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A new set of basis functions is introduced, consisting of products of Fermi-surface harmonics - F;(k) and
polynomials o,(€) in the energy (¢ — p)/kpT. The former are orthonormal on the Fermi surface, and the
latter are orthonormal with weight function —3f/de. In terms of this set the exact semiclassical
Boltzmann equation takes a particularly simple form, giving a matrix equation which can probably be
truncated at low order to high accuracy. The connection with variational methods is simple. Truncating at a
1X 1 matrix gives the usual variational solution where ¢, is assumed proportional to v, for electrical
conductivity and (e — p)v;, for thermal conductivity. Explicit equations are given for the matrix elements
Qunrw of the scattering operator for the case of phonon scattering, and a perturbation formula for p is
given which is accurate for weak anisotropy. The matrix elements are simple integrals over spectral functions
a*(+,J,J")F(Q) which generalize the electron-phonon spectral function a?F({) used in superconductivity
theory. Analogies are described between Boltzmann theory and Eliashberg theory for T, of superconductors.
The intimate relations between high-temperature resistance and the s- or p-wave transition temperature are

made explicit.

I. INTRODUCTION AND SUMMARY

Rapid progress in band theory has opened the
possibility for a microscopic theory of transport
in transition metals. -One of the first efforts to .
apply modern knowledge of Fermi surfaces and
wave functions to the analysis of transport was by
‘Yamashita and Asano.! In the process of making
a calculation of the resistivity p for Nb and Mo,
they obtained much other interesting information
about anisotropic scattering rates and electron-
phonon mass enhancements,? 1 +A, Four indepen-
dent groups3~® have recently performed calcula-
tions for Nb of A and the accompanying spectral
function o?F (), which determines T, of a super-
conductor.? These calculations amply demonstrate
that microscopic calculations of transport coeffi-
cients are now possible; in fact, most of the
necessary information is available already; it
is mainly a matter of organization to pull out
the correct coefficient, '

This paper elaborates a formal language by which . ’

the Boltzmann equation can be rigorously solved,
The language has been adapted from superconduc-
tivity, and enables calculations of T, and transport
to be carried out in parallel. The language is free
of biases about the nature of energy bands, pho-

nons, or coupling; it works equally well for spher-

ical Fermi surfaces as in K, for distorted but re-
cognizably spherical ones as in Cu, or for unre-
cognizably complicated ones as in the d-band ele-
~ments. A key feature is a series of spectral func-
tions a?%(x,J,J’)F(Q) which generalize o?F (Q) used
in superconductivity. These functions are amena-
ble to calculation, and they are also simple enough
that intelligent guesses can be made about their

shape and size. As a preliminary step, a new set
of basis functions is introduced, in terms of which
the Boltzmann equation takes a particularly simple
form, =

The Boltzmann equation:for electrons in a metal
with a uniform E field and a uniform thermal gra-
dient VT is”

(a2 ora)L T awon, W

where ¥ is the velocity Y€, /%, and €, is the energy
(measured relative to the chemical potential ) of
the electron with quantum. numbers % (short for kn,
wave number and band index). The scattering op-
erator @ will be written out explicitly later for
phonon and impurity scattering; for now, the im-
portant feature of @ is that energy conservation
and the Pauli-principle force % and %’ have nearly
equal energy, near the Fermi energy. The electri-
cal {f,) and thermal () currents are determined
by the distribution function F, which equals the
Fermi function f(€,) in equilibrium.. In terms of -
the deviation, F,-f(€,), which is written ¢,(-3f/
9€,), the currents are

> T l-L)ep &
Jo = ~2e Ek: Vh¢k(" 8_€f:)= BooE +301§T s @)
Jo=2 Z:%‘i%(—%); ﬂmﬁ +311€T; (3)

where the factors of 2 are for spin degeneracy.
The coefficients B;; are related in the standard
way” to the transport coefficients: electrical con-
ductivity 0 =8,,; thermopower S =-8;18,; and
thermal conductivity & =-8,, +8,,85080-

The new basis functions are products of two types
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of functions. (i) “Fermi-surface harmonics” (FSH)
F, (k) are generalizations of spherical harmonics
and are used to describe “angular” variations in
¢r, etc., as k varies on the Fermi surface, They
‘are orthonormal when integrated over the Fermi
surface. They have been described before,® and
applied to the problem of gap anisotropy in super-
conductors,® (ii) Energy polynomials 0,(c) are nth-
order polynomials in €/RyT, orthonormal with
weight function —3f/8€, These functions are de-
scribed here for the first time. In the product
basis set labeled by Jn, Egs. (1)-(3) take the form
(assuming both E and VT point in the £ direction)

m
_<eE6no+ ‘/_3—— kBVTénI)GJX ﬁJZ:,QJn,J'n’d)J'n’ (1,)

je=—2€¢)x°, (21)
Jq=@kyT /V3)dy, , 3"

where Fy is a particular FSH proportional to
the ¥ component of the velocity, and 0, and 0, are
polynomials proportional to 1 and €, respectively.
From these formulas (which will be derived in
Sec. II), explicit formulas for the transport coef-
ficients can be written:

°=262(Q-1)X0.Xo: @)
S ="(”ka/‘/ge)@_l)xo.)u/(Q-l)xo.xo, (5)
K= %ﬂzkzaT[(Q_l)xl VX1 l(Q-l)Xo.XLIZ/(Q-l)Xo»Xo] .

(6)

Even for very complicated band structures, the
expansion in the set (%) should converge rapidly.
Thus the integral equation (1) has been transformed
into a matrix equation which can probably be trun-
cated at fairly low order; only the upper left-hand
2X2 part of the inverse @' of this matrix is needed
to describe transport, For electrical conductivity
it is usually reasonable to approximate the distri-
bution function by a rigid translation of the Fermi
distribution function f(e(k +06k)), This is equiva-
lent to asserting that ¢, = ¢y Fx (), i.e., only the
X0 element of ¢, is large. The accuracy of this
approximation is related to the smallness of off-
diagonal elements @y, ,» Which couple to other
elements of ¢. When the off-diagonal elements

are small, the inverse matrix elements like (4)
can be calculated perturbatively., The perturba-
tion series works out to be particularly simple

for the resistivity p:

p =1/262(Q-1)X0,X0

1 @x4,0%;, xq
=§_e'2—(QXo:X0_Z’ Xg,0¥a, X
3 o, a

. g, Q@x0,0%,898,x0 _

Qo,a¥s,8 )’ ™
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where « is a composite index Jn, and the primes
on the sums mean that @, 8,7,... ¢an never equal
X0, and successive indices can never equal each
other. The first term in the series (7) is the
lowest-order variational solution” for p, and is
thus an upper bound on p. This will be shown in
Sec. II. In Sec, ITI, explicit formulas for the first
term: of (7) are given and in Sec, IV the higher-
order @.4’s are worked out, The higher terms in
the expansion (7) are valid when off-diagonal ele-
ments are small compared to the diagonal ones.
The first correction term gives the exact answer
if @ can be approximated by a 2X2 submatrix.
Truncating the series (7) at this point thus gives
a generalized version of the “two-band model”7*°
and a rigorous justification for it which does nof
rely on having two (and only two) sheets of Fermi
surface. This may possibly add some clarity to
the theory of deviations from Matthiessen’s
rule.!®"!? Finally, in Sec. V, some connections
with the theory of superconducting T, are de-
scribed.

II. EXPANSION IN NEW BASIS FUNCTION

The FSH functions have already been de-
scribed.®® A few of their properties are reviewed
here. They are defined as polynomials in the Car-
tesian components of the velocity (U, Uy, Us), Or-
thonormalized according to the rule

!

;Fl(k)FJ'(k)é(ek—e)/Zk O(p—€)=0,,,. (8)

For spherical surfaces F; becomes Y,,,,(ﬁ), The
F,;’s must be constructed separately for each
metal. In practice® this has been quite easy to im-
plement on a computer once the band structure €,
is solved. Functions of this type, using the wave
vector instead of the velocity, were first introduced
by Fano'? for analyzing x-ray response of solids,
and their properties were discussed at length by
Strinati and Fano.!* For transport problems, ve-
locity polynomials are much more useful because
% appears on the left in Eq. (1). Some additional
simplifications are that only energies € near the
Fermi energy are needed, and the basis functions
automatically have the properties of periodicity in
k space and continuity and differentiability across
Brillouin-zone boundaries, as do physical quantities
like ¢,. The functions F; are also chosen to trans-
form as basis functions for irreducible representa-
tions of the crystal point group. This simplifies
the orthonormalization procedure because basis
functions for different rows or different represen-
tations are automatically orthogonal. Further, the
scattering operator @, being invariant under the
simultaneous rotation of 2 and 2’ by any element
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of the group, is automatically block diagonal.
There are no off-diagonal elements (J’|@|J) cou-
pling different rows or different representations.

First consider the formula (2) for the current j,,
which can be trivially rewritten

. -9
]ex="zefd€ T;c;vkx¢k6(€k_€)- (9)

It is obviously convenient to choose one of the func-
tions F;(called Fy) to be proportional to v,,. Then
the other F,’s are orthogonal to v, and only the

J =X component of ¢, contributes to the current (9).
In fact, this is compulsory if there is only one
sheet of Fermi surface, However, if there are N
sheets, then there are N independent first-order
polynomials based on v,; any set of N linearly in-
dependent combinations of C;vi, (where ¢ runs over
the sheets) is allowed. For simplicity in solving
Boltzmann’s equation the additional requirement is
imposed that F; be one of the functions, The nor-
malized form of Fy is

F =z\)kx/v €r), (10)
v(e,) =02 (N2, (1)
M= tsE-=5 () a2
Ny(e) = Zk) 8(e,—¢), (13)

where Ny(€) is the single-spin density of states.
The rms ¥ component of velocity at energy €,

(v2 (€))‘/2, occurs so commonly that it is given the
name v (€), which should not be confused with the
velocity V.. The product N(€ X2 (€)) also occurs
commonly, and is the product of number of carriers
inunfilled bands times inverse effective-mass tensor
averaged over occupied states, or 3 {#/m)es.

The FSH’s allow an efficient solution of the angu-
lar part of the problem, exactly as the spherical
harmonics do in spherical symmetry, The “radial’
part of the problem, i.e., the variation with energy
€, still needs attention. It is convenient to intro-
duce a new set of energy polynomials 0,;(6) defined
to be orthonormal with weight function -9f/0€,

[ (o0 00 (14)

The functions are specified by the choices 0,=1
and 0,(€) constructed to be orthonormal to all lower
polynomials, with the coefficient of the highest
power of € (i.e., the nth power) chosen positive.
The first two functions are

0,=1, o, =v3e€/uk,T, (15)

A recursion relation for constructing all higher
polynomials from these two is given in the Appen-

’

dix, as well as certain other properties of 7;(€).
The combined set of functions F,(R)o,(€,) can be
used to expand any function of R, A great simplifi-
cation is achieved if we define fwo complete sets
of joint basis functions

Xonll) = P )0, €0)/N 1 (€0 (e, (8)
£ ® =E0)e (e (e )52 ) )

These functions have a nice biorthogonality prop-
erty when integrated over the whole Brillouin zone
(and over all bands),

ij Xrn(B)E gt (£) =8 108, . (18)

This is easily proved from the orthogonality rela-
tions (8) and (14); it helps to insert fde d(e,—€)
inside the # sum.,

Any function of B can be expanded in either set
Xyn Or set &;,; the former is convenient for func-
tions which are smooth in energy while the latter
is convenient for functions (like the scattering
operator) which peak at the Fermi energy. The
left-hand side of the Boltzmann equation (1) can
be immediately expressed in terms of the functions
£, with J =X (Eq. 10) and 2 =0 or 1 (Eq. 15):

—eE& yo(k) —(mky/V3 )VT &, (). 19)

This suggests that we should multiply (1) by X.(R)
and sum over R, using (18): ‘

wkp

-(eEG,,O + 73 VTﬁnt) 0,x =ka' X sn(R)Qur Bt . (20)

The completeness relation for the biorthogonal
set (16)—-(18) is

D Xgont (& )E gy (B") =By . 1)
J”n'

Inserting this in the right-hand side of (20), be-
tween Q' and ¢, the final result (1’) is imme-
diately obtained. The definitions of @;,,;7,» and
¢, are clearly

Quntat =2y Xrnll) Quurk e (1), (22)
Drn=22 Enlk) b (23)

The inverse relations are obtained with the help
of (21):

= 2 EenlE)Qunsrw e (), (24)
b =.§; s n(k). @5)

This version of the Boltzmann equation is exact,
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i.e., no approximation has entered to alter (1’)
from the original form (1). In Sec. I, explicit
formulas for @;,,,,» Will be worked out, and cer-
tain approximate formulas exhibited. Let us now
make contact with the variational method.” The
electrical resistivity is bounded above by the func-

tional p,(¥ (%)),
—af\2
PSP = Z d)kak'wk'/zez (Z Vax P '56_) ’ (26)
7R % R

where ¥, is an arbitrary trial function. The actual
resistivity is the minimum value of p;, and is
achieved when ¢, is proportional to the actual dis-
tribution function ¢,. Now expand ¥, in the func-
tions X ;n, keeping N terms:

¥
Yp= i.‘l’.rnx k),

PSP = Jﬁ'u' lpJHQJn-J'n'ZpJ’n'/zezszZ(ob' (27)

The minimum of p; is found by varying the coeffi-
cients ¢,,; the answer is

p< py(min, N) =1/2¢2Q 1 (V)¢ xo.- (28)

The least upper bound is achieved by inverting the
NXN matrix, As N increases, a sequence of de-
creasing upper bounds on p is found which con-
verges to the true answer (4) as N—<«, Thus
solving the matrix equation (1’) with a truncated
basis set is equivalent to a variational calculation
in that subspace and yields an upper bound to p.
The standard lowest-order variational solution
assumes that F, =f(e (k +0k)), i.e., that the Fermi
surface is uniformly displaced in the direction of
E. This is equivalent to putting ¥, =t in (26). The
lowest-order result in the new basis set is the
first term of the expansion (7), equivalent to the
choice ¥, =Xy, (k) in (26), or N =1 in (28). Using
Eqs. (10)-(12), (15), and (16), Xx, can be written

XXo(k) =zvkx/(n/m)eff.e . (29)

This differs only slightly from the usual variational
trial function. In most cases the € dependence of
(n/m)er is weak compared to kgT, so that (2/m)e
is a constant and cancels out, making the two
lowest-order procedures identical.

III. LOWEST-ORDER RESULTS

In this section the first approximation [first term
of Eq. (1)] to p is worked out explicitly. The final
result is a familiar generalization of Bloch-Griin-
eisen theory to metals.with complicated energy
bands and phonons. There are two reasons for
giving details here, First, a systematic derivation
of these familiar results has never appeared in
print to my knowledge. Second, the techniques and

notations used here are the same as will be used
in Sec. IV, and perhaps it is best to present them
in a familiar context,

For impurity or phonon scattering, the operator
Q.+ has the form of scattering-out minus scattering-
in, both determined by the equilibrium transition
probability” P, :

Qe = (kBT)-I (%'Z Pyen ~ Pkk’) . (30)
. k”

Because Py, is symmetric in k, k', Eq. (22) be-
comes

Qrn,sin = (2k3T)-1; Pkk'[x.}n(k) = Xsn(R")]

X[XJ’»’(k)”XJ'n'(kl)]v (31)

Explicit forms” for P,,, due to impurity and pho-
non scattering are

Pog?= @ /10)| Vi P (1 = for 06, =€), (32)
Pglr = @u/B)| My PFo (1 = Frr)
X[(Ng +1)0 (€, — €2 = Rg) +N0 (€, — €4 +2)],
(33)

where V,,» and My, are the impurity and electron-
phonon scattering matrix elements; #; and N, are
the number of impurities and number of phonons
(Bose factor); Qg is the phonon energy; @ is short
for wave vector Q (E—E’ reduced to the first
Brillouin zone) and branch index v (which is im-
plicitly summed over).

We now evaluate the first term of the expansion
(7), using Eq. (29) for Xx,(k), and neglecting for
now the energy dependence of (#/m)y;. The first
step is

p® =[(n/m)ere? (1 /7(%, +1/7)), (34)
1 _.n a
70T =2 )y ¥x0.x0

=[(%) /eBT:]‘IZ (Ve = Vars PP (35)
eff RrE!

where the superscript (0) is to remind that this is
lowest order in energy and “angle” dependence,
and @ can mean “imp” or “ph.,” Next, consider im-
purity scattering, and plug (32) into (35), using

the identity f (€)[1 = f (€)] =k5T (-8f/0¢) and the ap-
proximation —8f/6€ ~06(c) and Eq. (12) for (2/m),:

L 2m B Gt Vi PO €00 )
= 2™ M0) ST
bp b v

imp

(36)

This result is the analog for complicated bands of
the familiar formula’ which (36) reduces to for
single- plane-wave electrons,
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. 1
1 ____27;;}1‘ Ny (0)f deosd czos(9 (1 - cosO)V(2k.(1 - cosO)]E.
-1

Tarw =
imp

(36a)

Note that (U, - Us,+)?/2 @2) is the generalization for complicated bands of the angular weighting factor
1 —cos6, The notation 7 in (34)—(36) should not be taken to imply that a relaxation time “exists,” i.e.,
that@ ¢ can be written ¢/7. Only in the special case to which (36a) refers is a true relaxation time
meaningful, Equations (34)-(36) are not “relaxation-time approximations.”

Next, consider the analogous formula for phonon scattering:

1 _2r
'r(pg5 nok

B

N(0) d de’ { aa ; (ka_yk,z)lekk,lzé(Ek —€)o(e, —€)
T f €f 3 f 22 02,8(€,)0(€,0)
bp

X 82 = 2)f ()1 -f € NHIV@) +1]0(€ ~ €' = 2) +N@)0 (€ €’ +Q)} . (37

Three 0 functions have been inserted, and integrated out, which separates energy from angular variations.

Now define an “electron-phonon spectral function”!®

57 Wax = U 2 My PO (€, — €)B (€, — €7)0 Qq-9) (38)

a%rF(Q, €, eI)ENf(O)

2 VRO(€, )0 (er)

Except for the extra factors of velocity which reduce to 1 - cosd in the spherical case, this is identical to
the analogous function @2F (2) used in Eliashberg theory of superconductivity and measured by tunneling.

It is very convenient to introduce this spectral function into transport theory because, in the absence of
detailed knowledge, we can still make good guesses about o F. It is customary to argue that of.F depends
only weakly on € and €’, compared with the rapid variation of the subsequent factors which vary on the
scales kzT and Q4. This justifies neglecting the €,€’ dependence of (38), i.e., setting € and €’ to zero
and calling the result a%rF(Q). This approximation will begin to break down at high T if there is rapid
variation of electronic parameters like N(€) (“Fermi smearing” effects). Thus (37) becomes

’T‘<1;7 Akl f "2 o8, F Q) @/2k,T)/2 (39)
I(Q/2k,T) = %ﬁ[: de j:: de’ fe1 = fe ) [N(R)+1]0(c =€’ =) +N( Q) (e — €’ +Q)}. (40)

By.a tedious but elementary integration, I (x¥) can be shown to be (x/sinhx)?, At high temperatures, I(x)

approaches rapidly to 1, and (39) becomes'®

1/7gM0) — @ /e, TAs, .
Atr =2fm a2 M :N}(O)§ (vkx - vk’x)szkk'lz/ﬁQQ.)a (Ek)ﬁ(Ek,) . (42)
. 2 2 O E) |

The coupling constant A, differs only by velocity
factors from the coupling constant A which deter-
mines T, of superconductors and enhances the low-
temperature specific heat v, At low temperatures,
only the small € part of of.F(2) contributes to the
integral (39). The superconducting function o2F
behaves as Q% for small £, but the extra factor

(Upy = Upr,,)? changes of.F to an ¢ behavior, - This
gives a T® contribution to p. Equations (34) and
(39) are the appropriate generalization of the Bloch-
Griineisen formula to metals with real (non-Debye)
phonon spectra and real (nonspherical) energy
bands. In Debye approximation, the standard

Bloch-Griineisen result is obtained by setting o F
to 21:(2/9,)°0 () — Q). At room temperature,
Eqgs. (34) and (41) appear to give an excellent semi-
quantitative account of the resistivity of transition
metals, with Ay =X, provided (/m)e; is calculated
from reliable energy bands.!* However, they-are
only the first approximation, and especially at low
temperatures, the corrections due to anisotropy
and € dependence of ¢, can be significant. - Finally,
it is'worth mentioning that experience with many
superconducting metals show that o2F(R) is sur-
prisingly similar in shape to F(Q), the phonon den-
sity of states. It is reasonable to expect the same
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for o F(Q), except for the low-frequency region
(@ =&9,) where the power law is altered from 92
to 4,

IV. HIGHER-ORDER TERMS

In this section the general term @, +,» of the
scattering operator is worked out. The first step
is to factorize the “angular” and energy variations
occurring in Eq. (31). The shorthand notation
Xsn(R) = JR)(ne) is helpful, where (k) means F;(k)
and (2€) means 0,(¢)/N,(¢)v(c). Factorization is
accomplished by the identity

[UR)e) - W) neN[(TR)(n'e) = (7R ) (')
=1 22 (k) -sWR]['R) 5" (')
S,s=43

X [(n€) + s (@eN] [('e) 45" (0'e")].

Q™ =?%%’;—1(,9—)fdef de [ ag

(43)

s,8' =41

{IN@) +116(€ — €’ = Q) +N Q)5 (e — €’ +Q)}.

This is quite a formidable expression. One sus-
pects theorists will not be quick to evaluate it. The
complexity is unavoidable if we wish to solve ex-
actly, taking both angular (JJ') and energy (2n’)
variation of ¢, into account. In simple metals like
potassium it is found!” that energy and angular
variation give comparable corrections to p, neither
one large. In d-band metals which can have very
anisotropic velocities, it is reasonable to expect
that the angular corrections will be larger, while
energy corrections may be similar to those found
in K, Let us consider the sources of € dependence
with an eye to making approximations, There are
two sources. (i) Electronic parameters like N, (€),
v(€), and &®(s,s,J,J’, €,€’) vary on a scale deter-
mined by band structure, A typical scale might be
2 eV for simple metals and 0.2 eV for d-band met-
als. (ii) Energy conservation and the Pauli prin-
ciple introduce d(€ —€’ ) and f(1 - f’) which vary
on a faster scale,  and 25T, At low temperatures
it is appropriate to neglect (i), whereas (ii) can
cause significant corrections to the lowest-order
result, especially for thermal conductivity, At
high temperatures, kT >Q,, it becomes reasonable
to set 2 to 0 inside the O functions, treating phonon
scattering as effectively elastic. In this situation,
the Boltzmann integral equation does not couple
different energies € and €’; the apparatus of d,(€)
polynomials is no advantage, and the equation is
easily solved by other means.? The energy varia-
tion of N(€), v(€), and o?(s,s’,J,J’, €, €’) can cause
a significant “Fermi-smearing” correction to p,
but in the elastic approximation this is more easily

ALLEN

Now define the generalized spectral functions
a?(s,s’,J,J’, €, e )F(Q)
=[2N4 O 12 | Mo BLE, (R) = T, (R)]
kR
X[Fi (k) = s'F, (k"))
X0(€,—€)0(e, —€')0(R2g — Q) (44)
and joint energy polynomials
J(s,s’,n,n' e €')
=ilne) +s(ne’)][(n'e) +s’(n'e’)], (45)

where s,s’ can take the values +1, The exact re-
sult for the scattering operator (31) due to phonon
scattering (33) is

2 a¥s,s’,d,Jd" €, e F@)fEL -fEe )W (s, s, nn e, €)

(46)

T

handled by techniques other than those used here.
In some cases it may be important to know the
simultaneous effect of inelasticity and Fermi
smearing, making the full formula (46) inescap-
able. The rigorous procedures developed here are
likely to be most useful (i.e., most readily im-
plemented) when Fermi-smearing effects can be
neglected, This means the €, €’ dependence of a?F
can be neglected [by evaluating at € =€’ =0, calling
the result o?(s,s’,J,J’)F(@)]. In this approxima-
tion another helpful simplification occurs. When
the signs s,s’ are the same (opposite), both
a?(s,s’,J,J’ € €')F and I(s,s’ ,n,n' € €’) are even
(0odd) under interchange of € and €’, The odd com-
binations (s#s’) vanish when particle-hole sym-
metry is assumed (Fermi smearing neglected).
Evaluated at €,€’ =0, the odd parts,

o?(s, —s,J,J’,0,0)F, clearly vanish. We can keep
only the even (s =s’) parts and contract the nota-
tion still further, to o?(s,JJ')F(Q) and

J(s,n,n’ € €’), Further, the energy polynomial
(ne) =0,(c)/N(€)v(e) can be replaced by o,(¢)/
N(0)v(0). The joint energy polynomial (45) becomes

I(s,n,n’,€,e")=[N}(0)¢2/m), 4, |7
XH(s,n,n’ €,¢€"),
@
H(i’nin,;e’ €I) =%[0n(€)ion(€l)]
X[O',,' (€) 0y (el)] 5

where Eq. (12) has been used. Then (46) becomes
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(48)

ph .
Tin,g'n' n s=t1 Jo

Q

1 4mkgT 3 f”dg az(s,J,J'.)F(Qﬂ)l(s,n,n’,Q/ZkBT)

I(:t,n,n', %):Wfdef de' H(x,n,n' e,€") fe)1 - f(e')]

{[N@) +1]8(€ -’ = Q) +N@)0 (€ — €’ +Q)}

=I(x,n,n' x)=(/sinhx 21 . ().

It can be shown thatI},/(x) defined in the last line

of (49) is a polynomial of order 7 +%’ in X, Finally
(48) can be written

ph
Trn,g'n' r

I 4k, T “ an .
=t Y0

* (55 Lo )
50)

This is the final formula for the electron-phonon
scattering operator, The lowest-order result
1/7% [Eq. (39)] is just 1/7% x,. This follows be-
cause I, is 1, I is 0, and o?(+,X,X)F(Q) is

o2 F(Q) [Eq. (38)]. The result (50) is considerably
less forbidding than (46). It is already possible to
calculate o?(s,J,J’)F (@) for d-band elements by a
slight generalization of the programs developed®®
to do o?F (R). The rest is algebra. It must be
possible to derive an analytic or at least recursive
formula for I} (), but I have not succeeded. It
can be shown to be an ever polynomial in X, of or-
der n+n’ if n +n’ is even, and vanishing if # +n’ is
odd. Some specific results are

it (0) =80y , I7,4(0)=0,

L) =1, I;®)=0,

I, &)=1+@/mP, I;,()=3(/TF,

I (x)=V5 (x/7)?, (51)
I,(x)=1 +5(x/2m)? +21(x /27)

I, (x)=15(/27) +15(x/2m)*,

The fact that I 5, vanishes if %z +%’ is odd means
that the scattering operator.Q;,, ;+,» block diago-
nalizes into two parts with 7,7’ even and odd, re-
spectively, with no coupling between them. Thus
the thermopower vanishes [Eq. (5)], as does the
second term of the thermal conductivity [Eq. (6)].
These results fail when Fermi smearing is in-
cluded. The thermopower arises completely be-
cause of Fermi smearing (i.e., states below €p
have a different ability to carry current from states
above €p; particle-hole symmetry fails),

These formulas allow an explicit result to be

(49)

r
written for the thermal conductivity « in lowest-
order variational approximation. Taking for the
variational function ¢, = Xx,+@,Xx,, We are left
with a 2X2 matrix which is already diagonal. The
variational formula for the thermal resistivity
W =k"1 is then

w©) = (3/27%3T)Qx1, 31 - (52)

Using Eq. (50), the result for the phonon part is

6
W(O)=_____
T ik (e /m)

eff

X {2 f %z—- o (+ XX)F(Q)(siihx) ’ (1, + :—Z)

w2 f %—az(—XX)F(Q)@{{n}—l—x-)z@ ’7‘;)}

(53)

where x =Q/2k,T. The spectral function &+ XX)F
is identical to o%F [Eq. (38)], while a?(-XX)F has
(Ve = Ut P replaced by @y +Upr,)?. The low-2 be-
havior of o?(-XX)F is Q2; the extra two powers of
Q in af.F arise from the cancellation of (U — ¥y f
at small Q. At high temperatures, x is small and
the first term of (53) is dominant, with x2/7% negli-
gible compared to 1. This gives Wg,?,) proportional
to p{9) [Eq. (39)], so that the Wiedemann-Franz law
holds. At low temperatures, the first term of (53)
goes as T* and obeys the Wiedemann-Franz law
(with an altered Lorentz number), but the thermal
resistivity is dominated by the second term which
goesas T2 and violates the Wiedemann-Franz law,
Equation (53) generalizes the well-known results
for spherical metals to more-complicated band
structures. However, just as in the spherical case,
a more-careful treatment of the energy inelasticity
(i.e., a larger number of odd-7 basis functions) is
needed to get a numerically accurate solution at
low temperatures. In a perturbative expansion for
WP analogous to (7) for p, the second correction
has the same low-temperature power law (I'2) as
the first, unlike the case of resistivity where
higher-order phonon terms with ##0 go as T”
while the first term goes as T®, A variational cal-
culation by Klemens!® gives a reduction in the low-
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T phonon-induced thermal resistivity by 33% below
the result (53), arising from higher-order energy
dependence of ¢ coming from inelasticity.

V. CONNECTION WITH SUPERCONDUCTIVITY

The theories of p and T, are similar in two dif-
ferent ways: (i) they both depend on the same elec-
tron-phonon scattering matrix elements, and (ii)
the formal structure of the theories is similar in
.many ways. Eliashberg theory!® gives a nonlinear
integral equation for the energy gap A(k, w) which
is complex and wave-vector and frequency depen-
dent, As T approaches T,, A approaches 0, and
the integral equation becomes linear (and homo-
geneous, in contrast to Boltzmann’s equation). By
analytic continuation to the imaginary frequency
axis, the kernel K becomes well behaved and real,
as does A, The transition temperature is the tem-
perature at which the largest eigenvalue of K is zero.
In practice, the ® dependence of A is usually ne-
glected, "and the resulting theory is formulated as
a one-dimensional integral equation with K a func-

tional of the spectral function o?F(Q). This approxi-

mation gives a variational estimate of the actual
largest eigenvalue of K, and thus gives a lower
bound to T,. There is an almost precise analogy

with the lowest-order variational procedure in
transport which gives a lower bound in 0. In each
theory a variational functional exists which is a
lower bound on (T, 0) for any trial value of the (gap
A, distribution function ¢). The actual (A, ¢) is the
one which maximizes (T, o). The lowest-order trial
function is a constant (gap A, displacement k). If

the error in the trial function is order «, the error

in (T,, @) is order @2, This “error” is the aniso-
tropy enhancement of (T, ¢). In nearly all metals,
@ is apparently fairly small, A probe of the aniso-
tropy of (A, ¢) is the effect of impurities on (T, o).
In both cases, heavy doping with impurities will
eliminate much of the anisotropy enhancement of
(T,,0). In transport there is of course another
effect of impurities—the residual resistivity—
which has no analog in s-wave superconductivity
(out does for other pairing schemes as in 3He).
The destruction by impurities of the anisotropy
enhancement of ¢ shows up as a deviation from
Mattheissen’s rule,!0"'2

A scheme for solving the Eliashberg equations
exactly, taking anisotropy into account using
FSH’s, was proposed in Ref. 8 and partly imple-
mented in Ref. 9. The spectral function @*F be-
comes generalized to

o% ;1 F Q)= Ny(0 2 0(e,)0(c,r)
b’

) kzk’: lek’IzFJ(k)FJ’(k’)ﬁ (€2)0(ex )0 (Rg =) . (54)

It is also-convenient to define another related function which enters because of the occurrence of the “nor-

mal” self-energy Z in the Eliashberg equations

Myt PE; (R)F ;. (0)0(€,)0 (€010 (R2g — ) (55)

¢
A%, F(©) =N (0) £
J ( ) lf() 25(€p)5(épl)

o’

This differs from o3 ;+F only in having F ;, (%) in
place of F;+(k’), Because of the completeness of
FSH’s, the two functions are not independent;
0% ;+F alone contains all necessary information,
and A% ;+F can be expanded, using the Clebsch-
Gordan coefficients C; o n:

AZJJ'F(Q)=; Cryryn0%u F(Q), (56)

2. Fy (R)E s (0)F, n (015(€1)

Z: 0(c,) ’
?
where the function F, is defined to be 1. The spec-

tral functions defined for transport can be imme-
diately written in terms of o3 ;+F and A% ;/F,

(I Q) =A%, F @) a5 ;1 F(Q). (58)

At ro'om'temperature and above, because of the
small parameter /2kgT, the n=n’'=0 terms of

(67)

CJJ-IJII=

QRPe =

—

@ rn,s'n Will dominate, Neglecting Fermi smear-

ing, these can be written

(n_/fn)ef: WL [ R @),

(59)
Using Eq. (58), this can be written
, 2 2k T
Q%l'y'%h "= () M)eze ;,iB Brrr =255, (60)

where the coefficients A; ;s and A, have been de-
fined® because of their importance in supercon-

ductivity:
0% F(Q
Npgr=2 fdsz,—-——a”ﬂ @ 61)
A% L F
J fda—%ﬁl (62)
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=;cu.ﬂ,x,no, (63)

The two matrices A and A, together with a matrix
B> which gives the weak Coulomb repulsion, de-
termine T, of a superconductor to good approxima-
tion (unless T, is very large):

Tc = (‘»"‘log/1 -2) exp(—l/hen) ’ (64)
Aetr=max eigenvalue of (1 +A)™ (A= u¥).  (65)

This is the generalization of McMillan’s? formula
to superconductors with anisotropic energy gaps.
Just like the scattering operator €, these matrices
are block diagonal in the different rows and repre-
sentations of the crystal point group. For all
known superconducting metals it is strongly sus-
pected that the largest eigenvalue (65) occurs in
the I', submatrix (s-wave superconductivity), al-
though there is no fundamental reason why certain
metals® might not choose a different submatrix,
probably T',; (crudely, p wave). Transport is of
course determined by the T';; submatrix of . We
see from (60), (64), and (65) that high-tempera-
ture transport depends on exactly the same coeffi-
cients as the “p-wave T..,” The lowest-order vari-
ational solution at high T [Eqgs. (34) and (41)] uses
Atr=Ayy — Ayx. The analogous lowest-order varia-
tional estimate for the p wave (more correctly,
) T, is

(0) _ Yioe 1+Axy
Tc (F15) - 1.2 'exp<hxx _ M;X )' (66)

If the two numbers Ay and Ay x were separately
known, this would allow a lowest-order variational
lower bound on the p-wave T,, which would be of
great interest, for example, for Pd, The coeffi-
cient At is also closely related to A =A , =A , which
determines the I‘1 (s-wave) transition temperature,
This comes about because of Eq. (63) and the prop-
erties of the Clebsch-Gordan coefficients (57). As
was shown in Ref. 8, Cyx, vanishes for all ', ele-
ments J except for two, Cyy =1 and Cyypz = (v

- (3?2 v?), Thus we can write

Atr =A00 +CXXR2)\'0R2 - Axx . (6 7)

Empirically!® it appears that A, and Xy =A are very
similar for those d-band elements examined so far.
Probably both the second and third terms of (67)
are quite a bit smaller than the first, and they
occur with opposite signs.

Several other interesting quantities can be cal-
culated simultaneously with resistivity, namely,
the anisotropic quasiparticle mass enhancement
A, and scattering rate 1/7,. These both can be cal-
culated (at any value of T and external frequency
w) as integrals® over o?F(k,Q), defined as

PF[Q) =) F,(k)o2,F@). (68)
J
Thus, for example, when w =0, A, can be written
Ne= D F (BN . 69)
J

For many materials it is probable that the aniso-
tropy in A, is reasonably accounted for by only a
few terms in (69), possibly just A, and Ayz2, both
of which are contained in a resistivity calculation,
Finally, the anisotropy of the superconducting gap
A,, for weak anisotropy, can be written®

A =Z;: FJ(k)AJ ’

Ap/Bo= (L +p¥)( +2)H = p*) M0,

(70)

This anisotropy causes a T, enhancement 0T,,
which can be written for weak anisotropy®

0T, /Te= (1 +p¥)(L +A)71 (A = p*)73(A2) —A%),
(1)
(A2)= N2 =D A 2.
J=0

These formulas demonstrate that one virtue of the
Fermi-surface harmonic method is to achieve a

simple unification of physical quantities whose in-
terrelation appeared previously quite complicated.
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APPENDIX

A set of orthogonal polynomials has been defined
by Eq. (17). Some properties of these polynomials
are worked out here. First, transform to a di-
mensionless variable X =€ /27k T

0,(€) = (21 +10V2¢ (€ /2 5 T), (A1)
° §,,(x)§,,:(x) _ 2
Hf.«, e cosh?mx = Ot M+l ° a2)

A factor of (2n +1)¥2 has been introduced into (A1)
because it simplifies the form of the resulting
polynomials ¢,(¥). Lawrence has pointed out to me
that the Legendre polynomials of tanhmx are a pos-
sible choice for an orthonormal set satisfying (A2).
For the present purposes it is more convenient to
have ¢, be a polynomial in ¥ rather than tanhnx;
otherwise the simple results (3’), (5), and (6)
would be replaced by infinite series., Sykes and
Brooker? have used the associated Legendre poly-
nomials to define functions
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L) = @n +3)2(n + 1) V2 (n 1 2) 2
X (2n +1)"12PL, (tanhmx)

which also satisfy (A2). However, these are even
less convenient for the present purposes. The
polynomials defined here are in some sense a
natural analog for degenerate quantum electrons
of the Sonine polynomials of classical kinetic
theory.?® I have been unable to find these polyno-
mials in the literature or to relate them to any set
of known polynomials,

The low-order polynomials &,(x) are readily
constructed by orthogonalization

L) =1, g()=2x, [,(x)=3x%-%, (A3)

The polynomials up to ¢ 6-(9; ) were constructed this
way, and a conjecture for the leading coefficient
was found

Eal0) =[2"@n = 1)1 /(IR I" 4o e e (ad)

Beyond 7 =6, brute-force construction by hand was
too tedious. The conjecture (A4) was verified nu-
merically to 11-figure accuracy for polynomials
up to order # =17 on-a Univac 1110 computer. Al-
though a rigorous proof is lacking, (A4) is surely
correct. The recursion relation follows imme-

diately from knowledge of the leading coefficient®
nzgn(x)zz(zn"l)xgn—1(x)- (n"l)zgn—z(x)¢ (A5)

This gives an efficient method for generating nu-
merical values of &,(x) if # is not too high. Gen-
eral theory of orthogonal polynomials? shows that
the set ¢, is complete in the sense that for a given
€, arbitrarily small, and a given real function
a(x), some finite N exists such that, for suitably
chosen expansion coefficients a,,

a)-3 ot )|| <2,
(a6)
Powle=r | av LEF

The optimum choice of expansion coefficients is

aennrg [ o SEEL @
It remains to be determined from experience
whether the transport coefficients converge rapidly
in these polynomials. An argument by Klemens'®
shows that for low-temperature thermal conduc-
tion, ¢ will not converge rapidly, but this does
not prove that calculation of k¥ converges slowly.
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