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Correlation functions in XF models and step free energies in roughIening models
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A duality relation derived by Jose, KadanoA'„Kirkpatrick, tnd Nelson and by Knops is ex-
ploited to calculate properties of XY ~nd roughening n~odels from known properties of the dual
models. It is shown that the correlation length in 5&'n&odels is exactly given by ( =--Pf,
where f'is the free energy per unit length'of a step and P is the inverse temperature in the
corresponding roughening model. Similarly, the exponent g below T,. in an A'Y model is given

by n = lint
l

—
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r" I, where Ft (r ) is the free energy associated with two screw dislo-

cations of unit strength and opposite sign separ tied by the distance r" in !he corresponding
roughening model.

It has recently been demonstrated by Jose, Ka-
danoff, Kirkpatrick, and Nelson' (JKKN) and in-

dependently by Knops, ' that a general two-
dimensional IV model

where m ~
@& & —m and the sum is over nearest

neighbors, and a general two-dimensional roughening
model

H =-—$ V(rrr, —h,, )

where h, takes on all integral values, are dual to each
other under the condition that

exp [—P V(h) ] =- —— d@ exp [—ih @ —P V(@)]
277

where P and P are the respective inverse tempera'-

tures.

This interesting relationship provides a usef'ul link

between basic problems that have long been studied
in the theories of magnetism and crystal growth. In

this paper, we shall show one way in which this duali-

ty can be exploited to use results from the theory of
crystal growth to obtain information about the LV
model and vice versa.

In addition to the basic duality relation, JKKN'
also showed that the XY-model correlation function

can be expressed for arbitrary p in terms of the
roughening model as

with the integers n„, being equal to unity for bonds
along a line connecting the dual lattice points r and r"

(for f to the left of' the line and g to the right) and
zero elsewhere. Z is the usual partition f'unction for
the roughening model tZ = Z'(p =-0)l.

The physical situation described by the partition
f'unction Z' for integer values of' p is a very familiar
one in the theory of crystal growth. " It is that of
two screw dislocations having strength p and opposite
sign„which intersect the sur'face of the crystal a't r

and r'. At zero temperature (T =P =0), this Leads

to a step of height p running between r and r'. (The
step is straight and unique only if r'and r' have the
same x or v coordinates. Otherwise, there are several
equivalent states, which give rise to a nonzero contri-
bution to the entropy. ) The primary interest in this
configuration in the theory of crystal growth is as a

continuous source of steps, which bypasses the nu-

cleation barrier below the. roughening temperature
and greatly enhances the growth rate. '

Since the f'ree energy associated with this step
F„(r—r') is by definition just the difference in f'ree

energies of the system with and without the two
screw dislocations, we see from Eq. (5) that

g(, (r —r ') =expj-PF„(r —r')]

This is our basic equation.

lf'
I

r
-- r 'I is large, the contributions from the ends

of the step become relatively unimportant for
sufhciently large P and, neglecting smalller (possibly
logat;ithmic) terms

(Sj
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g„( r' —r ') ex p( —
!r —r '!(„)

where the correlation length in the XY model is ex-
actly given by

(10)

Note that Eq. {10) implies that the suggestion by

Leamy and Gilmer' that, f j goes to zero at the
roughening temperature„TI&, is identical to the state-
ment that the correlation length in the XY model
diverges at T, . Similarly, f'j =0 above T~ is con-
sistent with the XY model having a line of critical
points f'or T ~ T, .

' ' Indeed„ it is known that

g„( r —r ') —
!

r' —r'! 'p

—
!

--p /tv)l)'"(0)x z

at sufticiently low temperatures, ' so that for
suSciently high temperatures in the roughening
model, F„(r—r') is given asyn~ptotically by" '

t

PF„( r —r ')
r .

In! r -r'!
)

where f,, is the free energy per unit length associated
with «n infinitely long step of height p. This implies
that

and f'rom Fisher and Ferdinand„' we have

Pf) ([11])= J2 ln sinh!P[ V(1) —V(0)] j

for a step in the [11]direction.
An immediate result is that f'or any XY model

$([1 ]0), /)([l l]),'

lim —- = lim —'
(([11]) p — ~, ([10])

(19)

Equations (10), (17)„and (18}can be easily
evaluated for specific models of interest. For the ori-
ginal XY model, with

difticult high-temperature region of a roughening
model. By the same token, we can use Eq. (10) to-
gether 'with, available results for the low-temperature
region of' roughening models to calculate correlation
lengths in the high. -temperature phase of XY models.

If we are sufticiently far below TI~, the calculation
of f j for a roughening model is equivalent to the cal-
culation of the interface free energy in a two-
dimensional Ising model. . Thus, f'rom onsager" s'0

solution, we have for a step in the [10] direction

P jj{[IO])= j[V(I}—v(O)]

—ln coth [ —, p[ V(1) —V (0) ] ), (17)

=q„ln! r —r'!
Vo(@) =--J cos

we have

(2o)

which is a new result in the theory of' crystal growth.
This establishes a direct link between the exponent q
and the asymptotic behavior of the free energy of a

step.
The second derivative of the equivalent XY interac-

tion is easily found from Eq. {3) to be

jV„(n) =—ln1„(PJ),
where l„(PJ) is the Bessel function of imaginary ar-
gument. " This gives (in units of the lattice constant)
for p =1,

l)t [I ) (pJ) /l (pJ) ]

P V"(0)

»exp[ —p V(»)] g exp[ —p V(»)] (13)
=—oo It =—oo

and

—ln [1(){PJ) —1 j (PJ)]
+In[/)(pJ) —l) (pJ)] (22)

For the physically important case of the solid-on-
solid (SOS} model

P Venal(») = P~ I
»

I

we can immediately evaluate

P v "„„{0}=2e-/"(I -e-/"} '

'1, (PJ)
'

(j))) =—421n2+ J21n 1 —,——
!, 1,{PJ)

~

1,(PJ)—J2 ln—
1,(PJ} (23)

so that

F„„),( r —r ') (p'/4 rp) re'"(I —e "')'

&& ln! r —r '! (16)

for high temperatures (P small) and large separa-
tions,

In deriving Eqs. (12) and (16). from Eq. (7)„we
have made use of the fact that the low-temperature
properties of XY models are relatively easily calculat-
ed to obtain a result that is valid for the more

Since l)(=)/l)(z) —,z for small z the correlation

lengths for the original XY model vanish as (ln T)
for high temperature.

Similarly, the Villain model"

P V, . ()t)) =—ln g exp[ —PA ()t) —2rrn) ], (24)
Il =" oo

which is dual to the discrete-Gaussian (DG) model'

v, . (I~) =(4p~) -jn', (25)

has the correlation lengths
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([jIIt = {4pA ) —In coth (I/8pA )

(lj~t = J21n sinh(1/4PA)

(26)

(27)

Note that for the Villain model the correlation
lengths vanish as T- ' in the limit of high tempera-
tures.

The high temperature behaviors of' the original LY
model and the Villain model are identical if we

choose 3 such that

1 =—t'4P In[It(PJ)/ltxPJ)]]

(28)

which is just what Villain suggested on the basis of'

equating the first Fou rier components of the in terac-
tions.

Equations (22), (23), (26), and (27) for the corre-
lation lengths all refer to the case p =1. For p & 1,
the results depend on the form of' the dual interac-
tion V(») —even in the limit of very high tenipera-
tures.

I f'

V(»+1) —V(i&) «V(n) —V(n —1)

for» «1, the f'ree energy per unit length of a step of'

height p can be reduced by separating it into p steps
of' unit height. Therefore, if inequality (29) holds,
we have

.fp = p.f ]

and, hence,

(, =ci/It

(30)

(31)

However, if inequality (29) is violated, the step will

then stay together so that

and

f' (pf] (32)

(, ~ (i/n (33)

Clearly, the SOS model [Eq. (14)] marks a boun-
dary between these two types of behavior.

So far, we have used low-temperature expansions
in both models to obtain properties of' the dual
mot]els at very high temperatures. Calculations near
tPe transitIon are notoriously dificult in both nsodels,
but there are some immediate possibilities for making
further progress that we shall now explore.

One possibility for calculating correlation lengths
closer to T, would be to apply mean-field theory to
the corresponding roughening model. The basic
theory for the SOS model [Eq. (14)] has been set
forward by Tem kin ' (although the necessary equa-
tions were derived much earlier by. I-Iill") and the

C
—exp(+ni T —T, i

i") (34)

as T, is approached from above. It is interesting to
note that this is exactly what Kosterlitz" has predicted
f'rom a renorn]alization group treatment of the
Coulomb gas representation of the XY model. '"

Vote aiMedin proof: Since this paper was submit-
ted, I have learned that a relation quite similar to Eq.
(10) has been f'ound f'or the two-dimensional. Ising

corresponding theory for the discrete Gaussian niodel
[Eq. (25)] has been presented by Kim and Thomp-
son. ]" These theories suA'er from the drawback that
they f'ail to predict a roughening transition
(T„' =- ~). This failure has been explained and a
mean-field theory that does show a transition has
been constructed, " but the value f'or Ti& is much too
high and, as yet, no calculations of step properties
have been made.

Step properties have been calculated f'or the SOS
model within the Temkin approximation " and
clearly show the system becoming isotropic at higher

temperatures (which corresponds to ( beconiing iso-
tropic near T, ) but because of the failure to predict a

roughening transition, f] rernnains finite at all tenl-
perat ures.

A straightforward way of obtaining inf'ormatIon on
the correlation f'unctions is by Monte Carlo sIniula-
tions of steps in the roughening n~ogels. Both
F„(r—r') and f,, can be calculated in this way and
simulations for f] have already been perfornied for
both the SOS and DG models. " Unfortunately, the
statistical errors are too large lo obtain f] close to T~,
but the results do indicate that Eqs. (17) and (18)

]
should be good up to about —, T/&.

Another e{]'ect that has been seen in Monte Carlo
simulations is the rounding of'growth spirals as the
temperature is raised. ' Although spiral growth is a

dynamic process, the shape of the spiral is related to
the shape of the critical nucleus„which in turn
depends on the isotropy of the step-free energy. '
This implies that the rounding of the growth spirals
in the roughening models is directly related to the
isotropy of the correlation lengths in the correspond-
ing LY models, and spiral rounding should always be
observed as Ti~ is approached.

Finally, although no exact:;olutions are known for.
any roughening niodel of the type discussed in this

paper, van Beijeren" has presented an exact solution
of' a "body-centered solid-on-solid" (BCSOS) model
which may have the same critical properties. The
step-f'ree energy f'or this model goes to zero at Tiq as
exp( —6( T —T„~ ' -'). If the models we have dis-

cussed have the same critical behavior, the
corresponding XY model correlation lengths would
diverge as
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n~odel. The duality trgument was given by A. E.
Ferdinar;d tPh. D. thesis (University of London„
1967), Chap. 11] and the result is contained in an ar-
ticle by M. E. Fisher [3. Phys. Soc. Jpn. Suppl. 26„87
(1969). See also P. G. %'atson. , J. Phys. C 1, 575
(1968); in Phase Transitions an(I Critical Phenomena,
edited by C. Domb and M. S. Green {Academic,
I.ondon, 1972), Vol 2, p. 115. The Ising model du-

ality trgument has been recently rediscovered by R.
ft'. . P. Zia [Phys. Lett. ito be published)).
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