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Disyersion relation for surface ylasmons on randomly rough surfaces:
A quantum-mechanical ayyroach
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We present a quantum-mechanical calculation of the surface plasmon dispersion relation appropriate for
randomly rough surfaces. A single-particle Green's function is defined for the surface plasmon propagating on
a rough surface and related to its smooth surface counterpart through Dyson's equation. By constructing an
approximate self-energy, the plasmon dispersion relation is extracted from the spectral density function.

I. INTRODUCTION

In recent years there has been considerable
theoretical and experimental activity directed to-
wards gaining an understanding of optical effects
associated with rough surfaces. Theoretical work
has concentrated principally upon calculating the
ref lectivity of rough surfaces'~ and the dispersion
relation of surface plasmons (or polaritons) on

rough surfaces. "" Discussions of the former
have appeared elsewhere and it is the latter which
will concern us in this paper. In the last two years,
three (classical) calculations of the surface-plas-
mon dispersion relation on rough surfaces have
appeared in the literature. In 1976, Krdger and
Kretschmann" presented a calculation of the sur-
face-plasmon (SP) dispersion based upon an inte-
gral-equation formalism developed by the same
authors' for the rough-surface ref lectivity prob-
lem in 1970. Maradudin and Zierau, "also in1976,
published a calculation which used a classical
Green's-function technique to determine the dis-
persion relation E(k). Both of the above approaches
described the surface stochasticalbj, in terms of
average quantities and two-point correlation func-
tions. In 1977, Toigo, Marvin, Celli, and Hill"
reported the details of a calculation of the SP dis-
persion relation which utilized the Rayleigh meth-
od and the extinction theorem. Their resulting
equation was deterministic in nature in that E(k)
is obtained for a specific choice of a function which
describes the rough sample surface.

Experimental work on randomly rough surfaces
is complicated by the difficulties associated with
surface characterization. The parameter ~, de-
fined to be the root-mean-square height of the sur-
face measured with respect to the avera, ge surface,
is usually measured (when it is measured) by
fringes-of-equal-chromatic-order (FECO) inter-
ferometry. '"" This technique has been demon-
strated to be quite reliable" for ~~ 8A, but little
is known about the reliability of the technique for
smaller values of 6. Cunningham and Braundmeier"

have demonstrated that the difference in near-nor-
mal reflectance at ~=3500A between a smooth and
a rough silver surface is directly proportional to
the value of 6 (measured by the FECO technique)
for 10 & ~ &35A. The parameter 0, the transverse
correlation length, is to some extent a measure of
the average separation between similar features on
the surface. A precise assignment of a numerical
value to a is somewhat ambiguous and is depen-
dent upon the surface autocorrelation function for a
given surface. Bennett has recently reported the
results of measurements of the surface autocorre-
lation function by scanning FECO interferometry. "
Her mea, surements indicate that the usual assump-
tion of a Gaussian autocorrelation function is not
a very good one for the surfaces she examined.
Basigni et al. ,

"have also measured the autocorre-
lation function (by a different technique) and found
it to be more accurately described by a Lorentzian
than a Gaussian for their surfaces.

The surface-plasmon dispersion relation has
been measured on both randomly rough and period-
ic surfaces, but measurements made on the form-
er with independently determined surface proper-
ties have yet to be reported. Measurements by
Braundmeier and Arakawa" and subsequent work-
ers ' ' have shown that the surface plasmon dis-
persion for CaF, roughened silver films is shifted
from the smooth surface values to higher wave
numbers (at constant energy) with increasing sur-
face roughness. Similar results have also been
obtained for periodically rough surfaces" "and
metal gratings. "" The recent theoretical work
of Kruger and Kretschmann" has been compared
by Pockrand and Raether" to the SP dispersion
relation measured on a surface with a known sin-
usoidal profile. They found theory and experiment
to be in reasonably good. agreement for this type
of surface.

The calculations of the dispersion relation E(k)
which have appeared in the literature thus far" "'
have been classical in nature. In this paper we de-
termine E(k) within a, quantum-mechanical frame-
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work. The average Green's function is obtained by
replacing the proper self-energy in Dyson's equa-
tion by an approximate average self-energy. The
spectral density for the Green's function is then
determined, and E(k) obtained by examining the
structure in the spectral density. Numerical re-
sults, while not included in this paper, will be
presented in a subsequent paper along with a com-
parison with other calculations and experimental
data which have not yet appeared in the literature.

II. HAMILTONIAN FOR SURFACE PLASMONS

ON A ROUGH SURFACE

H =Ho+H

In the above equation, H, is given by

g 8 2+c2 x 2 2

where X is the vector potential describing surface
plasmons on a smooth interface, ig&. is -the plasma
frequency, and 9{z)is the unit step function. Taken
by itself, H, is the Hamiltonian. appropriate for
surface plasmons on a planar surface. H, is the
perturbation term and is:.given by

H, =8, d'r [6(z —g(R))-6(z) ](g'A', (3)

where f(R) gives the height of the surface at posi-
tion R and R is a two-dimensional coordinate vec-
tor. . In both of the above,

x((=p (z, ): . ('(:=—)e "s(z(
k

The problem we consider is that of a surface
plasmon at the interface between a metal and vac-
uum (both of semi-infinite extent). The metal is
assumed to be describable by the dielectric func-
tion e(&s) =1 —(d'/~' appropriate for the undamped
free-electron gas, and to be located in the half
space z&0. We follow Crowell and Ritchie, "Elson
and Ritchie, ' and Celli, Marvin, and Toigo' and
write the surface plasmon Hamiltonian H as the sum
of two terms

and the surface plasmon frequency & is related to
the wave number 0 (for a smooth surface} by

k = (&u/c) [&((d)/(&((d)+1)]'"

The integrations necessary in Eq. (2} are easily
carried out leaving H, in the form

Ho =/ [m(k)+ (d'n(k) ]+2 Q [m(k)+ &u'n(k) jb~bg
k

+ Q [m(k) —(u'n(k) ](blab p+ b~&b'-„),

where

1 k~
n(k) = —1+—+—1+—, , (10}4cP„y y' P P'

( (
(( . ~(( (.") ((u' '( (i') H

(
(,')'

and (d is related to k as in Eq. (8). The form of
H, is reminiscent of that encountered by Bogoliu-
bov in- studying excitations in liquid helium. " In
that problem, Bogoliubov diagonalized the, Hamil-
tonian by eliminating the scattering term (third
term) by means of a rather elegant canonical trans-
formation. The problem is somewhat simpler
here because the quantities m(k) and n(k) are re-
lated such that

m(k) —(u'n(k) = 0

when w and k are related as in Eq. (8), leaving

Ho=+ [m(k)+ &u'n(k) ]+2 g [m(k)+ (((2n(k) ]5-„b1~

(13)

The normalization constant P„ is determined by
requiring that the second term in H0 be in standard
form P~ h(drab„-~b„- This proce. dure yields P~
= [(e —1) ]/[e'(-e —1)'~']. The final form of H„
then, is

H = const+ hg„-b-b- ~0 k (14)

g ek(7. %{b +bi )

(5)

(8)P' = k' —((g/c)'.

The creation and annihilation operators, b „- and
b„-, satisfy the usual boson commutation relation

with the caret designating a unit vector, k the plas-
mon wave vector, P~ a normalization constant, and

y' = k' —e ((u) ((d/c()',

As we are interested in excitation energies, the
constant wi. ll be neglected in the work which follows.

The perturbation term H, given in Eq. (3) can be
reduced in complexity by expanding the quantity
in square brackets and retaining only the term
linear in f(R) as given below.

(15}

Equation (15) has been used recently by Celli ct al. '
With Eq. (15), H, becomes
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H, =—,d'g & R)&{z)~'A'. (16)
been replaced by k', and

While it appears that the z integration in Eq. (16)
is easily performed, in actuality there is a com-
plication which arises in the form of a discontin-
uity in the integrand at z = 0. This point has been
addressed directly by Celli et a/. ,

' who stated that
matrix elements of H, are then well defined only
for states with k=o (at. k =0 the discontinuity dis-
appears, see Ref. 7). Maradudin and Mills, ' on
the other hand, bypassed the difficulty by invoking
the evenness of the ~ function. To be specific, if
f(z) and g(z) are discontinuous at z =0, Maradudin
and Mills set forth the rule that

f(z)6(z)g(z) « =2 if(0')g(0')+f(0 )g(o ) ]

(17)

Later, Mills" found that to achieve agreement be-
tween his own calculation of the cross section for
the scattering of p-polarized incident light into
p-polarized scattered light and those of Kr6ger
and Kretschmann' and Marvin, . Toigo, and Celli, "
he needed to evaluate the integral according to

f(z)6(z)g(z) «=f(0')g(0 ). (18)

Maradudin and Zierau" used the result shown in
Eq. (18) in their calculation of E(k), but pointed
out that there has been no derivation of this result.
Because of the lack of justification for Eq. (18), we
have chosen to follow a more standard route. It
should be recognized, however, that there does
appear to be a need for further work in order to
understand the questions raised by Eqs. (17) and
(18). Our result will suggest that Eq. (17) is more
appropriate, but should Eq. (18) turn out to be the
correct choice, the results obtained in Sec. III
would require only slight modification. Our ap-
proach is to replace 6(z) in Eq. (16) by

dR e i (k +k' )~ Rg R) (21)

The sample surface is assumed to be of area L'
and the limit L-~ is taken at the end of the calcu-
lation (see lief. 2).

and

G, (k, E) = (0 in-(E —H, +i@) 'b~2i0), (22)

G(k, E) = &0 in;(E H+iq-) 'nl
i
0&-,

where q is a positive infinitesimal, and io) repre-
sents the surface-plasmon vacuum state. By de-
fining the proper self-energy P(k, E),

(23)

z(k, E) = &o in„-H, nli 0&

+g (o in„-H, n'.„,io&G, (k )&o in;H, b';. io&+ ~1,
k

(24}

in the usual way, we find that G and G, are related
by {Dyson's equation)

/

III. DISPERSION RELATION: GREEN'S-FUNCTION

TECHNIQUE

Inthis section we extract the surface-plasmon
dispersion relation from the Hamiltonian formed
by using Eqs. (14) and (20) in Eq. (1). This is
accomplished by defining a momentum-space sin-
gle-plasmon Green's function for each of H, and

H, and constructing an approximate self-energy
P(k, E). The two Green's functions are then re-
lated through Dyson's equation and the poles of
the imaginary part of the Green's function examined
to yield E(k).

The momentum-space matrix elements of
(E —H +i2)) ' and (E —H+ig) ' give the Green's
functions to be

—z
6(z) = lim exp (19)

G(k, E) =Go(k, E) [1-Z(k, E)GO(k, E) ] '. (25)

The z integration is then carried out directly, fol-
lowed by taking the limit l -0. Upon performing
the remaining integral over B, we obtain

A
2

1 4cI2 Pg, 1/2

This can be simplified by noting that Eq. (22) can
be written in the form

G, (k, E}= (E —R(u+ i@) ', (26)

where ~ is again related to k through Eq. (8). The
expression for G then becomes

G (k, E ) = [E —S(u —Z (k, E ) + i@] '. (27)
kk'

x +,—2' 4'' /pe,

x (b„-+b'„-)(b&, +n';, )

In Eq. (20) primed quantities indicate that k has

(20)

In order to extract E(k) from Eq. (27), it is nec-
essary to introduce an approximation to terminate
the infinite series for Z(k, E) in Eq. (24). The first
term in Eq. (24) is proportional to the height of the
average surface. If the average height is taken to
be zero, the first term can be neglected. Rewrit-
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lng H~ as

H(d p
1 2L2j

x (5;+fl' ,)(5.„, +.bt „,)-, (28)

To describe the surface in terms of its average
properties, we introduce yet another approximation.
Instead of substituting Eq. (29) into Eq. (27), we
replace Z(kg) by its ensemble average (Z(k, E)).
Wl'tll Eq. (21 ) defilllllg f», (( p

we f llld tllat tile avel'-
age of the absolute square of the Fourier transform
of f(R) is related to the Fourier transform g(k'
—k) of the surface autocorrelation function accord-
ing to

and recognizing that g„-,„-, is proportional to &, the
root-mean-square height of the surface, we see
that each matrix e16ment of H, is proportional to
the ratio &/A. , Where ((l /c = 2v/X . 5 typically
takes on values of 10-504 while ~ has a value of
approximately 1000 A for free-electron metals (for
aluminum, II~»=15.3 eV so &»=800A). The ratio
5/X is thus a smaB parameter suggesting that
Z(k, E) can be weil approximated by retaining only
tbe second teim in Eq. (24), a term proportional
to (6/X»)'. The resulting approximate self- enei gy
ls

~(» @(
(

((id')'.

With Eq. (30) tbe average approximate self-energy
becomes

x g (kk'AV'+0k'/PP' —2$ 5')'g(k'-k)
P'(4) P»P~ (E —ff((l+ ig)

The limit L- ~ can be taken in Eq. (31) by convert-
ing to an integral, P„--(L,/2v)'f (fk, however, the
sum over k' excludes k'=k. Equation (31), for a
macxoscopic system, must be written as

— w»z~ .
'' (( ' ' -, ((»'(I'y'+»» I((p 2»»'('(;'(k' —' —e)2 A. . P P„, [E(k) —ff((l(k')+f'g J

(32)

a(k, z) = -(I/v) Im[G(k, E)j . (33)

with P denoting the Cauchy pxincipal value.
Tbe Green's function in Eq. (2V), when combined

with the approximate self-energy in Eq. (32), pro-
vides all of the information necessary to detexmine
E()t), the dispersion relation. To carry this out
more explicitly, we introduce the spectral density
8(k, E) defined by

or &(k) = K(Il(k), as it should. Since (Z) is real for
the free-electron gas we are considering, the
more general result for the spectral density is

e(k, E) = &n(E(k) —R(d(k) —(Z(k, E))).

In Eqs. (35) and (36), the subscript D has been af-
fixed to the Dirac delta function to avoid confusi'on
with the roughness parameter &.

~t(k, E) = (I/. )(n/((E- ff~)'+ )' jj.l

Taking the limit g-0 gives

8(k, E) = &D(E(k) —)t(d'(k)),

(34)

(35)

If the spectral density, for constant E, is examined
as a function of 0, peaks in C(k, E) give the dis-
persion relation. For example, if 5=0, (Z) =0
and we find

IV. DISCUSSION

As mentioned at the end of Sec. I of this paper,
a numerical study of Eq, (36) will be deferred un-
til a subsequent paper. For the sake of illustration,
if one were to choose a Gaussian autocorrelation
function, Eq. (32), the approximate average self-
energy, would be written as
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With this "standard guess" for the Fourier trans-
form of the surface autocorrelation function, one
must then numerically determine values E(k) such
that

final result, Eq. (32), would be modified to give
the following:

E(k) = ku)(k)+ (Z(k, E)). (38)

E (k) = h&u(k) + (Z (k, (u)) . (39)

With regard to the arguments raised in Sec. II of
this paper regarding the discontinuities in Eqs.
(16)-(18), it was mentioned earlier that the re-
sults of Sec. III would be only slightly changed
should Eq. (18) emerge as the proper choice. Our
procedure of replacing the delta-function in Eq.
(16) with a, Gaussian, performing the prescribed
integration, and then taking the limit of zero width
for the Gaussian leads to the same result as that
used by Maradudin and Mills' [Eq. (17)]. Had we
chosen to use the prescription of Eq. (18), our

A complete comparison with experiment mould re-
quire knowledge of ~, o, andg(k' —k} for the ex-
perimental sample, mhich is not yet possible. The
best one could do would be to treat 0 as a fitting
parameter within a model (guess) for g(k' —k) (see,
for example, Refs. 31 and 32).

An evaluation of Eqs. (36) or (38) is complicated
slightly by the presence of the energy E(k) inside
the sum over k'. This comes about because the
Green's-function formalism is based upon infinite
order perturbation theory. If we had used Hay-
leigh-Schrodinger perturbation theory (to second
order), E(k) in the denominator of the right-hand
side of Eq. (29) and subsequent equations would
have been replaced by w(k). E(k) would then be
written as

(k k'+kk'IMP')'g(k' —k)
P,P~, [E(k) —k&u(k') +i ri]

(40)

In our subsequent paper containing numerical re-
sults, we shall also examine Eqs. (32) and (40) in
an attempt to resolve the questions raised by the
discontinuities.

To summarize, we have presented in this paper
a calculation of the surface-plasmon dispersion
relation appropriate for randomly rough surfaces
and based upon a quantum-mechanical formalism.
We have extracted the SP E(k) by defining momen-
tum-space Green's functions for both B and H, and
relating them through Dyson's equation. A series
of approximations led to an approximate average
proper self-energy in terms of which the Green's
function could be written in closed form. A numer-
ical study will be published as a subsequent paper
in which we will compare the above results with
other theoretical approaches as mell as new ex-
perimental data.
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