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Low-temperature specific heat and magnetic susceptibility of nonmetallic vanadium bronzes
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A linear y T term is observed in the low-temperature specific-heat behavior of the nonmetallic vanadium-

oxide bronzes of sodium and copper. The low-temperature magnetic susceptibility is equally anomalous and

points to a singlet or diamagnetic ground state. It is postulated that the V'+ centers in these bronzes form
near-neighbor pairs or bipolarons through deformation-induced attraction. The tunneling of these bipolarons

between pairs of sites gives rise to the linear term of the specific heat. The progessive breaking up with

temperature of the singlet bipolarons provides a natural explanation of both the magnetic susceptibility as

well as of the electrical conductivity.

I. INTRODUCTION II. EXPERIMENTAL RESULTS

The anomalous low-temperature linear temper-
ature dependence (yT) of the specific heat of non-
metallic glassy and amorphous solids was first re-
ported by Zeller and Pohl' and later in greater de-
tail by Stephens. ' It has been established that the
same kind of linear dependence obtains for metallic
spin glasses, ' and it has also been recognized that
such yT behavior may be quite universal as a com-
mon feature of all' disordered materials. The the-
ory of Anderson' et al. and of Phillips' establishes
this common feature as due to the possibility that
tunneling modes in glasses are the low-lying ex-
citations capable of providing for the linear spec-
ific heat or for other anomalous thermal proper-
ties. We point out in this communication that a
large yT term in the specific heat is observed in
a great variety of nonmetallic vanadium bronzes.
These are nonstoichiometric compounds' of form-
ula. iV1~V, O, where M is an alkali metal, Ag or Cu,
and x =0.3-0.6. We propose that the ground states
of these bronzes are singlet bipolarons (phonon-in-
duced electron pairs) and a tunneling motion of
these bipolarons between almost equivalent sites
produces the anomalous specific heat at low tem-
peratures. We will show that magnetic-susceptib-
ility as well as electrical-resistivity data ai e con-
sistent with the bipolaron picture, and this may in-
deed be a general feature of a variety of transition- '

metal bronzes. In Sec. II, the experimental results
are described; they include specific-heat, mag-
netic- susceptibility, and electric al- conductivity
data. In Sec. III the data are analyzed on the basis
of the bipolaron model: in Sec. IIIA, the bipolaron
model is presented, while in Secs. IIIB-IIID, the
specific-heat, magnetic- susceptibility, and the
electrical-conductivity data are confronted with
the bipolaron idea.

Single crystals of the vanadium bronzes were
made by heating mixtures of Na, CO, or Ag, CO3
with V,O, (Vanadium Corporation of America, pur-
ified grade). The mixtures were taken in a platin-
um dish through the following 72-h programmed
heating and cooling cycle: 30 h at 720'C, cooling
at 0.6'C min ' to about 650'C, then to 550'C at
about 0.1 C min ', and finally to room temperature
under the natural cooling rate of the furnace (2 to
3'C min '). After being leached with hot 6N aque-
ous NH3 to separate the bronzes from the dish,
the samples were mashed, dried, and ground to a
fine powder. X-rayphotographs showed patterns of
only P -vanadiumbronze structure. For analysis,
the bronzes were dissolved in hot sulphuric acid.
Vanadium mas determined by potentiometrie titra-
tion with Ce"after reduction to V"with SO,. Sodium
was determined by flame photometry; silver by elec-
trodeposition.

The low-temperature heat capacity was measured
with an apparatus as described previously. ' A
cylindrical sample fitted with a well for a german-
ium thermometer and wound with a heating coil is
suspended in a copper cryostat. Exchange gas is
maintained between the sample and the copper can
until the sample is at the desired starting temper-
ature, i.e. , 4.2 or 1.5 K. After evacuation of the
exchange gas, current is passed through the heat-
ing coil at constant power input while the temper-
ature of the sample is recorded. At the same
time, an independent heating coil mound on the
copper can supplies heat at a servo-commanded
rate to maintain the surrounding copper wall at the
same temperature as the rising temperature of the
sample. The temperature-time readout is convert-
ed to heat capacity data by an IBM 7094.

Six different bronzes, Na, »V,O» Na, » V,O»
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FIG. 1. Low-temperature specific heat.

NBQ 33 V205 9 NRQ 40 +205 Agp 33 +205 9 and KQ 20 &2O5
were examined. Figure 1 shows typical results.
In all cases, the data can be well described by the
standard relation C = yT+BT'9 where y and D are
obtained from the intercept and slope, respec-
tively, of the plots C/T against T'. The slope D is
related to the lattice spectrum through the charac-
teristic Debye temperature e~, by the relation D
= 1944 n/82D where D is in millijoules mole ' K '
and n is the number of formula units of the empir-
ical formula.

In Table I, we have tabulated the experimentally
measured y, D, and 0~'s for our samples. A lin-
ear low-temperature specific heat for copper-van-
adium bronzes was observed by Casalot' and has
been briefly reported. ' More recently, in semi-
conducting I i„,Ti, „0, Johnston et al."have also
observed a lineaj." term. These two sets of data
are also included in Table I. In some of our sam-
ples, a Schottky-like anomaly" below 3 K is ob-
servable, however our data, do not go down suffic-

iently low in temperature to permit us to analyze
.this extra contribution. As can be seen from Ta-
ble I, the y term is extremely large, and had the
samples been metallic wou1d have corresponded
to about several states per electron volt per van-
adium atom, at the Fermi level.

Extensive data are available ori magnetic-sus-
ceptibility measurements on the Na-vanadium
bronzes" down to 1.5'K; typical results are shown
in Fig. 2. The inverse susceptibility shows an ap-
parent Curie-gneiss behavior at the higher temper-
atures, often falli. ng sharply below the Curie-gneiss
line at; the lower temperatures. The same general
pattern is also observed in the copper-vanadium
bronzes' as well as in I i„,„Ti, „O~.' (In the sus-
ceptibility plot of Fig. 2, the following two major
corrections have been made: a core diamagnetic
term'4 of - t0 && i0 ' emu/mole and a temperature-
independent paramagnetic term of + 112 && 10 '
emu/mole, for the under-lying V,O, lattice. This
last value was measured by Sohn" for stoichiomet-
ric single-crystal spec pure V,O, .)

Single-. crystal electrical conductivity for Na, »
vanadium bronzes was measured by Perlstein"
and is shown in Fig. 3. I,og„o vs I/T plots show
semiconducting behavior at all temperatures, with

TABI E I. Low-temperature specific-heat coefficients of nonmetallic p-vanadium bronzes. & =yT+DT .

'Y

Composition (millijoules g ~ K 2)

D
(millijoules g K )

Debye temp.
OD (K)

Density of tunneling
states (cm eV ),&p Reference

Nap g5V)05
»o.28V2Os
Nap 3gVpO~

»o.4o V~OS

Ko.2o V2O"

Ago. 3&V~Os

Cuo 3pVoO5

Cup «V20
Cup grV205
Cup (,p V)O)

I ig 2Ti.) 80'

' In these samples

0.06
0.05
Q.052
0.03
0.08
0.037
0.19
0.29
0.15
Q, 12
3.6 mJ

mole K2

above ~7 K, Ozseems

x] p22

4.00 X10"
4.00 xlp"
2.4 x10"
64 x10»
4.93 x1Q. 2

1.46 x 1023

2.23 xlp"
1.15 x10»
9.2 x 10

x]p 181
xjp 3 189
X]P 189

1.4 x1p ~ 277.8
]..7 x1Q 3 252

x]p 3 189
5.44xlp ' lip
4.2 x10 3 125
5.25xlp ' 105
6.56 xlp 3 100
0.05 mJ

650 +40
mole K4

to jump abruptly by a factor - 1.3 to higher value.

this work

10
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gle crystal Nap 33V20&.

two activation energies for conduction, a, low-tem-
perature activation energy of 0.07 eV, and, above

100'K, a smaller activation energy of 0.06 eV.
The same general behavior has also been observed
by Casalot et a/. ,

' for the copper-vanadium bron-
zes.

III. ANALYSIS OF RESULTS ON A BIPOLARON MODEL

%epropose that-the ground states of the nonmetallic
vanadium bronzes are bipolarons or singlet Heitler-
London pairs of near-neighbor V' ions stabilized
through local lattice deformation. Pure and stoich-
iometric vanadium pentoxide is slightly paramag-
netic (temperature-independent) and insulating
(M' configuration of the V" ions, empty conduction
band corresponding to Vd orbitals) with a band gap
of about 2.3 eV," separati, ng the filled oxygen band,
from the empty d band. The interstitial alkali
metals, or Ag, or Cu act as donors. Published
ESR investigations" of variously doped V,o, give
evidence that these extra electrons brought in by
the donors do not remain in the conduction'band
but are localized as V4' centers. This is consis-
tent with earlier work on the NMR of Li-vanadium
bronzes" which showed lack of a Knight shift for
the lithium, indicating that Li is totally ionized.
Since Na has a lower ionization potential than Li,
one expects this to be true also of the Na-vanadium
bronzes. The ESR work on Na-vanadium bronzes'
shows that, indeed, the resonating centers are
V", S = ~, 3d' cations, whose concentrations cor-
respond to that of the interstitial metal atoms. "
The fundamental question that we shall ask our-
selves is whether these S = 2 spin centers remain
at T = 0 as localized isolated spins or condense out
as singlet S = 0 pairs of near-neighbor V" cations.
We shall show that such pairing occurs, if the lat-
tice is soft enough to allow sufficient local deform-
ation to overcome the near-neighbor Coulomb re-

pulsion of two V" centers. The resultant attrac-
tive interaction provided between two spins through
phonons is reminiscent of superconductivity and
can be viewed as localized Cooper pairs. It has
been clearly demonstrated by Schlenker et al.
that these bipolarons are the ground state of
Ti,O, , and, as they break up with texnperature, it
leads from nonmetal to metal transition in this
compound. Ti,o, provides a model case of bipol-
aron formation, which was previously analyzed. "
The fundamental interest of this kind of ground
state originates from the conjecture of Anderson"
that a collection of S = ~ centers in a solid will tend
to go at T =0 to a system of mobile or "liquid
pairs" of singlet bonds. Anderson carried this idea
further, "from the observation of lack of paramag-
netic centers in amorphous chalcogenides, to post-
ulate the formation of bipolarons in these materials
due to local lattice deformation, leading to an at-
tractive on-site interaction energy between two

spins (negative correlation energy U,«) and a sin-
glet state. The bipolarons that we postulate, as
the ground state of the vanadium bronzes, differ
froIn Anderson bipolarons in that the pairing be-
tween two S = ~ spins is not an on-site pairing but
an inter-site one. We shall show that these Heit-
ler-London bipolarons will in general lie energet-
ically way below the Anderson bipolarons.

A. Bipolaron model

%e shall consider. the simplest case of two elec-
trons between two sites a and b, each site having.
one single nondegenerate orbital. Adapting the
single-site Anderson Hamiltonian" to the two-site
case, we can write

H=H +H, +H

where H„H„and H, , are electron, lattice, and
electron-lattice terms. These are given, respec-
tively, by

He Eonfg+ Tov c
g g c;0

i =

foal

5 7, &) = 0& 5

+ U n]n] + '0 n, ,n~, ,
i= ~ 5 i, j=a, b

where &, are the unperturbed site energies, T',
&

is
the usual hopping integral, —U is the on-site Coul-
omb repulsion between an up and a down spin, ~
is the intersite Coulomb repulsion, between two
electrons on near-neighbor sites a and b, n, , is the
occupation operator of spin o, and c*,c are the us-
ual creation and destruction operators for ferm-
lons.

The lattice term is represented through
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where I3 is the stiffness constant of the lattice and

x,~ is the local deformation of the bond a-b, equiv-
alent to x„=[(R„B',„)/—R'„], R,» being the length
of the bond a —b. The electron-lattice coupling
term is written simply as

a„,= Z(n„+n„,)x„,
where A. is a coupling constant.

As Anderson" pointed out, this is a low-frequen-
cy approximation but contains the essential physics
of the problem. Eliminating x„ from (lb) and (lc)
we get

x'„= (-A/P)(n„+ n, ~ ).

Substituting it back in (lb) and (lc), we obtain

If, +a„,=( X'/2P)( -n+n„)'.
We can now write for the full effective Hamiltonian

+egg = ~~a y c+ Tay~av Cga
a, a

' '
a, t

+ Uerf ~ +i +i + ef f
i=a, b i, 1=@,b

sff S ( sff ~sff)

—~ [("'.f f —'0.ff)'+ '6T'.s]'"
+sff sS/( sff +sff) ~

for U„.f —'0„,»4T, . (4a)

This ls the blpolaronlc ground-state singlet

I ~& -$4, (r, ) 0,(r,)+4,(r.) 0,(r,)

+ s [x+ (x'+ l6)'~'][+,(r, ) jb,(r, ) + ft, (r, )y, (r,)]].

where x„x, are the electron coordinates of elec-
trons I and 2 with spin-function Q~P~y etc.

p
and x

=(U —'0)/T„provides for the amount of admixture
of the ionic state Q, (r, )&tf,(r, )+ p, (r,)g,(r, ) to the
pure covalent state of the first term of Eq. (4b).
Next, we have the triplet state

(4c)

with its eigenfunction triplet

po

- [A.(r.)4,(r.) —A.(r,)4,(r,)]

e =e, —X'/P,

U„,= U 2~'/P, V „,= ~ - 2~'/P,

T„=T,', exp(- X'/2J3fd, ),

(Ba)

(I o,& IP.&+ I o.& IP,&)

I

I~,& Io,& (4d)

This is allowed by the singlet Anderson bipolaron

( ), being the fre(fluency of vibration of the atoms
(off', = /3/fn) We no.te in Eq. (3), that every term of
the Hamiltonian (1) has been profoundly modified
due to interaction with the lattice. The bare elec-
tron has now become a polaron, A.'/p being the po-
laron binding energy corresponding to the unde-'

formed state energy &,. T,~ is the new overlap in-
tegral reduced from bare electron overlap due to
phonon overlap factor; this is the Holstein reduc-
tion factor" and is an extremely sensitive function
of temperature, going down rapidly as temperature
rises. U,« is the bare Mott-Hubbard repulsion
term reduced through the electron-phonon coupling
term 2X'/p. Similarly '0, ff is the intersite Coul-
omb repulsion enormously reduced from its bare
value. These last two terms raise the possibility
of negative (attractive) correlation energies in a
strongly, electron-lattice coupled system, pro-
vided 2X'/P - U & '0. For the two- electron two- site
Hamiltonian (3), we can have the exact solutions
for the eigenfunctions and the eigenvalues. These
are enumerated below in the order of increasing
energy:

&, =2&+ U,«,
with eigenfunction

I» = [A.(r, )4,(r.) —@,( ) rA, (r.)]

(4e)

+-'- [(U„,—'0„f)'+16T',s]'~'. (4g)

The antibonding wave function is

I6& =[4,(rf)4s(r, )+ 4,(r.)&ts(r, )

+-,'Ix- (~+16)'"]
x [y,(r,)y, (r,)+ y, (r, ) y, (r,)]]

(4h)

The four sets of energies with typical electron

We note the purely ionic nature of the wave function

The highest eigenenergy is the antibonding singlet
orbital corresponding to (4a) and is given by

e5 + ff ~( ff + ff)
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2~+ Ueff+2J

2'+ "eff

2&+ Veff

2b, 2J
2&+ Veff'-2J

configurations are shown in Fig. 4. We see that
because U» 'U the Anderson bipolaron mill be least
likely, except in cases of isolated impurity centers
which do not have a near neighbor to give rise to
the Heitler-I. ondon singlet bipolaron. This latter
is stabilized as long as either 'U, « is negative or
if 2J &'U,«where 2J is the singlet-triplet exchange
energy given by, from Eg. (4a) and (4c),

2J = 4Ta~/(Us« —'U.~f). (5)

In Fig. 4, the completely dissociated bipolaron
(i.e. , two widely separated polarons) have energy
2e, shown by the dotted line, and we have drawn
the figure with a small positive 'U, «, so that the
triplet state lies above the energy of the two sep-
arated polarons. If 'U, «becomes negative the trip-
let state would become more stable. than the sep-
arated polarons. We note from the figure that the
energy to dissociate the ground-state singlet bi-
polaron is 2& where, from Eq. (4a),

2&= 2J- 'U, «.
We note from Eqs. (3a), (5), and (6) the enormous
role that the lattice must play if a singlet state is
to be achieved; because the superexchange Eq. (5)
term is generally small (T,~&'U, «&U„,), one needs
a greatly reduced intex'site repulsion term to give
an eventual attractive interaction between two

spins on near-neighbor sites. The two basic in-
gredients to achieve the singlet ground state are
that the lattice has to be soft, to allow a large cou-
pling constant A. , and the initial wave function of
the isolated electron must be sufficiently localized
(either due to narrow bandwidth or disorder) to
permit a large A. (or Frank-Condon shift). Both
the Na- and the Cu-vanadium bronzes have rel-
atively small Debye temperatures 150 K. They

Electron Conf igurotions 8 Energy Levels

FIG. 4. Two-electron configurations and their ener-
gies. Ground state is the bonding singlet orbital, follow-
ed by the triplet state (p), and the singlet ionic state
(y), the highest being the antibonding singlet orbital {6).
The dashed line refers to the energy of two widely
separated single polarons.

are also highly disordered, due to random po-
tentials of the alkali atoms. We beli. eve that in
such systems the essential conditions are met to
give rise to a singlet ground state from S =- ~ spin
centers. We mill analyze the specific-heat, mag-
netic- susceptibility, and electrical- conductivity
data on the postulated singlet ground state.

VANADIUM CHAINS IN NoQ 33 V(2)05
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FIG. 6. Two vanadium chain configurations along the

b axis. Bight-hand chain shows two alternate configura-
tions of the bipolaron on the V(&~ chain.

B. Specific heat

If we have a strictly two-level system, with en-
ergies e, = 0 and z. =6, the specific heat will be gi-
ven by"

(5/k~ T)2 exp(5/ks T)
II+ exp(5/&, T)]'

For A'~& ~~, this gives rise to the so-called Schot-
tky anomaly C =&e(5/2keT)'. If however the sys
tern is quite random, then one wiO expect a certain
distribution of 5, such that all values of 5 are eq-
ually likely up to some limit 5,. In ouch a case,
one obtains the heat capacity linear with T, up to
k~T &5,. This analysis was first proposed for dil-
ute magnetic alloysby Marshall" and is at the heart
of the two-level tunneling-mode argument of An-
derson'-Halperin-Varma-Phillips' (AHVP) for
glassy systems. The nature of the centers execut-
ing the tunneling motion in the AHVP model re-
mains unspecified and highly ambiguous. If we
consider that the nonmetallic vanadium bronzes
are bipolaronic glasses, then we can imagine„as
in Fig. 5, a typical bipolaron and its tunneling mo-
tion, as indicated by the arrows. In the absence
of disorder, such a 'rattlesnake" tunneling motion
of the bipolaron along the V chains could give rise
to certain bipolaron band conductivity. In the pre-
sence of disorder, one has a typical tmo-level tun-
neling system, the initial and the final configur-
ations separated by certain energy 5, &k~T. The
configuration of the two sets of V chains had been
worked out for Na, » V,O, by Wadsley, ' and we
presume the bipolaron to form preferentiaQy on
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1 2 2y= —,', n' nOk~, (6)

where n, is the density of tunneling states. If we
assume that 5, =k~T =10 ' eV, this gives us 10"
states/cm' executing the tunneling motion. Only
one out. of a. thousand bipolarons is thus able to ab-
sorb a phonon and tunnel. In, order to convert the
y of Fig. 1, we have used a, mass density of 2.5 g/
cm' for the bronzes. This reduced number prob-
ably reflects a steric hindrance, imposed by the
fact that for a bipolaron to tunnel there must be an
empty site nearby on the same chain, and thus one
ought to expect in the y term, as a function of con-
centration, a. maximum. The number n, ( 10"per
cm3 per eV) gives us an approximate value of the
density of states at the ta,il of the bipolaron band
at the Fermi level. We may note that in the ab-
sence of disorder or tailing, the density of states
at the Fermi level would be zero, the Fermi-level
remaining pinned in the middle of the single-par-
ticle excitation gap 2~ of Eq. (6).

C, Magnetic susceptibility

The magnetic susceptibility behavior of these
bronzes is very characteristic, as we can see in
Fig. 2, the inverse susceptibility showing an ap-
parent Curie-Weiss behavior at the higher temper-
atures, with a. deviation from the Curie-Weiss line
as the temperature is lowered. This behavior can
be explained by supposing one has at least two con-
tributions to the magnetic susceptibility, one of
the majority, host V~" spin (N 10"/cm', S = a)
with antiferromagnetic interaction and, at lower
temperatures, the usual paramagnetic impurity
contribution of the form C/T. But what is disturb-

the chain with the shortest V —V distance. Recent-
ly Phillips" has shown that the Anderson bipolar-
ons cannot give rise to tunneling motion, and hence
to the linear term in the specific heat, because of
the inherent difficulty of two electrons on the same
site tunneling out of it at the same time. No such
difficulty exists for the Heitler- London bipolaron,
as shomn in Fig. 5, for it suffices for only one
electron of the pair to tunnel, causing the bipolaron
to flip flop betmeen two equivalent configurations.
It is quite obvious that beyond a critical concen-
tration of bipolarons, tunneling motion within a
chain would be impeded, causing the linear term
to drop in magnitude, which is what is seen experi-
mentally at the higher sodium or copper concen-
trations. In point of fact, not all the bipolarons
can participate in the tunneling process. This is
seen by examining the density of the tunneling
states (eV ' cm '), as tabulated in the next-to-last
column of Table I. This density is arrived at by
the use of the AHVP a' formulation of y,

2.0

1.5

O

1.0
O

Kl

/ Impurity Susceptibility

+ 05 I I I

2 3 4
T'K

50 1 00 150
I I I I I I I I I I I

200 250 300

FIG. 6. Effective Bohr magneton per atom vs tempera-
ture; circles are the experimental points. Inset shows
the Curie law for the impurity susceptibility.

ing in such an explanation is the singular and re-
markable fact that even in such large spin t'.oncen-
trations, the host spins do not seem to order anti-
ferromagnetically at all, down to the lowest tem-
peratures of measurement (1.5 K for the Na
bronzes, 0.5 K for Li„„Ti,„O~). One can get an
idea of the average magnetic moment by replotting
the data in the manner used by Van Vleck":

P= (XskT/Np')'r', (9)

vrhere p is the average magnetic moment, X the
measured susceptibility, and p. the Bohr magneton.
This plot is seen in Fig. 6 as a function of temper-
ature for the Na, »V,O, sample. The figure would
indicate that the majority spins are entering, as
the temperature is lowered, to some form of non-
magnetic, zero-spin state. It is only towards 300
K and upwards that the effective magnetic moment
seems to approach the S =-,' spin only value

(g t S(S +1)]'r~) of -1.8p, , corresponding to a lo-
calized V4' center.

In order to analyze the bulk susceptibility data
further, it is essential that one takes out the im-
purity contribution. If we suppose that the low-
temperature deviation from the Curie-Weiss be-
havior is uniquely due to paramagnetic impurities,
one can draw a C, ,/T line, for the low-temper-
ature points, this is seen in the inset of Fig. 6 for
the NaQ ~ 33V265 sample. The data indicate a Curie
constant C-, ,= 0.001. Since the dominant paramag-
netic impurity is Fe', using S =~ gives us an im-
purity concentration of about 0.05mo1%. This cor-
responds to about 10" impurities/cm' which is
what we have in the sample. We note that such a
paramagnetic impurity concentration mould be ad-
equate to give us also the Schottky anomaly in the
specific heat, seen in some samples.

We shall nom analyze the rest of the bulk suscep-
tibility, on the bipolaron model. Let us suppose
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that at T = 0 we have the singlet bipolarons and that
they break up progressively as the temperature
is raised. Each bipolaron needs an energy 24
(Fig. 4) to become two separated localized spins,
or, one needs an energy & per single-particle ex-
citation. %e shall suppose that the triplet state is
way above in energy and does not contribute to
susceptibility except for virtual excitation, pro-
viding for the temperature-independent Van Vleck
susceptibility X».33 The total susceptibility can
be written as a thermal average

X(T)= Xv,P(T)+ X,(T)l.l —P(T)1, (1o)

I

CO

E

E

—[x

2000—

1500-

iooo
0 40

~edI
~O Theoreticai curve

0 Experimental points
0

I I. I
'

I I I I I I I I

80 (20 i 60 200 240 280

x (T) = Ng'S(S+ 1)p.'/3kT (10a)

and X» is the Van Vleck term given for N s-inglet

pairs, by

xvv = BNP'/2J (10b)

The simplest derivation of P(T) can be obtained by
referring to Fig. 7 for the two-level system, where
& is the energy necessary to create one nonpaired
localized spin. The. probability of the single-par-
ticle excitation ls then exp(-&/kT), to give us

P(T) = P( /
— -)=tant(~/2kT).

1+exp(- &/k T)

The susceptibility (10) is then

X(T) = Xvv tanh(&/2kT)+ —[1—tanh(&/2kT), (12)C

where

C = Mp, 'g'S(S+ 1)
3k

M is the number of donor ions per mole, assum-
ing each donor gives one electron, 8 = a. In Eq.
(12) it is extremely difficult to obtain an a priori
evaluation of yvv, as we do not know the singlet-
triplet spacing 2J. In Ti~O„22 it is found to be
small: 2 && 10 "emu/mole; it is probably even
smaller in the vanadium bronzes. %e have eval-

unpaired electron

electron in the paired state

FIG. 7. Ground and the excited state of a electron;
excited state refers to a broken pair.

where P(T) is the probability that an electron has
remained in the paired singlet state and 1 —P(T)
is the probability that the electron has been ex-
cited. In Eq. (10), X~(T) is the paramagnetic sus-
ceptibility of localized spine given for N electrons/
mole, by

FIG. 8. Inverse magnetic susceptiblity (with impurity
contribution subtracted) vs 1/7' solid line, theoretical
curve; dots, experimental points.

uated Eq. '(l2) for the case

Xv v = l.4 X 10 ', &/k = 100 K.

Figure 8 shows the results, evaluated for T &60
K for which the experimental data points are avail-
able, for Nap ps+205 The almost perfect fit with
the experimental data is to be noted. The specific
value of ~ has been chosen with an eye on the con-
ductivity data. It is to be emphasized that no anti-
ferromagnetic interactions need be invoked to ex-
plain the bulk susceptibility. In point of fact, ex-
trapolation of the high-temperature inverse sus-
ceptibility to extract the Curie-gneiss 9 often gives
ridiculous numbers' and is nonphysical. In Fig.
8, for the experimental points, the impurity con-
tribution has been subtracted.

D. Electrical conductivity

%e shall not dwell in any detail on the electrica1. -
conductivity data (Fig. 3) of these bronzes. Ac-
cording to the bipolaron model developed above,
the temperature T~ above which the activation en-

'

ergy goes from high to low value will correspond
to AT &. The conductivity is by excitation of the
localized polarons across the mobility edge to the
d conduction band, as Mott" has suggested for the
tungsten bronzes. It is transparent that the acti-
vation energy for conduction below T~ will contain
the extra energy & necessary to create the single
particles. In our analysis, we have supposed that
& is a constant, but nothing prevents & from being
temperature-dependent and allowing for a. true
phase transition:, at g =0 at T =T . Unlike
Ti,O„we have no evidence of a phase transition
in the vanadium bronzes. Although bipolaron tun-
neling and hopping would occur, the dominant con-
duction mechanism in these bronzes wi].l be single-
particle excitation to the mobility edge at all but
the lowest temperatures.
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FIG. 9. Schematic extra low-temperature specific
heat, when y7' is comparable to the Schottky term.
Lattice contribution not included in the figure.

IV. DISCUSSION

We have shown in Secs. IIIB-IIID that the low'-

temperature, specific-heat, magnetic- suscep-
tibility, and conductivity data of a variety of non-
metallic vanadium bronzes can be unified in a
coherent whole on the basis of a singlet ground
state of bipolarons or deformation-induced elec-
tron pairing. The most striking is the linear
specific heat which is explained naturally as due
to bipolaron tunneling. Sandin and Keesom" had

reported earlier on the observation at low temper-
atures of an extra specific heat above the lattice
T' term in reduced rutile TiO, „; their data show,
however, the extra contribution to be independent
of temperature. It is to be remarked that, if the
paramagnetic (Ti") centers go in reduced rutile
at T = 0 to singlet states, as in Ti,O„ the joint
Schottky and the bipolaron yT term would explain

the rutile data, as shown in Fig. 9. The Schottky
line is the Eq. (7) of our Sec. III, and the yT term
falls off beyond a temperature T when the tunneling
ceases and merges into hopping or other multipho-
non processes. The resultant double-humped
specific-heat curve wou1d obtain if the y term (in
reduced rutile, y would be much smaller than in
the bronzes, as x corresponds to 10" Ti"/cm').
There will be a large temperature segment where
the extra specific heat will be flat, and this may
be an alternative explanatioq for the rutile data.

The pairing interactions that we have proposed
here for the vanadium bronzes is not without anal-
ogy with its more well-known siblings as seen in
VO»" or V40, ." Ragle, "as early as 1962, post-
ulated their presence in order to explain his ESR
data on reduced V,Q, . More recently Bang and

Sperlich" have actually laid down the evidence of
this kind of pairing with their ESR data on

Pp gMoQ, bronzes. How close the phonon- induc ed
pairing phenomenon postulated here is to super-
conductivity can be gauged by the fact that, al-
though I,i„„Ti,,Q is semiconducting, LiTi,Q is
a superconductor with a Tc=12 K." The localized
Cooper pairs that one has seen in Ti4Q„" and that
we have invoked in these vanadium bronzes, may
indeed be a genuine precursor to true superconduc-
tivity.
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