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A nonlocal approximation to the exchange energy and the exchange potential of an inhomogeneous electron
gas is presented that is based on the conservation of the main characteristics of the correct Fermi hole.
Tested for atoms, it gives better results than the local-density approximation. A new kinetic-energy
functional in the Hartree-Pock approximation is also derived that depends exphcitly on the exchange-
correlation factor. %'hen our nonlocal approximation is used in it, reasonable results for the kinetic energy of
atoms are obtained.

I. INTRODUCTION

The exchange-correlation potential is of major
importance in the theory of atoms, molecules,
and solids. However, exchange and correlation
effects cannot be treated exactly with presently
known theories, For free atoms, the Hartree-
Pock method can be used to include exchange rig-
orously, but this method is not practical for com-
plex molecules or solids. Because of this, approx-
imations based on Slater's local-density approxi-
mation' (xn method, ' Kohn-Sham' local-exchange-
eorrelation method, local- spin-density approxi-
mation') have been widely used. These methods
provide practical computational schemes and are
rather sueeessful. However, exchange and cor-
relation are nonlocal effects, and several recent
papers have demonstrated the limitations of the
local-density approximation. " Gradient cor-
rections have been proposed" ' as systematic
improvements of the local-density approximation,
but real systems have large density variations,
and the accuracy of gradient expansions with a
finite number of terms in regions of high gradients
is doubtful. The use of gradient corrections failed .

to improve results in band-structure calculations'
and was found inadequate in calculations of total
energies and electron densities in surface prob-
lems. '"" It is therefore of interest to pursue non-
local approximations that are not based on gradient
expansions.

The nonlocality of the kinetic energy is closely
related- to that of exchange and correlation. This
is particularly important in energy-density-fune
tional theory. '" The central theorem of that theo-
ry states that the ground-state energy of a many-
eleetron system is a universal functional of the
electron density, " Thus, all ground-state proper-
ties can be obtained if the functional is known.
The simplest approach to the kinetic-energy func-

tional is the local-density approximation. This
can be improved by using a density-gradient ex-
pansion, "which in practice must be cut off at
finite order. These finite gradient expansions
have proved useful in the study of atoms, "mole-
eules, '4 and solids, "but have a well-known defect'.
the electron distributions obtained by minimizing
a functional in which the kinetic energy is given by
a finite number of terms in a gradient expansion
cannot reproduce density oseillations such as the
shell structure of an atom or the Friedel oscilla-
tions. Kohn and Sham' solved the kinetic-energy
problem by deriving a set of one-electron Schrd-
dinger-. like equations from the variation of the en-
ergy functional, thus making energy-'density-func-
tional theory formally identical to Hartree (or
Hartree- Pock) theory. However, the kinetic-
energy functional is needed if the theory is to be
expressed in terms of its fundamental quantity,
the electron density, and if it is to be used as a
base to improve statistical theories of the Thomas-
Fermi type.

The kinetic and exchange-correlation energies
are related through joint density matrices or,
equivalently, through the exchange- correlation
charge density. In this paper, we'are primarily
concerned with Bpproximating the exchange and
kinetic energy by starting with the exchange charge
density. Nonlocal approximations to exchange have
been proposed" " that avoid gradient expansions,
but rely on conserving total exchange charge and
satisfying some of the limiting conditions on the
exchange charge density. An approximation re-
cently proposed by us" and by Qunnarsson et al."
is based on an expression for the exchange charge
density that conserves total exchange charge, sat-
isfies the limiting conditions at the center of and
far from the exchange hole, and reduces to the
free-electron form for the case of a homogeneous
electron gas. This approximation was tested by
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computing exchange energies and exchange-energy
densities in light free atoms. The results showed
significant improvements over the local approxi-
mation and were closer to the Hartree-Fock re-
sults. Because of the large density variations in
free atoms, this is quite encouraging, and the
approximation should be satisfactory in solids,
provided that correlation is also included.

In this paper, we derive the corresponding ex-
change potential. needed in calculations of one-
electron properties and compare it to the quan-
tum-number averaged Hartree-Fock exchange
potential in the free atoms He, Ne, and in Cu'.
The results show that our approximation is a bet-
ter representation of the averaged Hartree-Fock
exchange potential than either the Slater or Kohn-
Sham local-density approximations. We also de-
rive a formula that relates the kinetic and exchange
energies in the Hartree- Fock approximation
through the correlation factor for exchange. This
allows us to' translate our exchange approximation
to an approximation for thekinetic energy, which
was texted for the Ne and He atoms. For He, our
result is exact. For Ne, our result is an improve-
ment over the local approximation, but not as
dramatic an improvement as for exchange. The
reasons for this are discussed.

II. EXCHANGE ENERGY

The Hartree-Fock exchange energy is, ' in atomic
units,

E„Hp =E„„p)+E„HF
1

[pf(1)U„»&(1)+pb(l)U„»&(1)]dv, y (1)

where

1
U„»&(l) = —E n, n,. u,". (1)u,". (2)u,.(1}u,(2) —dv,

I'4(1, 2)
p&(I)p&(2)

(4}

p'l(2) = p t(I)

Ci(ly 2)=C &&2)(ly 2)y

(5a)

(5b)

where C,«» is the correlation factor for a homo-
geneous electron gas of density pk(1), given by"

9 siny —y cosy '
C (1 2)= ——

p~ (»)

&
= r„[3v'p~(I)]'".

(6)

Inserting Eqs. (5)-(V) into Eq. (3) gives the local
approximation to the exchange energy as

6»(3
E„~=——— p0 1) ' '+ p4 1) ' dp, . (6)

The authors" and Gunnarsson et al."have re-
cently proposed that the exchange energy be ap-
proximated by retaining p&(2) in Eq. (3) [i.e. , re-
jecting assumption (5a)] and using, for Ck(1, 2) the
functional form of the correlation factor for the
homogeneous gas, but replacing the density by
an average density determined by the conservation
of exchange charge. That is, we choose the cor-

)

relation factor to be

(s(sy —y ssy)'

where

y = r„[3«'pf(l)]'~'

and pf(1) is determined by

(9)

(10)

pi(2)C-, «, )(1,2) dv, =-1.»

I"0(1,2) is the spin-dependent second-order den-
sity matrix. "~»

In the local-density approximation, it is assumed
that

(2)

with a similar formula for spin down. In these ex-
pressions, pf(1) is the density of electrons with
spin up at the point r„ the u,. are the spin orbitals,
and the n& are the corresponding occupation numb-
ers (zero or one). In terms of the correlation fac-
tor C(1, 2), Eq. (I) can be written as

1 1Z, „=— py(1) —p)(2)C 1(1,2) d, )d,
12

Using (9) in (3) gives a nonlocal approximation to
the exchange energy:

E„„„=— pf(I) C;«, )(1,2) dv, dv,
I p i(2)

12

U„„L&(1)= pf(2)C- »(&1&, 2)r»dv, R (13)

+ — p)(1) C &&, )(1 1 2) dvR dv&. (12)
1 pt(2)
2

Comparing this to Eq. (1}, we get a nonlocal ap-
proximation to U„».

where

1 1p)(1) —p)(2)C)(1, 2)d .) d „~i2

(3)
PN(1) = p4(1) = Rp(1),

Uy(»&(I) = U„«r&(1),

(14a)

{14b)

For the nonspin polarized case {as in Ref. 17),
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and Eq. (1) becomes

1
E,„,= — p(1) (

where

(2)C(1,2),,'d, )d „(12)
approximation. "" This wdas the result of a detailed
improvement of the exchange-. energy dens&ty over.
all r'egions of the atom.

III. EXCHANGE POTENTIAL

C(1, 2}= 2I'(1, 2)/p(1) p(2) —1. (16)

[Note that the factor of 2 appears in (16) but not in
(4).]

For the non-spin-polarized case, Eq. (12) re-
duces to

1
gNL 2

P(l) I ( )P,2C(1), )-,l2dd, , (11)

Equation (17) was tested for free atoms"" using
Hartree-Fock electron densities, and the results
showed a great improvement over the local-density

The Hartree- Fock exchange' potential is, for the
ith electron,

FE sr &(1)

Pn& fu,*(1)u&*(2)u&(l}u,(2)r, ', dv,

In the sum on j, only terms with the same spin as
that of electron i give a nonzero contribution. , To
simplify (18), Slater' replaced it by an average
potential defined by

1

Ir„„,:)(1)]„=-,Z p, , , ())u) (2) )(1),(2)r ' d,(Z p), (1) ., (1) (19)

This poteritial still poses great practical difficul-
ties for computations in complex systems, so
Slater further simplified it by using the local-den-
sity approximation-:

V„„(1)= 3[((3/4v) p~(1)]'~'. (2o)

P„)())= f,)(2)C )p)(l 2)r I

or, in the non-spin-polarized case

(21)

We note that the right-hand sides of Eqs. (2)
and (19) are the same. Therefore, Eq. (13) gives
our nonlocal approximation to the average exchange
potential, i.e. ,

P, (1)= J p(2)C-, ), )(),2)r, ', dr,

«, [p]
~E DP( ) 6 (r) (23)

where E„[p] is the exchange-energy functional.
We start with E„~of Eq. (17) and calculate its
variation corresponding to the variation in the
electron density. This gives

IV. NONLOCAL APPROXIMATION TO EXCHANGE
POTENTIAL IN ENERGY-DENSITY-FUNCTIONAL THEORY

In the energy density functional theory, '" the
exchange potential is given by

6E„N&,[p] =
2 r,,'p(1)p(2) 6C-&»(1, 2) dv, dv, + — r»'p(I) 6p(2) [C-&»(1,2) + C-&»(1, 2) ]dv, dv, .1 1

,6C-, &, )(1,2)
5p ].

(25)

p(1) is a functional of the electron density,

Because of the form of C-&»(1, 2) [see Eqs. (9) and
(10)], we have

6P(1), 6C-p&2)(lr 1')
2 ( )

C )„(12)=-p(-,1') , '2 (-)' 'd, )
(27)

Using Eqs. (25)-(27) in (24), and relabeling in-
dices, we get the following- approximation to (23):

6p(1) = 6p(3) dv, .6p 1)
6p(3)

(26)

)

To obtain 6p(l)/6p(3), we use the exchange charge
conservation condition of Eq. (11). Setting the
variation of Eq. (11) equal to zero gives

1
V~OF m

where

1
p(2)C-&»(1, 2)B(l, 2) dv, (26)

22p(2)[C &2)(1 2 2) + C &2)(1 2 2)]dv2
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6p(2)

X 3
Cp{2) 2y 3

P 6 (2) 3

The variational, derivative in (29) is a known, well-
behaved function of p, so the potential of Eq. (28)
can be calculated once the electron density is
known. However the computation is tedious, and
is not as practical as that for the potentials de-
fined by Eqs. (21) and (22).

The difference between V„~ of Eq. (22) and

V„~~ of Eq. (28) has the same origin as the dif-
ference between the Kohn-Sham' and the Slater'
local potentials. In order to obtain the approxi-
mate exchange potential from the exact exchange
energy of Eq. (1), two steps are taken here as
well as in the Kohn-Sham or Slater methods: one
is variational. in nature and the other is an approx-
imation. In Slater's method the variation is taken
first and leads to the exact Hartree-Fock potential,
V„» of Eq. (18). The local approximation is then
made in passing from V„» to the V„~ of Eq. (2O).
By contrast, , in the Kohn-Sham method the order
is reversed: first, the exchange energy functional
is written in the local approximation as in Eq. (8)
and then the variational derivative is taken. The
two steps mentioned do not commute and the re-
sult is that the Kohn-Sham and the Slater potentials
differ by a multiplicative constant.

Our work is completely parallel to this, except
that we are dealing with a nonlocal approximation.
Nevertheless, the difference between the two final
potentials is not just a constant but is more com-
plicated. If w'e regard V„~ and V„»~ as approx-
imations to the exact V„» of Eq. (18), then it is
not, ea.sy to say which of the two will give better
results because V„~ and V„»~ are both quan-
tum-number- independent approximations to V„»,

V. KINETIC ENERGY AND THE CORRELATION FACTOR

The kinetic energy of a many-electron system
is (in atomic units)

where I"(1'll) —= I"(r,'lr, ) is the joint, density ma-
trix."" In Hartree- Fock theory, the joint den-
sity matrix and the two-particle density matrix
I'(l, 2) are related by

r, (1~ 2)r, (2 l I) = 2p(l) p(2}- 4r, (1,2).

Using Eq. (16), this gives

r, (1 l2)r, (2l I).=-2c(1,2)p(1)p(2).

We now assume that

r, (l l2) = r, (2l I)

(31)

(This assumption is not completely general, but
is correct for instance for atoms with filled shells
and for the homogeneous electron gas. ) Combin-
ing (32) and (33) gives

r, (1
l
2) =&,(I, 2)[p(1)p(2)]'", (34)

A.„(l,2) -=[-2C(l, 2)]''2.

Taking the Laplacian of (34) gives

which does depend on quantum number and the
kind of average potential that V„~ and V„»~
represent is not the same [see Ref. (2) for the
local case]. In the local approximation, the Kohn-
Sham potential leads to better eigenfunctions, while
the Slater potential leads to better eigenvalues and
a compromise is obtained with the empirical xa
potential. Aside from these points, it, is computa-
tionally easier to use V„~ than V„»~.

~'r. (II2)=[p(1)p(2)] l g g (I 2) —'~ (I 2}p(I)- I p(2) / ~gp(l) l
+ —'2 (1,2)p(l) '~'p(2)'~'~'p(l)

+ p(1) 'i'p(2)'i''7, A (1,2) ~ Vp(1).

If we define a kinetic-energy density ez(l} —=ez(F, ) by

(36)

(37)

then using Eqs. (3O) and (36), we get

s (1)=-lp(I)&,&,(1, 2) l;, ;,+-'&,(I, I)[l~p(I) I'~p(I)]--& (I I)v p('}- ~ ".(I 2'I;=-; ~p(I}.

In the Hartree-Fock approximation, A„(l, 1)=1 exactly, so that

e,(1)=--'p(I)&&„(1,2) l;, ;,+-'[l&p(I) l'/p(I)]- —.'~ p(1) ——.'~,~.(1,2) l,-, -,, ~p(I).
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I'(r, Ir, ) = [&(r,)J(r,)]'~'r, (R, IR,), (43)

where I'o is a known joint density matrix (e.g. ,
for the homogeneous electron gas) and J is the
Jacobian of the transformation

This is a'formally exact expression [subject to
condition (33)] for the Hartree-Fock kinetic ener-
gy, which displays the close relation between the
kinetic and exchange energies through the correla-
tion factor. Thus, approximations for exchange
that are based on approximating the correlation
factor can be translated to approximations in the
kinetic energy. However, the kinetic energy de-
pends on the derivatives of the correlation factor
whereas the exchange energy depends on integrals
of the correlation factor. We therefore would ex-
pect that the kinetic energy is more sensitive than
the exchange energy to the details of approximate
correlation factors.

The simplest approximation to (39) is obtained
by using the local-density expression [Eq. (6)] for
the correlation factor [and therefore for Az(1, 2),
through Eq. (35)]. Equation (39) then gives the
following approximation to the kinetic energy

(40)

The first term in (40) is the usual kinetic-energy
density of a homogeneous electron gas, and the
second term is identical with the gradient correc-
tion of Weizsicker. " However, it must be
stressed that Eq. (39) is not a gradient expansion.
The second and third terms in (39) [and thus the
last two terms in (40)] are exact. Improvements
on the correlation factor will change the first
term in (40), but not the others.

In density gradient expansion theory of the kine-
tic energy, there has been some controversy as
to whether the correct coefficient for the, Ivp I'/p
term should be —,', or —,', as derived by Kompaneets
and Pavlovskii' and by Kirzhnits. " Jones and
Young'"" have shown that each coefficient is valid
for different types of density variations. In our
method, this controversy does not arise.

A nonlocal approximation to the kinetic-energy
density is now readily obtained from our nonlocal
approximation to exchange. Using Eq. (9) in Eqs.
(35) and (39) gives

sr~= i'(3+)'"j}'"P+8(I&p I'~p) —-'&'p (41}

Our method for the kinetic energy is similar to
that of March and Young, "who worked directly
with the joint density matrix. They also found the
Weizsacker term as part of an exact kinetic-ener-
gy density, and that it is the first (nongradient)
term that is subject to approximations. In their
method, they approximate the joint density matrix
by

(43)

Our method, however, corresponds to the trans-
formation of the form

x/3 -x/3
&~s P &i2

Since p is determined as a kind of average over
the exchange hole, (42) is not sufficiently general
to cover our case.

VI. VIRIAL THEOREM

The nonlocal approximation for the exchange
and kinetic energies proposed here satisfies the
virial theorem. To prove this, it is only necessary
to show" that if all distances are multiplied by a
scaling factor g, so that the density scales as

(45)

then the kinetic and potential energies scale as

(&r)„=n'(&r)„, (46}

VII. NUMERICAL RESULTS FOR THE EXCHANGE

POTENTIAL

To compare the V„~ with V„„and (V„»}„we
performed model calculations for the He and Ne
atoms, and for Cu', using Hartree-Fock densities. "
The results for (V„»)„are taken from Kim and
Gordon" for Ne and from Hartree" for Cu. The
different potentials are plotted in Fig. 1-5. The
Kohn-Sham local potential V„K~, which is' two-
thirds of V, L is also plotted. (The potential of
the Xn method is intermediate between V„L and

V„„s). The figures show that V„~ gives the best
approximation to (V„„F),„, though it must be rec-
ognozed that V„K~ was not derived as an approxi-
mation to (V„»)„. Note that V„~ is slightly
smoother and slightly more negative than (V„»),„.
The NL approximation for He is exact and has been

(47)

Since the argument. of the correlation factor we
use is a product of the cube root of a density and
a distance, it is easy to show that the exchange
energy (17) scales as Eq. (47), and that the kinetic
energy, using Eq. (41), scales as Eq. (46). This
shows that our approximation satisfied the virial
theorem.

In fact, any approximation based on this correla;
tion factor will satisfy the virial theorem, if its
arguments are the products of a distance and the
cube root of an electron density. However, this
must be the case, since Eq. (39) is exact, and the
only way the kinetic energy can scale properly is
for the arguments of A to be dimensionless.
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commented elsewhere. "'"
The kind of results to be expected if V„„Lis used

in self-consistent field calculations can be antici-
pated from the work of Garrett and Mullins, "who
used (V„»)„in self-consistent calculations for
Cu', Ne, and Ar, and found a significant improve-
ment over the use of V„~. Since V„~ is a good
approximation to (V„»),„, its use should result in

a similar improvement, . This is particularly im-
portant for solids, in which the use of (V„»)„is
not practical. There is some indication that V„~
can give even better results than (V„»)„since,
a,s recently pointed out by Gopinathan, "both the
Xn method and V„L give eigenvalues greater than
the exact Ha, rtree-rock eigenvalues. This is a.

result of the fact that these exchange potentials
are insufficiently negative. However, the work
of Garrett and Mullins" shows that (V„„F)„suf-
fers the same defect, but to a lesser degree.
Since V„~ is slightly more negative than (V„»)„
it should lower the computed eigenvalues, and the
results will be improved, unless there is too
large a correction from this source.

It is well known that the local exchange poten-
tials behave incorrectly at la,rge distances from
the nucleus in atoms. As shown in the figures,
this is not the case for V„~.

V„~ is a spatially nonlocal potential, but it is
the same for all electrons, since it does not de-
pend on quantum number. The use of quantum-
state-averaged potentials has been criticized by
Overhauser, "and some quantum-number- depen-
dent approximate potentials have been pro-
posed. '~'"'" However, these are not very prac-
tical in solid-state calculations. What is needed
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FIG. 2. Comparison of exchange potentials in -Ne
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FIG. 3. Comparison of exchange potentials in Ne. The
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'are indicated.
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of correlation is essential. Nonlocal exchange-
correlation energies and potentials can be simil-
arly derived in analogy with Eq. (1V) by setting

1E
XC dn, p(1) p(2) C-",(,) (1,2), (48)

12

UJ
UJ

0

-20—

I—

UJ

0'

-)5-
c5x
cf
X
X
UJ

0

)2P
I 4~

0.)
l r I (ATOMIC UN)TS)

)1S

0.2

FIG. 4. Comparison of exchange potentials in Cu+.
The distances of maximum radial density for each
orbital are indicated.

-7-

and practical at present is a scheme formally sim-
ilar to the one-electron Hartree equations, but with
exchange and correlation included via effective po-
tentials. The approximation we propose provides
such a potential for exchange that is an improve-
ment over the local approximation; and is com-'
putationally practical.

For solid-state calculations, the introduction

where C-"&»(1,2) is the pair distribution function of
a homogeneous electron gas (with both exchange
and correlation considered) and the density param
eter p(l) is determined by the sum rule stating that
the exchange-correlation density p(2)C-,"&»(1,2)
integrates to -1. The major difficulty is that the
pair distribution function-of a homogeneous elec-
tron gas with both exchange and correlation includ-
ed is not exactly known and different theories give
deferent pair distribution func~~ons. "

VIII. NUMERICAL RESULTS FOR KINET IC ENERGY

We computed the kinetic energy of the atoms He
and Ne from Hartree-Fock electron densities using

. Eqs. (40) and (41) and compared the results to
those using the density gradient expansion'3 and to
exact results from Hartree-Fock theory. The
total energies are sho~n in Table I. The first
point to note is that for He our nonlocal approxi-
mation agrees exactly with the Hartree- Fock re-
sult. The reason for this is that there are only
two electrons in He, and the only value of p that
satisfies the charge conservation condition [see,
Eq. (11)]is p =, 0, corresponding to a correlation
factor equal to ——,

' everywhere, the exact result.
Thus, the exchange hole is infinitely wide, and
the kinetic energy is given by just the gradient
terins in (41).

The results using Eq. (40) are quite poor, as
expected, since this equation is just the WeizsKck-,
er approximation (the term in V'p gives no contri-
bution to the total energy), and Jones and Young"
have shown that the density variations in atoms axe
not in the region where the Weizsacker approxima-
tion is valid. In our theory, the results show that
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Exact Br~~2)

Eq. (40)
Eq. (41)
TO

To T2.
TO+T2+ T4

2.86
5.42
2.86
2.56
2.88
2.96

128.6
208.4
133+7
117.8
127.8
129.7

TABLE I. Kinetic energy in free atoms (in a.u.). The
last three lines are from Wang et aE. (Ref. 13) paper arid

give the results for the gradient expansion. To is the
local term. T2 is the second-order- term and T4 is the
fourth-order term.
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FIG. 6. Kinetic-energy density for Ne. The HF re-
sults are taken from Kim and Gordon {Ref, 24). The
nonlocal approximation corresponds to Eq. {41).

the local approximation to the correlation factor
is poor' in free atoms. Equation (41} gives a much
better result, the error for Ne being only 4%.
Table I also includes the results of Wang et al."
using a gradient expansion including fourth-order
gradient terms. Their results for Ne are quite
good, but it is not clear what the effect of includ-
ing higher-order terms would be (in fact, as seen
in the table, the inclusion of fourth-order term
fails to improve results). Nevertheless, our ap-
proximation to the correlation factor is inadequate
for computation of the kinetic energy in atoms,
relative to a fourth-order gradient expansion.
The reason for this can be seen in the plot of the
kinetic-energy density in Ne shown in Fig. 6 (see
Ref. 40 for an analysis of the kinetic-energy den-
sity corresponding to the gradient expansion, in
atoms). Our method shows a large deviation from
the Hartree-Fock kinetic-energy density in the
region where shell structure exists. Since p is
obtained by sampling the electron density over
the exchange hole, and since the exchange hole is
large relative to the scale of the shell structure,
the effect of these density variations is smeared
out, and leads to serious error in the region. It
is clear that the correlation factor must be known
with greater accuracy to treat better the kinetic
energy.

The method used in this paper is a promising
alternative to the density gradient expansion meth-
ods of treating exchange-correlation and kinetic
energy in inhomogeneous systems. It is based on
approximations to the correlation factor in density
matrix theory (or, equivalently, on approximations
to the exchange-correlation charge or to the joint
density matrix). Its physical basis can best be un-
derstood in terms of the exchange-correlation
charge density, which is approximated in such a
way as to preserve its major features. A rather
simple modification of the correlation factor for
the homogeneous electron gas is used which con-
serves the total exchange charge, gives the prop-
er depth of the exchange hole, vanishes at large
distances from the center of the hole, and reduces
to the homogeneous gas form when the electron
density is constant. Furthermore, the correlation
factor contains an average density that depends on
the entire electron density distribution and is
therefore nonlocal. The exchange potential de-
rived from this approximation was tested in He,
Ne, and Cu' and was found to be an excellent ap-
proximation to the quantum-number-averaged HF
exchange potential, and it is a significant improve-
ment over the local-density approximation. This
is an encouraging result for the theory of solids,
since the heterogeneity of the electron density is
less in solids than in atoms ~ The use of our poten-
tial in solid-state calculations would be only a
little more complex than using a local potential
and much less difficult than the Hartree-Fock
method. For solids, nevertheless, it is essential
to introduce correlation effects. Though this is
a very difficult task (the problem is not yet com-
pletely solved even for the homogeneous electron
gas), the lines along with the knowledge of ex-
change-correlation effects can be used to derive
nonlocal exchange-correlation approximations in
inhomogeneous systems were indicated.

A formula for the kinetic energy in terms of the
correlation factor was derived which explicitly dis-
plays the relationship between kinetic energy and
exchange, and provides a basis for nonlocal ap-
proximations without using gradient expansions.
Translating our approximation for exchange to
the kinetic energy gives a nonlocal expression that
reproduces the Hartree-Fock kinetic energy in Ne
to within 4%, and is exact for He. Examination of
the kinetic-. energy density shows that the major
source of error in our kinetic-energy formula
arises from the regions of very rapidly varying
electron density corresponding to atomic shell
structure. It is clear that the correlation factor
must be known with more accuracy to compute the
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kinetic energy.
It is interesting to note that the method satisfies

the virial theorem. Also, the exchange part of the
effective potential of energy-density-functional
theory is readily approximated using our method,
but the result is rather complex and does not have
computational simplicity.
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