode
“L” of the surface-exciton polariton becomes ra-
diative like mode “1”. However, one has to con-
sider also the imaginary parts of £, and w. The
imaginary part of the wave vector &, is plotted for
real frequency w in Fig. 5, whereas the imaginary
part of the frequency w is plotted for real wave
vector %, in Fig. 6. These figures show that the
solution of the surface eigenstate becomes more
complex with higher wave vectors and thus takes
off from the real-w real-Z plane. Inthis region
the plot of Fig. 4 alone is no longer meaningful and

complex w

1 1 L

0 50 100 150
WAVE VECTOR (10*cm™)

FIG. 6. Imaginary part of the frequency w vs the
wave vector k, for real 2, corresponding to Fig. 4.

one always has to include the imaginary parts.
This consideration is also relevant for the differ-
ent dispersion relations shown by Rimbey** which
approach at large wave vectors the mode “L” or
lie at lower frequencies than this mode.

A deeper understanding of the properties of the
surface eigenstate will be reached in Sec. V where
we consider the possibility of exciting the surface
eigenstate.

IV. SOLUTION OF THE DISPERSION RELATION FOR
THE EXCITONIC BREWSTER ANGLE

The ansatz of electric field amplitudes in Sec. IT
includes only one wave outside the crystal. Such
an ansatz yields the excitonic Brewster-angle con-
dition in addition to the dispersion relation of the
surface-exciton polariton. The reflectivity of a
crystal with excitons is—by definition—equal to
zero for fixed frequency at the excitonic Brewster
angle o of incidence. The corresponding wave vec-
tor is given by k= (n yw/c) sina. The Brewster
angle changes with frequency according to the
Brewster-angle condition. The solution of the sur-
face eigenstate condition in the Brewster-angle
case describes waves which are not bound to the
surface outside the crystal because their wave vec-
tor Rek, parallel to the surface is smaller than the
wave vector k.

The solid line in Fig. 4 describes at frequencies
lower than the transverse resonance frequency wy
the dispersion relation of the excitonic Brewster
angle. The corresponding wave vectors have an
imaginary part too in case of excitons because the
modes “2” and “L” have negative dielectric func-
tions and thus mainly imaginary wave vectors in
this energy region. The signs of Eq. (17) are the
same as for surface-exciton polaritons [see Eg.
(18)]. Mode “0” and “1” are mainly periodically
propagating with small imaginary parts of their
wave vectors; mode “2” and “L” are mainly eva-
nescent, having small real parts of their wave
vectors, and are bound to the surface.

This behavior causes the experimental reflectiv-
ity in the exciton energy region to stay above zero
at the Brewster angle below wy, since the experi-
ment probes the reflectivity only at real wave vec-
tors k* and real frequencies w.

The situation is quite different for frequencies
above the longitudinal resonance frequency w; and
for wave vectors &, with 0<k,<k,. In this frequen-
cy region all wave vectors have only real parts in
Eq. (17). Thus, the dispersion relation Eq. (12) is
purely real, and all waves are periodically propa-
gating in ~z direction. The upper part of Fig. 4
shows the corresponding dispersion relation of the
Brewster angle (full lines). There are two fre-
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quencies possible with zero reflectivity for given

angle of incidence a or wave vector k; except for

a small gap. These two frequencies have already
been found in calculated excitonic reflection spec-
tra.%° )

However, it should be noticed that the Brewster
angle near w; yields a very sharp minimum in cal-
culated reflection spectra. This minimum is
damped out by introducing even a small empirical
damping and is thus not experimentally relevant.
The two Brewster angles with &, < k, at frequencies
above w; lead in calculated reflection spectra to
two flat minima which cannot be distinguished ex-
perimentally.

* The back bending of the dispersion relation at
frequencies just above w; is a consequence of the
complicated system including spatial dispersion.
A gap develops between the two branches of the
Brewster-angle dispersion curve. In this gap the
involved waves are obviously not able to suppress
a reflected wave.

The upper curve of the Brewster-angle condition
ends in Fig. 4 at the crossing point of mode “0”
and bulk mode “2”. It is not clear if there does
not exist a continuation or if we were unable to
find any because of the complicated structure of
the dispersion relation in Eq. (12).

Finally, we have to discuss some specijal cases
with 22<0 at the left-hand side of Fig. 4. There is
a part of the dispersion relation at frequencies
above w; which has a purely imaginary wave vec-
tor k, and resulting purely real wave vectors &,
<0 (j=0,1,2,L). This dispersion describes zero
reflectivity for normal incidence of light. All in-
volved waves have to decrease exponentialiy per-
pendicular to their direction of periodical propa-
gation.

The dispersion relation at frequencies below wy
with &% <0 belongs to a surface-exciton polariton
which is overdamped along the surface. Modes
“0”, “1”, and “2” are mainly periodical and have
propagation directions away from the surface,
whereas only mode “L” is localized at the surface.
The surface wave decays by radiation into the
crystal and into the adjacent medium. A similar
behavior for kf<0 is known for surface-phonon
polaritons.?!

V. RESPONSE FUNCTION OF SURFACE-EXCITON
POLARITONS

A basic question in the case of surface-exciton
polaritons with spatial dispersion is how to excite
)

such a complex surface eigenstate and how to de-
termine the dispersion relation. An experimental
excitation causes a driven oscillation of the sur-
face eigenstate at the driving real frequency and
real wave vector. The complex eigenstate condi-
tion of the boundary cannot be fully reached.
Therefore, one always measures a coupling
strength of the complex surface eigenstate to an
excitation with real frequency w and real wave
vector £°. It may be expected that experimentally
measured dispersion relations in this real plane
deviate from the projection of the complete com-
plex dispersion relation into the real plane.

We want to derive a response function which de-
scribes the response of the surface eigenstate in
the case of surface-exciton polaritons to an excita-
tion with real w and real k*. Generally, such a
response function has to be considered for each
special experimental arrangement, for instance,
for an attenuated total reflection (ATR) experi-
ment. The reflectivity of the ATR multilayer
would be one such response function.®!

However, it is desirable to obtain a more gener-
al knowledge of surface-exciton polaritons consid-
ering the response of the surface eigenstate with
constant driving force over the w-#* plane and
without additional external influences, such as
from the ATR prism. Therefore, we use the
method of response functions developed by
Barker®® for surface-phonon polaritons, although
this method does not directly correspond to a
special experimental arrangement.>*

As driving force we consider an externally ap-
plied polarization with a component P, , perpen-
dicular to the surface

Poyyy =Pextei(k“x-w')6(2) . (19)

This polarization is periodical along the surface.
The 8 function 6(z) specifies that P, , is a sur-

face polarization at the boundary z=0. P.is a

constant.
The conservation of the tangential component of
the electric field amplitudes at the boundary yields

Egikoy/Ry=E k) /Ry +Eg by, /Ry - Ep Ry/ky, . (20)

The normal components of the electric displace-
ment also have to be continuous, including the ex-
ternal polarization. The longitudinal mode carries

no electric displacement.
EogoEOL:exgoEu”*e?.-éol‘:y.+P<:xt- (21)

We introduce again F21 »and F;, of Eq. (6) and
find a function T':

, k % k kq k k k T
T=¢, =—<—l-l— + 72:-1«"21,, + —,;‘?—jFIA)‘:kz (ky+ By Fyyp) = (klll f‘;f‘Fw* kL:FL,)] . (22)
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Im(T) is the response function for surface-exciton
polaritons.** F, , and F;, again are determined
by the additional boundary condition which connect
E,, E,, and E;. Thus, T depends not only on L,,,
but also on the other electric field amplitudes.

The wave vectors %;, (j=0,1,2,L) in Eq. (22)
are either purely real or purely imaginary because
we are dealing in this section with real wave vec-
tor &, and real frequency w. The signs of the
roots in Eq. (17) have to be chosen similar to those

of Eq. (18):
ko, =Imk,, >0 (outside the crystal),

k., =Rek,;, <0 (lower polariton branch),
. (23
by, =Imk,, <0 (upper polariton branch), )

By, =Imk;, <0 (longitudinal polariton branch).

For convenience, we introduce an effective re-
fractive index 7., which describes the crystal with .
spatial dispersion. Writing Eq. (2) of Ref. 2 with
the terms used in the present paper yields for = g

nZe=[1x (1 —-4A%R/R2) 1/2]/2A2, (24) FIG. 7. Response function Im(T) of surface-exciton
polaritons vs wave vector and energy. (ny=1.)
with
A & & 2 The sign in Eq. (24) has to be chosen such that
A?=1} (_kL'L“ + kzll Fyp+ f’L"Fm) (By+ Ry Fyy )72 Im(n) > 0.
! 2 L The response function of Eq. (22) may then be
(25) rearranged in the same way as for surface-phonon
H- Im w(meV) u)\e\j\

FIG. 8. Comparison of
the curve representing
the response-function
maxima for fixed real &,

. with the surface-exciton-
polariton dispersion rela-
tion for complex w and
real k. (Note the differ-
ent scales in Figs. 7 and
8.)
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polaritons:

(nefsz -k )1/2
Pext «,tt (€0k2 - k )1/2+ € ( eﬂ‘kz - kz 172

, (26)

with positive signs of the roots.

Figure 7 shows a three-dimensional plot of the
response function Im(T') for surface-exciton polar-
itons over the real energy versus wave-vector
plane. The full lines represent profiles through
the Im(7') function with constant wave vector k.

The Im(T) mountain describes the response of
the surface eigenstate to a driving force at any
point in the real w-k; plane. The halfwidth of the
mountain parallel to the energy or to the wave-
vector axis is related to the radiation damping
caused by spatial dispersion. One has to choose
the related profiles according to different experi-
mental arrangements in which the energy or the
wave vector are changed.

The height of the Im(7T) mountain in Fig. 7 is fin-
ite even without an empirical damping constant. It
is not possible to reach the complex resonance
condition for surface-exciton polaritons completely
by an experiment with only real frequency and real
wave vector. Therefore, an attenuated-total-re-
flection spectrum always shows finite half-width
and at most several percent of outcoupled intens-
ity.> Surface-phonon polaritons show this behavior
only with empirical damping which cauges the solu-
tion of the dispersion relation to become complex.

The curve which describes the positions of the
maxima of Im(T) for fixed k, is also given in Fig.
7. Figure 8 shows again this curve in the real-w
real-k; plane. Additionally, the dispersion rela-
tion for surface-exciton polaritons is plotted for
real wave vector k; and complex frequency w. The
curve of the response-function maxima approaches
at large wave vectors the curve w®=w} + k% and
deviates remarkably from the projection of the
complex dispersion relation into the real w-#,
plane. This behavior shows that the coupling from
the real w-&; plane to the complex surface eigen-
state need not be strongest at values in the real
w-ky plane which are equal to Rew and Rek; of the
complex dispersion relation. The deviation occurs
in case of surface-exciton polaritons with spatial
dispersion and thus with radiation damping, where-
as the deviation is negligible in case of surface-
phonon polaritons with small empirical damping.
Therefore, a measured dispersion relation must
not be equal to the real part of the surface-eigen-
state dispersion relation. The experimental re-
sults which have been obtained up to now are all
confined to the region at small 2, where the dis-
persion curves still coincide.
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