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A new set of basis functIons is introduced, conslstIng of products of Fermi-surface harmonics E&(k) and
polynomials e„(c) in the energy (c—p,)/k&T. The former are orthonormal on the Fermi surface, and the
latter are orthonormal with weight function —Sf/ac. In terms of this set the exact semiclassical
Boltzmann equation takes a particularly simple form, giving a matrix equation which can probably: be
truncated at 1ow order to high accuracy. The connection with variational methods is simple. Truncating at a
1g 1 matrix gives t'he usual variational solution where PA. is assumed proportional to vk„. for electrical
conductivity and (e —p)vk„ for thermal conductivity. BxpHcit equations are given for the matrix elements

g~„&„of the scattering operator for the case of phonon scattering, and a perturbation:formula for p Is
given which is accurate for weak anisotropy. The matrix eleInents are simple integrals over spectral functiona
a~(+,J,I')E(Q) which generaHze. the electron-phonon spectral function a2F(0) used in superconductivity
theory. Analogies are described between Boltzmann theory and Eliashberg theory for T, of superconductors, .

The intimate relations between high-tem~~e resistance and the s-, or p-wave transition temperature @re-

made expllcIt. '

.

Rapid px'ogx'ess in band theox'y has opened the
possibility fox'.a microscopic theory of transport
in tx'ansition metals. -One of the first efforts to .

apply modex"n knotvvledge Gf Fex'IQ1 sux'faces and
'wave functions to the analy8is Gf transport was by
Yamashita and Asano, 'I In the pxoeess of making
a ealeulation of the resistivity p fox" Nb and Mo,
they. obtained much Other intex'eating information
about anisotropic scattering rates and eleetron-
phonon mas8 enhancements, e 1 +~. Four indepen-
dent groupss 6 have recently performed calcula-
tions for Nb of ~ and tpe accompanying spectral
function e»E(A), which deterinines T, of a su. per-
conduetorp These calculations amply demonstrate
that micx'oscoplc calculations of tx'anspox"t

coeffic-.

ientss R16 Qow posslbl; 1Q fRct, MG8t Gf the
Qecessax'y information 18 RvRllRble already~
18 IQR1nly R matter Gf Gx'gRQ1KRtlon to pull Gut
the eorreet coefficient.

This paper elaborates a fox'mal language by which
the Boltzmann equation ean be x'igox"ously solved.
Me langu~e has been adapted from superconduc-
tivity, and enaMes Calculations of &, and transport.
to 56 carried Gut in pax'allel, The JangUag6 18 fx"66

of biases about the 'nature of energy. banda, pho-
none, ox' coupling; it vrorks equally vrell fox' sphex'-

'

ical Fermi surfaces as in K, . for distorted but re-
cogniKably spherical GQ68 a8 in .Cu& Gx' for unx'6-, ,

COgnixably Complicated Ones a8 in the d-band eleom

ments. A key feature is a series of spectral func-
tions tt»(+, Z, Z')&(0) which generalize ot»E(Q) used
1n 8uperconduct1vity. These functions ax'6 amena
ble to calculation, and they ax'e also simple enough
that intelligent, guesses can be made about their'

shape and siie. - A8 a prelim/nary sgep, a-Q6% 86t
of basis functions is intx'oduced, in terms of %hicki

the 9oltzmann equation takes a.particularly simple
form, : I

The BoltKmann equation. .- for electx'ons in-a Inet83,
edith a uniform E field arid a uniform therma*l gra-
dien. t V'T is~-

~E'v»+ ~f 'v» =Xj ~»»r4»'s (&)»»»

where v» is the velocity ~~&»fI», and e» is the energy
(measured relative to the chemical yotentiai p) of
the electron with quantum, numbers & (short for &,
wave number and band index). The scattering op-
erator Q vziB be written out explicitly later for
phonon and impurity scattel'iQg; fox' no%, the im- . ,

portant feature of Q is that energy conservation
and the Pauli. -principle fox ce & and &' have nearly
equal energy, near the Fermi energy. The electri-
cal g, ) and thermal (fo) currents are determined
by the distribution function E& vrhich equals the
Ferini function f{e») in equilibrium. In terms of:
the deviation, E»- f(&»), which js written ett»(-Sf/
s&„), the currents are

sf
~. =-&s gv»4» -„=p.p+P„&&,

ef
io =2»»v»4» -

ee =Pttth +P„&&,:

'where the factox"8 of 2 a1'6 for 8pin degeneraeye
The coefficients p&& are related in the standard
Way' tO the transpOrt COeffiCienta: electrical COQme

ductlvlty += pooq thermopower 8 = -poo p@~ and.
thermal conductivity tt = -ptt +ptnp~pttt,

The new basis functions are products of two typ@8
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j, =-28(I&»

jo = (2ttltsT/&3) p»t,

(2')

(3')

where I"x is a particular FSH proportional to
the @ component of the velocity, and Oo and 0, are
polynomials propor tional to I and &, x'espectlvely.
From these formulas (which will be derived in
Sec. II), explicit formulas for the transport coef-
ficients can be written:

tt =2&'(@ ')x.,x. , (4)

S =-(tt&8/~3e)(@ ')x..», /(9 ')x„x., (5)

of functions. (i) Fel'111i-8111'fRce harmonics (FSH)
&~(&) are generalizations of spherical harmonics
and are used to describe "angular" variations in
QA, , etc., as ~ varies on the Fermi surface. They

'are orthonormal when integrated over the Fermi
surface. They have been described before, ' and
applied to the problem of gap anisotropy in super-
conductors. ' (ii) Energy polynomials &„(e) are ttth-
order polynomials in e/kttT, orthonormal with
weight function -sf/8&. These functions are de-
scribed here for the first time. In the product
basis set labeled by «, Eqs. (1)-(3) take the form
(assuming both E and &T point in the & direction)

eZ6~o+ ~ ksVT6nt 5~» —QQ~~ ~' 'P~'~' (1 )

where n is a composite index 4&, and the primes
on the sums mean that o., P, y, ... can never equal
XO, and successive indices can never equal each
other. The first term in the series (7) is the
lowest-order variational solution~ for p, and is
thus an upper bound on p. This will be shown in
Sec. II. In Sec. GI, explicit formulas for the first
term of (7) are given and in Sec. IV the higher-
ordex Q„&'s are worked out. The higher terms in
the expansion (7) are valid when off-diagonal ele-
ments are small compared to the diagonal ones.
The first correction term gives the exact answer
if Q can be approximated by a 2&&2 submatrix.
Truncating the series (7) at this point thus gives
a generalized version of the "two-band model""'
and a rigorous justification for it which does not
I'ely otl llRvlng iwo (Rnd ollly 'two) slleeis of Fel'llll
surface, This may possibly add some clarity to
the theory of deviations from Matthiessen's
x'ule. 'o '2 Finally, in Sec. V, some connections
with the theory of superconducting &, are de-
scribed.

II. EXPANSION EN NKK BASIS FUNCTION

The FSH functions have already been de-
scribed. "A few of their properties are reviewed
here. They are defined as polynomials in the Car-
tesian components of the velocity (&t„,v„„v„,), or-
thonormalized according to the rule

Even for vex'y complicated band structures, the
expansion in the set («) should converge rapidly.
Thus the integral equation (1) has been transformed
into a matrix equation which can probably be trun-
cated at fairly low order; only the upper left-hand
2&2 pax't of the inverse Q ' of this matrix is needed
to describe transport. For electrical conductivity
it is usually reasonable to approximate the distri-
bution function by a rigid translation of the Fermi
distrlbutlon ftltlctiotl f(e(lt +sit)) . Tllls is equlvR-
lent to asserting that $, =$»,E~(II), i.e., only the
XO element of Qz„ is large. The accuracy of this
approximation is related to the smallness of off-
diagonal elements Q«, &„ which couple to other
elements of Q. %hen the off-diagonal elements
are small, the inverse matrix elements like (4)
can be calculated perturbatively. The perturba-
tion series works out to be particularly simple
for the resistivity p:

p = I/2e'(q-'),

~I @Xo~+&, Xo
Xo~Xo

@Xoe& @fttsa 8MAq
n, @e,m@6,g

Q &z(")FJ (&)ft(&t, -e) g ~(et, —e) =tied ~ (S)

Jh

For spherical surfaces E~ becomes I't (It). The
E~'s must be constructed separately for each
metal. In practice' this has been quite easy to im-
plement on a computer once the band structure &~

is solved. Functions of this type, using the wave
vector instead of the velocity, were first introduced
by Fano" for analyzing x-ray response of solids,
and their properties were discussed at length by
Stx'inati and Fano. '4 For transport problems, ve-
locity polynomials are much more useful because
vt, appears on the left in Eq. (1). Some additional
simplifications are that only energies & near the
Fermi energy are needed, and the basis functions
automatically have the properties of periodicity in.

k space and continuity and differentiability across
BriBouin-p, one boundaries, as do physical quantities
like Q, . The functions F~ are also chosen to trans-
form as basis functions for irreducible representa-
tions of the crystal point group. This simplifies
the orthonormalization procedure because basis
functions for different rows or different represen-
tations are automatically orthogonal. Further, the
scattering' operator Q», being invariant under the
simultaneous rotation of & an.d &' by any element
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of the group, is automatically block diagonal.
There are no off-diagonal elements (~'IQ) J}cou-
pling diffex"ent roars or different representations.

First consider the formula (2}for the current 2„
@which can be trivially revrritten

9
J»» =-28 d« — 'U»„Q» 5(«» —«') .

It is obviously convenient to choose one of the func-
tions F~(called Fx} to be proportional to 6». Then
the other E~'8 are orthogonal to &~, and only the

component of ItI» contributes to the current (9).
In fact, this is compulsory if there is only one
sheet of Fermi surface. However, if there are &
sheets, then there are & independent first-order
polynomials based on &~, any set of &~ linearly in-
dependent combinations of C;&»„(where 1 runs over
the sheets) is allowed. For simplicity in solving
Boltzmann'8 equation the additional requix'ement is
imposed that Ex be one of the functions. The nor-
malized fox'ID of Ex is

&X =R»/1'(«»), (10)

u {«)=(II„' («))I ', (11)

j. g
W(«)(&! («)&=K&».'(«»-«)= ——

2 fS off g

where &I(«) is the single-spin density of states
The rms & component of velocity at energy &,
(v„' («)} ', occurs so commonly that it is given the
name & («}, which should not be confused with the
velocity v„. The product &&(«)(I „' («)) also occurs
commonly and ls the product of.number of carri'ers
in. unfilled bands times inverse effectIve-mass tensor
averaged over occupied states, or»' {II/III)»II.

The FSH'8 allow& an efficient solution of the angu-
lar part of the problem, exactly as the spherical
harmonica do in syherical symmetry. The "radial"
part of the problem, i,e., the variation with energy
&, still needs attention. It is convenient to intro-
dllce R llew 86't of 61161'gy polyllolnlRls cI„{«)clef lneIi
to be orthonormal with weight function &f/8«. —

This is easily proved fx'om the orthogonality rela-
tions (8) and (14); it helps to insert J d«(«» —«)
inside the @ sum.

Any function of & can be expanded in either set
g~„or set g~„; the former is convenient for func-
tions @which axe smooth in energy vrhile the lattex'
is convenient for functions (like the scattering
operator) which peak at the Fermi energy. The
left-llRllcl slcle of the Boltzmann eguatlon (1) CRll

be immediately expre88ed in terxns of the functions
(~„with J =X (Ell. 10) and II =0 or 1 (Eq. 15):

-eE)r, (k) -(IIks/v 3 )V T (x, (k) . (19)

Tllls sllgges'ts tllRt we sllollld 111ultlply (1) by )(g„(k)
and sum over k, using (18):

—eE5„0+ VT5»I 5nr =Q yz„(k)Q»»ig»r . (20)

The completeness relation fox' the biox'thogonal
set (18)-(18) is

Z&~" (k')4 "(k")=5»»-.
gt ~P

(21)

111861'tlIlg this 111 the 1'lgllt-llallcl sicle of (20), lle-
tween Q»» and III»t, the final result (1') is imme-
diately obtained. The definitions of Qz„&~„~ and

Q~„are clearly

Q~», z~" =g &J.(k)Q»»'&~" (k ), (22)

dix, as well as certain other properties of o„(«).
The combined set of functions &~(k)o'„{«») can be
used to expand any fu11ction of ~. A great simpMi-
cation is achieved if @re define Ago complete sets
of joint basis functions

g,„(k)= E~(k)o„(«»)/iv I(«,)v(«,),

4.(k) =Fr(k)II. («„)~(«») 8,
Bf

These functions have a nice biorthogonality pxop-
erty when integrated over the a&hole Brillouin zone
(and over all bands),

Z &~.(k)&~. (k) =5m~5- ~

~ef
d« —o„(«}o„~(«)=&„„i.

4~. = Q &~.(k)4». (23)

The functions are specified by the choices &0=1
and o„(«) constructed to be orthonormal to all lower
polynomials, with the coefficient of the highest
power of «{i.e., the IIth power) chosen positive.
The first turbo functions are

o, =1, ol =MS«'/IIk6T . (15)

A recursion relation for constructing all higher
polynomials from these thoro is given in the Appen-

The inverse relations are obtained viith the help
of (21):

Q.» = Q &~.(k)Q~. ,~ "4 "(k'),
Zyt, J'n'

(24)

4» = Z &z.&~.(k).

This version of the Boltzmann equation is ~&+t-"t,



i.e., no approximation has entered to alter (1')
from the original form (1). In Sec. III, explicit
formulas for Q~„J'„» will be worked out, and cer-
tain approximate formulas exhibited. Let us now
make contact with the variational method. ' The
electl ical resistivity 18 bounded Rbove by the func-
tional p, (p(lt)),

notations used here are the same as will be used
in Sec. IV, and perhaps it is best to present them
in a familiar context.

For impurity or phonon scattering, the operator
Q»~ has the form of scattering-out minus scattering-
in, both determined by the equilibrium transition
probability7 I'I,j,~ ..

-8 2

p- pI = Q '4&a»'4»' 2~ Q "a»A
kk

(26) 4» =(&8T) 5»» Z &a»- I'»» —I.
'It

g
tl

(30)

where g» is an arbitrary trial function. The actual
re818tlvity 18 the minimum VRlue of Pgy Rnd 18

achieved when gq is proportional to the actual dis-
tribution function Q&. Now expand P& in the func-
tions X«~ keeping @ term8:

4~.@~..~ "&» " 28'&xo.
Zn, 'n'

The minimum of pq is found by varying the coeffi-
cients g«, the answer is

I

p ~ p, (min, N) =I/2e'[Q I (N)]x,~o. (26)

The least upper bound is achieved by inverting the
~~& matrix. As N increases, a sequence of de-
creasing upper bounds on p is found which con-
verges to the true answer (4) as hf -~. Thus
solving the matrix equation (1') with a tj uncated
basis set is equivalent to a variational calculation
in that subspace and yields an upper bound to p.

The standard lowest-oider variational solution
assumes that E, =f(6 (k+5k)), i.e., that the Fermi
surface is uniformly displaced in the direction of
E. This is equivalent to putting P»=&»„ in (26). The
lowest-order result in the new basis set is the
first term of the expansion (7), equivalent to the
choice g» =Xxo(&) in (26), or & =1 in (26). Using
Eqs. (10)-(12), (15), and (16), X» can be written

Because P»» is symmetric in &, lI', Eq. (22) be-
comes

Qz».z'»' = (2ksT) Q P»»'[X~ (lI) —Xq (jh )]»
x [Xzi». (0) —Xq' (l»I )] ~ (31)

Expllclt form8 for III'&q due to impurity Rnd pho-
non scattering are

I'»» ={2v/g)I~»» I'f»(I -f» )8;5(~» —6» ), (32

I'»» =(»/@)IIlf»» I'f»(1 -f» )

&& [{&q +1)5(6» —»». —Qo) +A@5 (6» —6»i +Qo)],

where V»~ and M»» are the impurity and electron-
phonon scattering matrix elements; @& and &@ are
the number of impurities and number of phonons
(Bose factor); Q is the phonon energy; Q is short
for wave vector (k-k' reduced to the first
Brillouin zone) and branch index & (which is im-
plicitly summed over).

%'6 now evaluate the first term of the expansion
(7), using Eq. (29) for Xr, (&), and neglecting for
now the energy dependence of (II/III), «. The first
8teP 18."'=[{/ ).„"] {1/ I &.I/";.»,

N

&(O) ~ ~ @XO,XOPl off

XX.P ) = »»./("/8»). II.' (29)

This differs only slightly fx"om the usual variational
trial function. In most cases the & dependence of
{II/III)off 18 weRk compared io lIsTq 80 tllRt, {I/m)»ff
is a constant and cancels out, making the two
lowest-order procedures identical.

In this section the first approximation [first term
of Eq. (1)] to p is worked out explicitly. The final
result is a familiar generalization of Bloch-Griin-
eisen theory to metals. with complicated energy
bands and phonons, There are two reasons for
giving details here. First, R systematic derivation
of these familiar result8 hRs Qev61' RppeRred in
print to my knowledge, Second, the techniques and

{35)

wlleI'6 'tile sllpel'scl'lpt (0) 18 io I'elllllld that tllls 18
lamest order in energy and "angle" dependence,
and + can mean "imp" or "ph." Next, consider im-
purity scattering, and plug (32) into (35), using
the identity f (e)[1 —f{6)]=II»&{ ef/86) and -the ap-
proximation -&f/8& = 6(6) and Eq. (12) for (II/III)«I.

»» {J~ I'».) ll'»» I 5(&»-)5(&» )Z,
age ~(gr»,

{36)
This result is the analog for complicated bands of
the familiar formula' which {36)reduces to for
single- plane-wave electrons,
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~ Xi (0) — (1 —cos 8)[V(2&z (1 —cos 8))]2 .

N«e that (&» -&~„t)'/2 (&'„) is the generalization for complicated bands of the, angular weighting factor
1 —cosa. The notation & in (34)-(36) should not be taken to imply that a relaxation time "exists, " i.e.,
that Q (j) can be written (t)/7. O'nly in the special case to which (36a.) refers is a true relaxation time
meaningful. Equations (34)-(36) are nof "relaxatlon-time approximations. "

Next, conside'r the analogous formula for phonon scattering:

( 2w ii)(Q) f„f„,j" . „.(v„—U, )'(I .('i)(c —c)il(e, —e')
&(0)

~ 6(Q —Qq)f (&)[1 -f (&')]([()I(Q)+ l]6(e —e' -Q)+A(Q)& (e —e'+Q)). (37)

Three funchons have been inserted, and integrated out, which separates energy from angular vari'ations.
Now define an "electron-phonon spectral function"'5

, E(Q, , )=~,(0)» (&a. -&a")'led» I'6(&a-&)6(&a —&')6(Qo-Q)
(36)

2+ v(',„6(e(,)5 (e~i)
w'

Except for the extra factors of velocity which reduce to 1 —cos8 in the spherical case, this is identical to
the allaiogous function o E(Q) used in Eliashberg theory of superconductivity and measUred. t)y tunnellngi. .

It is very convenient to introduce this spectral function into transport theory because, in the absence of
detailed knowledge, we can still make good guesses about e~&„I". It is customary to argue that n'„E depends
only weakly on & and &', compared with the rapid variation of the subsequent factors which vary on the
scales &s1' and 8Qo. This justifies neglecting the e, e' dependence of (38), i.e., setting & and &' to zero
and calling the result o.'„E(Q). This approximation will begin to break down at high T if there is rapid
variation of electronic parameters like &(e) ("Fermi smearing" effects). Thus (3"l) becomes

( )
— s dQ o2t, E(Q)I (Q/2k Ts)/Q,

7'yh' 0

00 oo

I(Q/2ksT) =, , de de'f(e)[1 —f(s')]([N(Q)+1]&(e —e.' —Q)+N(Q)&(e —e'+Q)].
2jtt'g+ m oo

(40)

By a tedious but elementary integration, I {&)can be shown to be (x/sinh&)'. At high temperatures, I(x)
approaches rapidly to 1, and (39) becomes"

1/(7sOM h(()r (2v/@)Q (41)

(42)

The coupling constant A„differs only by velocity
factors from the coupling constant ~ which deter-
mines &, of superconductors and enhances the low-
temperature specific heat y. At low temperatures,
only the small Q part of a'„E(Q) contributes to the
integral (39). The superconducting function o.'E
behaves as g2 for small &, but the extra factor
(t)))„—&„i„)' changes c(tn„E to an Q~ behavior. This
gives a &' contrib'ution to p. Equations (34) and
(39) are the appropriate generalization of the Bloch-
Gruneisen formula to metals with real (non-Debye)
phonon spectra and real (nonspherical) energy
bands. In Debye approximation, the standard

Bloch-Gruneisen result is obtained by setting at~, E
to 2&~,(Q/QD)'e(Qs -Q). At room temperature,
Eqs. (34) and (41) appear to give an excellent semi-
quantitative account of the resistivity of transition
metals, with &t, = &, provided (s/~), », is calculated
from reliable energy bands. '6 However, they are
only the first approximation, and especially at low
temperatures, the corrections due to anisotropy
and & dependence of (1), can be significant. FinaHy,
it is worth mentioning that experience with- many
superconducting metals show that n'E(Q) is sur-
prisingly similar in shape to E(Q), the phonon den-
sity of states. It is reasonable to expect (the:same
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for O',„F(Q), except for the Iow-freIIuency region
(Q &10Qs) where the power law is altered from Q'
to Q4.

IV. HIGHER-ORDER TERMS

In this section the general term Q«, ~~„~ of the
scattering operator is worked out. The first step
is to factorize the "angular" and energy variations
occurring in EII. (31). The i horthand notation
X~„(k)= (Jk)(ne) is helpful, where (Jk) means E~(k)
RIld (ne) means o„(e)/N1(6)v(E). FRcto1'1zRtlon 18
accomplished by the identity

[(Jk)(ne ) —(Jk') (ne ')][(J'k)(n'e ) —(J'k') (n'e ' )]

Now define the generalized spectral functions

n2 (8, s ', J,J', e, e ')E(Q)

=[2m, (0)]-IQ ~M„„,~2[F, ( ) sE, (k')]

x [E~, (k) —s'E~ i (k') ]

«(e, —e)&(e, —e')6(Qo —Q) (44)

and joint energy polynomials

J (s, s', n, n', e, e')

=—'[(ne) +8 (ne') j[(n'e) +s'(n'e ')j, (45)

[(Jk)- s(Jk')] [(J'k)- 8'(J'k')j
S IS -+g

& [(ne)+s(ne')][(n'e) ys'(n'e')], (43)

where , 8' can take the values +1. The exact re-
sult for the scattering operator (31) due to phonon
scattering (33) is

Q~'„" ~i„i =
k

' de de dQ g n'(s, s', J,J', e, e')F(Q}f(e)[1 —f(e')]J(s, s', n, n', e, e')
8 S IS I=&/.

x)[Ã(Q) +1]&(8 —e' —Q) +X(Q)6 (e —e'+Q)j . (46)

This is quite a formidable expression. One sus-
pects theorists will not be quick to evaluate it. The
complexity is unavoidable if we wish to solve ex-
actly, taking both angular (JJ') and energy (nn')
variation of. Q, into account. In simple metals like
potassium it is found" that ener'gy and angular
variation give comparable corrections to p, neither
one large. In d™band metals which can have very
anisotropic velocities, it is reasonable to expect
that the angular corrections will be larger, while
energy corrections may be similar to those found
in &. I.et us consider the sources of & dependence
with an eye to making approximations. There are
'two 80111'ces (i) E lectl'onlc pRI'RIIle tel'8 like +1 (& )
v (e), and n'(8, 8,J,J', &, &') vary on a scale deter-
mined by band structure. A typical scale might be
2 eV for simple metals and 0.2 eV for d-band met-
als. (ii) Energy conservation and the Pauli prin-
ciple introduce ~(e —e' +Q) and f(1-f') which vary
on a faster scale, 0 and &~T. At low temperatures
it is appropriate to neglect (i), whereas (ii) can
cause significant corrections to the lowest-order
result, especially for thermal conductivity. At
high temperatures, &» AD, it becomes reasonable
to set 0 to 0 inside the & functions, treating phonon
scattering as effectively elastic. In this situation,
the Boltzmann integral equation does not couple
different energies & and &'; the apparatus of &„(&)
polynomials is no advantage, and the equation is
easily solved by other means. ' The energy varia-
tion of &(&), ~ (e), and a'(8, 8', J,J', e, e') can cause
a significant "Fermi-smearing" correction to p,
but in the elastic approximation this is more easily

(J, s, n', n, e)=e[N&( )(0/ n)„n,I] '

XH(s, n, n', 8, e'),

«' " "',&, &') =-'[c.(e) +o.(e')j
(4'I)

x[on (e) ~&4 (e')j,

where EII. (I&) has been used. Then (46) becomes

handled by techniques other than those used here.
In some cases it may be important to know the
simultaneous effect of inelasticity and Fermi
smearing, making the full formula (46) inescap-
able. The rigorous procedures developed here are
likely to be most useful (i.e., most readily im-
plemented) when Fermi-smearing effects can be
neglected. This means the &, &' dependence of o.'&
can be neglected [by evaluating at & =e' =0, calling
the result n'(s, s', J,J')F(Q}]. In this approxima-
tion another helpful simplification occurs. When
the signs 8, 8' are the same (opposite), both
n'(s, s ',J,J', e, e '}E and J(s, 8', n, n', &, & ') are even
(odd) under interchange of & and &'. The odd com-
blnat1ons (s 0 s ) VRllish wlle11 pal'tlcle-llole sy111-
metry is assumed (Fermi smearing neglected).
Evaluated at &, &' =0, the odd parts,
u'(8, —s, J,J', 0, 0)F, clearly vanish. We can keep
only the even (8 =8') parts and contract the nota-
tion still further, to n2(s, JJ')F (Q} and'

J(s, n, n', e, e'). Further, the energy polynomial
(n~) = c„(~)/X(e)I (e) can be replaced by o„(e)/
&(0)U(0). The joint energy polynomial (45) becomes
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q,'"„,,„,= 2[(n/m)„, rg„" r „.1-',

( . 4wk 1' I J" a'(s, z, J'))"(Q)((s, , ',0/2). T)
pb

~i tf, Z'n' @ S=&~

(48)

«f «'a(». ..",~, ")f(~)(( f(~ )-)'
~([I)|(Q)+1]5(e-e'-Q)+I)t(Q)5(e —e'+Q)]

=I (z, n, n', x) = (x/s inhx }I„'„i(x ) . (49)

1

It can be shown that I'„„t(x) defined in the last line
of (49) is a polynomial of order n+n'. in x. Finally
(48) can be written

n2 (s,J,J')E(Q)

I„+„(0)=6„„, I„„(0)=0,

I,', (x) =1, I„,(x) =0,

I,', (x) =1+(x/x)', I,, (x) =3(x/x)',

I,', (x) =W5 (x/x)',

I,', (x) 1+5(x/2x)'+21(x/2x)',

I,, (x) =15(x/2x)'+15 (x/(2v)'.

(51)

The fact thatI„'„. vanishes if ++&' is odd means
that the scattering operator Q~„~.„~ block diago-
nalizes into two parts with +, +' even and odd, re-
spectively, with no coupling between them. Thus
the thermopower vanishes [Eq. (5)], as does the
second term of the thermal conductivity [Eq. (6)].
These results fail when Fermi smearing is in-
cluded. The thermopower arises completely be-
cause of Fermi smearing (i.e., states below &r
have a different ability to carry current from states
above ex, particle-hole symmetry fails).

These formulas allow an explicit result to be

(50)

This is the final formula for the electron-phonon
scattering operator. The lowest-order result
1/v',~„[Eq. (39)] is just I/rxt, » This .follows be-
cause I„is 1, I,, is 0, and n (+,X,X)E(Q) is
n'„, E(Q) [Eq. (38)]. The result (50) is considerably
less forbidding than (46). It is already possible to
calculate n'(s, J,J')E(Q) fo'r d-band elements by a
slight generalization of the programs developed' '
to do n'E(Q). The rest is algebra. It must be
possible to derive an analytic or at least recursive
formula for I„„~(x), but I have not succeeded. It
can be shown to be an even polynomial in. &, of or-
der &+n' if n+n' is even, and vanishing if ++'+' is
odd. Some specific results are

written for the thermal conductivity & in lowest-
order variational approximation. Taking for the
variational function ~& = ao&xo+ o.x~xx we are left
with a 2&&2 matrix which is already diagonal. The
variational formula for the thermal resistivity
W=& ' is then

= (3/2v &~a T)@x)., xi ~

Using Eq. (50), the result for the phonon part is

(52)

w(
vak (n/m),

2 n2+XXE 0 . j. +—

2 o.'-XXEQ . 3 —,

(53}

where x =Q/2ksT, The sPectral function n'(+XX)E
is identical to nfrE [Eq. (38}], while n'( XX}Ehas-

(v,„-v, „)',replaced by (v,„+v, „)'. The low-Q be-
havior of n2(-XX)E is Q~; the extra two powers of
Q in nq~+ arise from the cancellation of (vt„—vt,i„)~

at small Q. At high temperatures, & is small and
the first term of (53) is dominant, with xa/x negli-
gible compared to 1. This gives @",~ proportional
to pi,'„1 gq. (39)], so that the Wiedemann-Franz law
holds. At low temperatures, the first term of (53)
goes as T4 and obeys the Wiedemann-Franz law
(with an altered Lorentz number), but the thermal
resistivity is dominated by the second term which
goes as T' and violates the Wiedemann-Franz law.
Equation (53}generalizes the well-known results
for spherical metals to more-complicated band
structures. However, just as in the spherical case,
a more-careful treatment of the energy inelasticity
(i.e., a larger number of odd-n basis functions) is
needed to get a numerically accurate solution at
low temperatures. In a perturbative expansion for
W'" analogous to (7) for p, the second correction
has the same low-temperature power law (T') as
the first, unlike the case of resistivity where
higher-order phonon terms with & & 0 go as T'
while the first term goes as E'. A variational cal-
culatiom by Klemens" gives a reduction in the low-
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& phonon-induced thermal resistivity by 33/g below
tlie result (58), arising from higher-order energy
dependence of &f& coming from inelasticity.

V. CONNECTION WITH SUPERCONDUCTIVITY

The theories of p and &, are similar in two dif-
ferent ways: (i) they both depend on the same elec-
tron-phonon scattering matrix elements, and (ii)
the formal structure of the theories is similar in

-many ways, E11Rshbel g theory gives a nonlinear
integral equation for the energy gap L(k, ~) which
is complex and wave-vector and frequency depen-
dent, As T approaches T„&approaches 0, and
the integral equation becomes linear (and homo-
geneous, in contrast to Boltzmann's equation}. By
analytic continuation to the imaginary frequency
axis, the kernel K becomes well behaved and real,
as does ~. The transition temperature is the tem-

peraturee

at which the largest eigenvalue of K is zero.
In practice, the & dependence of & is usually ne-
glected, 'and the resulting theory is formulated as
a one-dimensional integral equation with & a func-
tional of the spectral function cPE(Q). This approxi-
mation gives a variational estimate of the actual
largest-eigenvalue of &, and thus gives a lower
bound to 1;. There is an almost precise analogy

with the lowest-order variational procedure in
transport which gives a lower bound in o. In each
theory a vax iational functional exists which is a
lower bound on (T„o)for any trial value of the (gap
6, distribution function Q). The actual (&, Q) is the
one which maximizes (T„o), The lowest-order trial
function is a constant (gap &, displacement ~k). If
.the error in the trial function is order o., the error
in (&;, o) is order n' T.his "error" is the aniso-
tropy enhancement of (T„o). In nearly all metals,
e is apparently fairly small. A probe of the aniso-
tropy of g, Q) is the effect of impurities on (T„o).
In both cases, heavy doping with impurities will
eliminate much of the anisotropy enhancement of
(T,, &r). In transport there is of course another
effect of impurities —the residual resistivity—
which has no analog in s-wave superconductivity
(but does for other pairing schemes as in 'He).
The destruction 'by impurities of the anisotropy
enhancement of 0 shows up as a deviation from
Mattheissen's rule. ""

A scheme for solving the Eliashberg equations
exactly, taking anisotropy into account using
FSH's, was px'oposed in Ref. 8 and partly imple-
mented in Ref. 9. The spectral function 0.'2+ be-
comes generalized to

(55)

Ma~il F~(k)F~i(k') (eq) (e~i) (Qo —0)
(542 5(&,)5(&,~ )

pa»

It is also convenient to define another related function which enters because of the occurrence of the "nor-
mal" seilf-energy Z in the Eliashberg equations

4 ~M„~2F,(k)F, , (k)5(e,)6(e„.)5(n, —0)
g 5(e.)5(e, )

This differs from e~z~iE only in having Fz. (k) in
place of F~i(k'). Because of the completeness of
FSH's, the two functions are not independent;
O.JJ»E alone contains all necessary information,
and A. 2J J»E can be expanded, using the Clebsch-
Gol dan coefficients CJJ»J»».

A~~iF(Q) =Q C~~i~wo~~. i F'(g), (58)
J»»

t

E~ (k)F~. (k)E~, (k)6 (e~)
C,ggigil .= . ~. . . (57)

5(e, )

where the function &", is. defined to be 1. The spec-
tral functions defined for transport can be imme-
diately written in terms of 'Q JJ»E and A JJ»E

o'~(s JJ')F(0) =A~~~iF(Q)+ a2~~iF'(II). '(58}
At room texnperature and above, because of the
small parameter 0/2ksT, the n =n' =0 terms of

Using Eq. (58), this can be written

(vh high T) 2 2~~8~ gg@~0.'z 0 =
(„g ) k

(58)

(8O)

where the coefficients AJ J» and ~«» have been de-
fined' because of their importance in supercon-
ductivity:

n2~~ iE (0)J'J' -- . . g

JJ' 0

Q J„,J»„will. dominate. Neglecting Fermi sxnear-
ing, these can be written

q(yhshiPh r) 8 ~? ( ggi)F (II)
~n



NK% METHOD FOR SOLVING BOLTZMANN'S EQUATION FOR. . .

I g Il~glt ~ (68) nmE(kQ) =Q E~(k)n2~E(Q). (66)

The two matrices A and ~, together' with a matrix
p~ which gives the weak Coulomb repulsion, de-
termine &, of a superconductor to good approxima-
tion (unless &, is very large):

&, = ((ug„/1.2) exp (-1/&,gg, (64)

&,elf=max eigenvalue of (1+A) '(& —g*). (65)

This is, the generalization of MeMillan's' formula
to supereonductors with anisotropic energy gaps.
Just like the scattering operator Q, these matrices
are block diagonal in the different rows and repre-
sentations of the crystal point group. For all
known superconducting metals it is strongly sus-
pected that the largest eigenvalue (65) occurs in
the &, submatrix (s-wave superconductivity), al-
though there is no fundamental reason why certain
metals" might not choose a different submatrix,
probably &» (crudely, P wave). Transport is of
coux'se determined by the I 15 submatrlx Qf Qs
see from (60), (64), and (65) that high-tempera-
ture transport depends on exactly the same coeffi-
cients as the "P-wave &„" The lowest-order vari-
ational solution at high T [Eqs. (84) and (41)] uses

The analogous lowest-order varia-
tional estimate for the P wave (more correctly,
&„)T. is

T(o)(l )
+&&+ ex

1+ xx
c g5 j 2 p

xx Pgg

If the two numbers A» and ~» were separately
known, this would allow a lowest-order variational
lower bound on the p-wave &„which would be of
great interest, for example, for Pd. The coeffi-
cient ~t& is also closely related to ~ =~oo =+oo which
determines the 1", (s-wave) transition temperature
This comes about because of Eq. (68) and the prop-
erties of the Clebsch-Gordan coefficients (57). As .

was shown in Ref. 8, C»~ vanishes for all I', ele-
ments & except for two, C», =1 and C»s2 = ((v~)
-(v')') '/(v'). Thus we can write

Empirically" it appears that X„and ~~ =~ are very
similar for those d-band elements examined so far.
Probably both the second and third terms of (6V)
are quite a bit smaller than the first, and they
occur with- opposite signs.

Several other interesting quantities can be cal-
culated simultaneously with resistivity, namely,
the anisotropic quasiparticle mass enhancement
~, and scattering rate 1/v, . These both can be cal-
culated (at any value of & and external frequency
&u) as integrals" over n'E(&, 0), defined as

Thus, for example, when +=0, ~~ can be written

E~(k)A ~. (69)
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APPENDIX

A set of orthogonal polynomials has been defined
by Eq. (1V). Some propertie's of these polynomials
are worked out here. First, transform to a di-
mensionless variable x =e/2v&sT

o„(e)=(2n+1) g„(e/2&usT), (Al)

f„(x)g„(x) 6 2
scosh Fx 2'++1

A factor of (2++1) ' has been introduced into (Al}
because it simplifies the form of the resulting
polynomials P„(x), Lawrence has pointed out to me
that the Legendre polynomials of tanh&x are a pos-
sible choice for an orthonormal set satisfying (A2).
For the present purposes it is more convenient to
have f„be a polynomial in & rather than tanhr~;
otherwise the simple results (8'}, (5), and (6)
would be replaced by infinite series. Sykes and
Brooker" have used the associated Legendre poly-
nomials to define functions

For many materials it is probable that the aniso-
tropy in ~& is reasonably accounted for by only a
few terms in (69), possibly just &~ and &~a, both
of which are contained in a resistivity calculation.
Finally, the anisotropy of the superconducting gap
&~, for weak anisotropy, can be written'

&a =Z Ez(&)&~,
(Vo)

b, z/b —(1+p*)(1+A,)"~(A, —pP) ~A, z,
This anisotropy causes a T, enhancement &&„
which ean be written for weak anisotropy'

6T,/T, = (1, + g+)(1 +A.) '(X —V+) '((A.„') —A.'),
(Vl)

(e)
&+o

These formulas demonstrate that one virtue of the
Fermi-surface harmonic method is to achieve a
simple unification of physical quantities whose in-
terrelation appeared previously quite complicated,



t„(x)= {2» +3@"(m+1)-a'(&+2)-~

x (2& +1) ~'f"„,,(tanbark)

which also Satisfy (A2). However, these are even
less convenient fox" the present purposes. The
polynomials defined here are in some sense a
natural analog for degenerate quantum electrons
of the Sonine polynomials of classical kinetic
theory. 2~. I have been unable to find. these polyno-
mials in the literature or to relate them to any set
of kno%'n polynomials

The low-order polynomials t„(x) are readily
constx'ucted by orthogonalization

g,{x)=l, g, (x}=2x, g, (x)=ax —,', (Aq)

The polynomials up to r, (x) were constructed this
way, and a con)ectule fox' the leading coefficient
was found

g„(x)=[2"(2n 1)!!y(s!)2]x"+ . ~ ~ (A4)

Beyond + =6, brute-force construction by hand was
too tedious. The conjecture (A4) was verified nu-
merically to 11-figure accux'acy for' polynomial8
up to oxder + = j.7 on a Univac I110 computer. Al-
though a rigorous proof is lacking, (A4) is surely
cox'rect. The recursion relation follows imme'-

a(x)- g a„g„(x)
»f= 0

iiowii f~=-"'"!'* .cosh &&

The optimum choice of expansion coefficients is

a {x)f„{x)
2 ~ cosh K&

(A7)

I't remains to be determined from experience
vrhether the transport coefficients converge rapidly
in these polynomials. An argument by Klemens'8
shovels that for low-temperature thermal conduc-
tion, Q ~ill not converge rapidly, but this does
not prove that calculation of I{' converges slowly.

diately from knowledge of the leading coefficient~

'~.( ) =2(2N- 1) ~. , ( )- ( -1)'~. .(x). (»)
This gives an efficient method for generating nu-
merical values of Kg(x) if s ls not too high. Gen-
eral theory of orthogonal polynomials'~ shouts that
the set g„ is complete in the sense that for a given
&, arbitrarily small, and a given real function
a(x), some finite & exists such that, for suitably
chosen expansion coefficients @„,
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