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In the Weiss molecular-field approximation, the S =1 Ising-model ferromagnet possessing addi-

tional single-ion-type uniaxial anisotropy is known to exhibit (depending upon the ratio of aniso-

tropy and interaction constants) both first-order (discontinuous) and second-order (continuous)

magnetic phase transitions which join at a tricritical point. We further investigate the above model

system in the spin-pair approximation using the cluster-variation method. Within this improved

approximation, results are found for the temperature and anisotropy dependences of the thermal-

average quantities (S,), (S, ), (S,S, )., (S,S, ), (S, S, ) (i,i' are nearest-neighbor lattice sites), a

better estimate for the location of the tricritical point is achieved, and the specific heat and initial

paramagnetic susceptibility are calculated. To illustrate these results, the simple cubic lattice is

used as an. example of'application.

INTRODUCTION

In an attempt to investigate the possibility of first-
order (ai'scontinuous) phase transitions in magnetic
systems, Capel' chose to study the S =—1 Ising-model
ferromagnet having additional single-ion-type uniaxial

anisotropy. Blume-' independently proposed an essen-
tially equivalent. model for the first-order phase transi-
tions in UO2. In a Weiss approximation, the above
authors showed that, for certain values of the aniso-

tropy constant relative to the exchange-interaction
constant, the long-range order parameter (5 ) (i.e. , the
thermal average of the z component of the spin opera-
tor) can have a finite-jump discontinuity at the transi-
tion temperature, a characteristic of first-order phase
transitions. For other values of the anisotropy con-
stant relative to the exchange-interaction constant,
they found that second-order (continuous) phase tran-

sitions appear. The point at which the line of second-
order phase transitions changes into a line of first-
order phase transitions has special interest and is

known as a tticriftcal point, a name proposed by
Griffiths' since such a point can also be viewed as the
intersection of three lines of critical points in a suit-
able thermodynamic variable space (a tricritical point
is a point at which three distinct phases in coexistence
become identical simultaneously). The above type
S =1 Ising model has also been proposed by Blume,
Emery, and Griffiths4 as a model for the A. transitions
and phase separations in 'He- He mixtures. Within
the Weiss approximation, the latter authors found
qualitative agreements with many of the experimental
features. The interest in the model led to the exact
series analyses of Oitmaa, -' and Saul, Wortis, and

Stauffer. ' Another application of the model for mag-
netic alloys can be found in the work of Bernasconi
and Rys. '

In this paper we further study the model through
use of the cluster-variation method in the spin-pair
approximation. We shall focus upon the magnetic
properties of the model, the application to 'He-"He
mixtures in pair approximation having been previously
published. ' The contents of the present paper are out-
lined as follows, In Sec. II, we present the system
Hamiltonian and identify some of its general proper-
ties and, in Sec. III, the basic equilibrium equations
are derived in the pair approximation leading to
results for the tricritical-point location, nearest-
neighbor correlation functions, specific heat, and
zero-field paramagnetic susceptibility. To illustrate
these results, the simple cubic lattice is used as an ex-
ample of application. Finally, a summary and discus-
sion of the results are given in Sec. IV.

II. THE SYSTEM HAMILTONIAN

We consider the following S = 1 Ising Hamiltonian
having crystal-field (singie-ion-type) uniaxiai anisotro-

py:

e= —gj„s,.s, +axs, .',

where S, =0, + 1 is the z component of the spin
operator of an ion localized upon lattice site i,
J„=J,, )0 (J„=O) denotes the strength of the
ferromagnetic-interaction energy between the spins of
ions at lattice sites i and j, and 5 is the uniaxial
crystal-field anisotropy constant. The symbol
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indicates that the surnrnation is taken over a!1 distinct
pairs of lattice sites. We will frequently use the fol-
lowing equivalent symbols interchangeably

X —XX-2 X~+
(! i) !)i ! i

ln our treatment„we consider a canonical ensemble of
magnetic systems where each member system there-
f'ore has a fixed number 1Vof localized ions. Due to
the symmetry of the crystal field, each ionic triplet is
split into a singlet 5, =-0 with zero energy and a doub-
let 5, = +1 with energy A.

As pointed out by Capel, ' the following facts about
the system Hamiltonian (2.1) can readily be observed:

(a) There are only two possibilities for the ground
state of' the system, namely, (i) each and every ion
has 5, . =- 1 or each and every ion has 5, =—

1 „ i.e. ,
(S.) =- I or (S ) =- —'I respectively, or (iil each and
every ion has S,, =0, i.e. , (S ) =0. These possibil-
ities can be shown very easi!y by rewriting the Hamil-
tonian (2.1) as follows:

H =- —$ J„(S, —S,,) ' + Q 5 ——$J„S,'
( !,i ) - i

the ground state of the system will be almost degen-
erate since then the state (i) and the state (ii) have
nearly the same energy. Thus, a sma!1 change in the
external condition, such as the temperature of the
heat bath, will give rise to a jump from a state with no
magnetic ordering to a state with high magnetic order-
ing.

(b) Three particular cases of the Hamiltonian (2.1)
are well known and easily established: (i) 6 =—~,

}
equivalent to the S = —, Ising case, with magnetic ord-

ering at low temperatures, i.e. , (S ) &0, (ii) 6 =0,
equivalent to the 5 =1 Ising case„with magnetic ord-
ering at low temperatures, i.e. , (S.) & 0, (iii) 5 = ~,
equivalent to the case 5 =0, with no magnetic order-
ing, i.e. , (S ) =O.

III. SPIN-PAIR APPROXIMATION I,EADING
To RKSUI, TS FOR ORDER PARAMKTKRS AND

TR ICR ITIC A I. P8ASK 0IAG RA M

In this section we apply the cluster-variation
method" ~-' to the Hamiltonian (2.1),

X =- g J„S, S, + a QS, '

the ground state is the state (i) while for

the ground state is the state (ii). If 5 is close to

Since we are considering an Ising-type Hamiltonian,
only the z component of the spin operator appears in
our discussions. Consequently, hereafter we shall
simply write 5, instead of 5, for notational conveni-
ence. Then, the variational free-energy function F is
written in a two-spin approximation as

r= QTr p,
' '(i) (AS, ') + QTr, , p,"'(i j) (—J 5 S) + ky' QTr p,

' '(i) lnp, ' '(i)

+ kT $ [Tr, ,p,"'(i j ) Inp, "'(i j ) —Tr p,
' '(i) Inp, ' '(i) —Tr p,

' '( j) Inp, ' '(j)} (3.1)

1 0 0 1 0
ss, =oo o soo

,00 —1} 00

0
0

where p,"'(i), p,"'(i,j) are one- and two-site reduced
trial density matrices, respectively.

ln order to minimize expression (3.1), we first at-
tempt to specif'y all the elements of' p,'"(i), p,'"(i, j) in
terms of' appropriate unknown expectation values of
our problem. Let us choose a representation for the
operators in which each operator S, is diagonal, i.e, ,

IIO Ol
S, = 0 0 0 =-diag(1, 0, -1),

|0 0 —1,

=—diag(1, 0, —1, 0, 0, 0, —1, 0, 1) i & j

p, (~) —diag[~}(j), ~2(j), ~ (j)l

p,
' '(i,j) =diag[A. )(I,j), X2(i, j), . . . ', j)lg(i, j)]

(3.2)

(3.3)

The next step is to express }e,(i) } and }a&(j,!)} in
terms of unknown expectation values such that (a)
the proper expectation value of any operator 8 is
derived from the formula

where g designates the direct-product operation. In
this representation, the Hamiltonian (2.1) is diagonal,
hence all the density matrices are diagonal, i.e. ,
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(6) =Tr(pa), (3.4) x (i,j) = —,((S,S;) + (S,'S,)+ (S;S ) + (S,'S,'))

where p is the canonical density matrix of thermal
equilibrium, (b) the appropriate reducibility conditions
are satisfied, and (c) the normalization conditions are
satisfied.

One begins with the one-spin trial density matrices

p,"'(i) Co.nsidermg the expectation valties (S,) and

(S,'), one has, respectively,

x {'.i}=, {(S)+(S) '(SS ) (S S )}

x, {i,i}=—,((S,S,) + (S,'S, ) —(S,S,') —(S,'S,')),

(S,) = Tr, S,p,"'{i} X,{i,j}= —,
'

((S;) + (S,') —(S,'S, ) —(S,'S ) )

0
'' e, {i} 0 0

= Tr, 0 0 0 0 ~,{i} 0

{0 0 —1, 0 0 ~3{()

)i;{i,j) =1 —(S,') —(S,') + (S,'S,') (3.6)

},{i, .j}=—,((S,) —(S,') —(S,'S,) + (S,'SP)},
= e}(i)—e3(i)

k & {ij}=——, ( (S S;) —(S,'S, ) + (S S,') —(S,'S,') )

(S2) Tr Si (i)(i}

i

0 0' el(() 0 0

=Tr, 0 0 0 0 e2(i) 0

,0 0 1,
, 0 0 p3 ((')

= 6i(i) + &i{i)

Thus, one has

h.„{i,j) =—,((S,) —(S,') —(S,S,') + (S,iS,')}

@{i,j) =-, {(SS,) —(S,'S,)- (S Si') + (S,'S,'))

One can easily verify that the normalization and redu-
cibility conditions are indeed respectively satisfied, i.e.,

Tr, , p,i2'{i,j }= $ k, {i,j }= 1

and

e, {i)= —,((S) + (S,~)}

e,{i}=——,((S,) —(S,')) (3.5)

Xi(l J}+ Xi{I,J) + X3{I,J) = ti(l)

Z4(i,j ) + ).g(i,j ) + X6(i,j) = ~2(i)

X7{i,g} + }t8{i,i) + i{i,Ji) = Ei{i}

ei{i}=1 —(S,')

where the last equation is obtained from the normali-
zation condition Tr, p,"'(()=1.

In the same manner, the two-spin trial density ma-

trices p,'"{i,j) are found to be

Using the density matrices whose elements are
given by {3.5} and (3.6), one can express the varia-

tional function in terms of the unknown expectation
values and then perform the minimization with

respect to these expectation values. To proceed along
these lines, then, the variational function in the two-

spin cluster approximation given by {3.1) can now be
expressed as

3

%{i(S)},[(S, )), i(SS;)), ((S,S, )), [(S,'S,')})=$6(S, ) —$J„(SS,) +kT g $ ei(i) tnt, {i}

9 3

+ kT g g X, {i,j}tnt, (i„j}—g [~„,{i}in~„, {i}+ ~„,{j}tnt„, {j}l
i)j, /=l
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where the sets [e, (i)}, itP, t(ij )}are given, respectively, by (3.5) and (3.6). Minimizing the above expression (3.9)
with respect to (S„), (S„'); (S„S„),(S„S„'), (S„'S,'), one obtains, respectively, the following five equilibrium equa-
tions:

ei (p) ei (p) ks(p, i)
ln = ln

e3(p) ;(~pl 3e(p) X2(p t)
(3.1Oa)

~ l (P ) «3(p» 2 (P,J»8 (P.J ) ~] (P ) ~3 (P )—2 = ln +
&2(p) /(~/t) ~5(P.J) 2(P)

(3 ~ 1 Ob)

4J„„/kT = in[xi(p q) x9(p q)/x3(p q) x7(p q)]

0 = in [) i (p, q) k, (p, q)/k, (p, q) k, (p, q)]
),(p, q)'

t

Z2(P, q)'

(3 ~ 1Oc)

(3 ~ 1 Od)

&] (p, q) ~3(p q ) ~7(p, q ) ~9(p, q)
0 =ln '

' ' ' ', &,(p, q)'
[k2(p.q»4( .q) &6(p.q) &s(p. q)]

(3 ~ 1Oe)

Let us now assume nearest neighbo-r (nn) range o/ in'
teracti on, i.e. ,

i

1 for i,j being a nearest —neighbor pair of
J„ lattice sites,

0 otherwise

kT e, (p)'

k2(p, p') ks(p, p')

p ( t)2

s
i (p) e3(p)—ln—

~ (p)'

(3.101')

(3.11)
In thermal equilibrium, due to lattice translational

symmetry, one defines

Then, from (3.10) using (3.11), it can be shown that,
provided p, q are not nearest-neighbor lattice sites,

a =—(S„), b = (S„). c = (S„S„),
d =—(S„S„'), e =—(S„:S„' ) (3.13)

(SpS„) = (Sl ) (S„)

(S„S„')= (S„)(S,')

(S'S') = (S') (S')

(3.12)

whereupon one is then able to write, using (3.5),
(3.6), and (3, 1 3),

e, = ei(p) = —, (a + b)
1

I

Consequently, if the summation g, , ~„, . appear-

ing in (3.1 Oa) is split into two parts, i.e.,

62=62(p) = 1 b

e3 = e3(p) = —(—a + b)1

2

(3.1 4a)

j( Ap)

~ ~ ~

.j(&p)
( j.p are nn)

+
j(Ap)

(i.p are not nn)

and

ki = ),'(p, p') = —,
' (c + 2d + e)

then, using (3.1 2), the second summation over all
sites j which are. not nearest neighbors of site p gives
zero contribution. Hence, equation (3.1Oa) simplifies
to

'I i

~ I (p ) ~8(p.p )
ln ln

~3(P ) ~3 (P ) &2 (P,P ') (3.10~ )

where the lattice coordi nati on number z is. the number
of nearest-neighbor lattice sites surrounding any lattice
site, and p, p' are nearest-neighbor lattice sites. Simi-
larly, Eq. (3.1Ob) simplifies to

~2 = ~2(p.p') = —(a + b —d —e)

X3 = A 3 (P,P ') = ——' (c —e )

X4 - X4 (p.p ') = —(a + b —d —e )

X5 = Xc(p p ') = 1 —2b + e

k„=k6(p p') = —,
'

(—a + b + d —e)

k7 = k, (p,p') =--,' (c - e)

~11 = ~8(pp') = —,
'

(—a + b + d —e)

A9 A9(p, p') = —' (c —2d +e)

(3.14b)
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—(a+b) '(—a+b+d —e)-=0, (3.15a)

After some algebraic manipulations, the five equili-
brium equations (3.10) can now be written in terms of
a, b, c, d, and e as follows:

f] =(—a+b)- '(a+b —d —e)-

transition temperature T, , first consider a temperature
T & T, ;th.en, a &0 and d &0 [the fact that d =0
whenever a =0 follows from Eq. (3.15a)] whereupon
one can expand (3.15a) and (3.15d) in power series of
a and d, and retaining only the first-order small terms,
one has

f, = (1 —b)= '(c +e +2d)- 'exp( —
—, w)

—2(a + b)= '(1 —2b + e) = exp( —y w) = 0

[(z —I) (b —e}—zb] a + (zb) d = 0

(c+e)a —(b+c)d =0

(3.17a)

{3.17b)

f) =(( —e)'
—(c +e+2d)(c+e —2d) exp( —4w/z) =0

(3.15b)
To obtain nontrivial solutions for a and d, one must

therefore have

/4 = (i +e +2d) {—a + b +d —e)~

—(c + e —2d) (a + b —d —e) =0

(3.15c)

(3.15d) or

(.-»(b -e) —.b

c+e
zb

-(b+c)

f, =(a+b —d —e)z b =(z —1)c {T= T, .) (3.18)

—(c+e+2d)(1 —2b+e) exp( —w/z) =0

(3.15e)

where w —= zJ/kT, y—= 5/zJ.
The equilibrium Helmholtz free energy F is given in

terms of the parameters w, y by

(NkT) ' F(a(w, y), b(w, y), c(w, y), d(w, y), e(w, y))
3 9

1= w y b —
—, wc + (I —z ) $ ~t ln e( + —z $ h ( In h (

]

/ =] I=]

(3.16)

where a, b, c, d, and e are the equilibrium solutions of
Eqs. (3.15), which make F = min W, and the quantities

[E() and [)(.(} are given by Eqs. (3.14a) and (3.14b),
respectively. 4

To determine the possibility of a second-order phase

(c —e)' —(c+e)'exp( —4w/z) =0, (3.19b)

(b —e) —(c + e) (I —2b + e) exp( —.w/z) = 0

(3.19c)

From Eqs. (3.18) and (3.19), one can then derive the
following relation connecting w, (=—zJ/kT, )and y for.
second-order (continuous) phase transitions:

Equation (3.18) is a necessary condition for a second-
order phase transition temperature T,

At T = T, , the facts that a = d =0 result in Eqs.
(3.15a) and (3.15d) becoming identities and one is left
with the following forms of the remaining equations
from the set (3.15):

(1 —b)- '(c+e)-"exp( ——,
'

w)

—2b '(I —2b +e) = ' exp( —y w) =0, (3.19a)

wcy = z ln[( —,z —I) exp(w, ./z) ——,z exp( —w, ./z)] +In2+ (z —I) In(z —I) + (z —I) In[2 sinh(w, /z)]

—(z —I) ln[ —, (z —2)'exp(2w /z) +(z —2) exp(w /z) —z(z —2) —z exp( —w /z) + —,zz exp( —2w /z)] . (3.20}

The )karst-order (discontinuous) phase transitions can
be found by equating appropriate equilibrium free en-
ergies (3.16), i.e. , such transitions are characterized by

F(a],b],c],d],e], w, y) = F(0,bo, c0, 0,eo, w, y)

(3.2»

where a], b], c], d], and e] are solutions of (3.15) and

bo, co and eo are solutions of (3.19).
For the case of a simple cubic lattice (z =6) Eq.

(3.20) has solutions only for y «0.4705; thus, for

y & 0.4705, there is no second-order phase transition
possible. However, as T 0, there must be complete
magnetic ordering if y ( —, , i.e. , 5 ( —,:J(cf. Sec. II).1 1

Hence, one expects (as will indeed be verified) that
for y =0.4705, the second-order phase transitions
change to first-order phase transitions. With the aid
of a digital computer, (3.20) and (3.21) can be numer-
ically solved resulting in the phase portrait shown in

Fig. 1. As mentioned in Sec. I, the point at which the
lines of second-order and first-order phase transitions
meet is called a tricIitical point since such a point can



1.0— or

Bb
N' +y-

ak 2 t)a' t)w ]

where, as previously, w =zJ/IrT
For a AO, r/ AO, (rlc/r)w) and (Bb/r)w) can be ob-

tained in the two-spin approximation f'rom the relation

t '1

do Bb 8( Bc/ Be
BN' QN' BN& BN& BN'

Bfi Bf2 Bf~ Bf~ Bf-
BN7 BN7 BN~ Bw ()1+'

0

'ly

I

.5

(4.2'a)

where ( ) ' denotes the transpose of' the row vec-
tor, the functions f ~, . . . , f"; are given by Eqs. (3.15),
and g; is the inverse of the Jacobian matrix 0~
defined by

FIG. l. Phase diagram in the 7-3 plane as found in the

gneiss approximation and in the two-spin cluster approxima-

tion. The solid lines represent second-order {continuous}
phase transitions atad dashed lines represent those of first-

order (discontinuous). The lattice structure is simple cubic

{==6)

B(a,b, c, d, e)
(4.2b)

For a =d =-0, (tie/t)w} and (Bb/Ow) are obtained
from the relation

r

B,f'2 Bf3 B.f;
3

8w 8w Qw I

{4.3a)

k T, /6J =0.2715

y, =—Ar /6J =0.4695

(3 22a)

{3.22b)

Thus, for the case of a simple cubic lattice (:=6),
one concludes that, for —~ & y (0.4695, one has
second-order phase transitions while, for
0.4695 ( y & —, , one has first-order phase transitions.

For this case of a simple cubic lattice (-" =6) and for
select values of the reduced anisotropy constant y,
»gs. 2{a)—2(e) display, respectively, the temperature
dependencies of. the thermal average quantities
a = (S,), b = (S,-'), c = (S,S, ), rl = (S,S,—), e =- (S,-'S, -'

)
{i, i' are nearest-neighbor lattice sites).

also be viewed as the intersection of three lines of or-
dinary critical points in a suitable thermodynamic vari-
able space, e.g.„X-B-Hspace, where H is an applied
uniform longitudinal magnetic field. The tricritical
temperature I; and the corresponding anisotropy con-
stant 5, appearing in the phase diagram of Fig. 1 are
f'ound to be

where the functions f'2, f3, ,
f'; are given by kqs. {3.15}

with a =d =0 and 03 is the inverse of the Jacobian
matrix 0) defined by

B{.fg, ,f3, ,f;)Q3=-
B(b, c,e)

(4.3b)

For the case of a simple cubic lattice (:=6), Fig. 3
shows resultItng specific-heat curves for select values
ot the reduced anisotropy constant. Peculiar features
in the shapes of these curves (e.g. , "bumps" and local
maxima upon the shoulders) are due to the crystal-
field anisotropy and its effect upon the temperature
dependence of the "ttuadrupotar order parameter" (S,')
I.see Eq. (4.1) and Figs. 2(b) and 2(c)]. However,
such anomalous behaviors are noticeable only when
the anisotropy constant is positive and the order of the
exchange interaction strength.

In order to calculate the magnetic susceptibility of'

the system, one applies a uniform longitudinal mag-
netic field H ) 0. The Hamiltonian is then given by

IV. SPECIFIC HEAT AND PARAMAGNETIC
SUSCEPTIBILITY JN SPIN-PAIR

APPROXIMATION

Z =—$ J„SS,+ DES, ' —pH QS, (4,4)

The specific heat at constant volume C~ of' the sys-
tem under study is given, using {2.1), {3.11), and
(3.13), by

where p, is the magnetic moment carried by an Ising
spin. . The Zeeman term in the Hamiltonian (4.4) sim-
ply adds a term pH g, (S,) to the pair-—
approximation trial free energy (3.9) whereupon, as-
suming once again (3.11), minimization of the
modified (3.9) then gives the following five equilibri-
um equations:



1.0

CLU S TK R-V ARIAT ION METHOD0 APP I IK9 IN0, N YHK PAIR. . .

0.8—

0.6-

(sr)
0.4-

0 0.1

I

0.2 Tg 03
kT
6J

l~ I

0.2 Tt 0.4
I

0.6 0.8 1,0
kT
6J

1.2

1.0 I.O

0.8—

0.6—

(s, s, )

04—

0.2— 0.2—

I I I

0.2 T) 0.4 0.6
kT
6J

I

0.8 1.0 1.2
il

0.1 0.2 T) 0.3
kT
6J

0.5

0.6-

0 0.2 Ti 0.4 0.6 0.8
kT
6J

1.0 I.2

F10. 2. (a Ta Temperature de e'
a ion} for select values

(spontaneous

values of the reduced anis

rve is the co

an iso tropy

'h h ' i' ll'
e wit &n

ture depend
p ase transitions. (b) T

or, select valf (g2)

'
hbg e. . ) s

anisotrop n t nt . {

ture de.""--.'(:'. ) (

ce anisotropy constant

g

re uced an&s

p

pe ture is shown



3682

I.O—

2.0—

I.5—
Cy
Nk

0,6—

~N I

6J X

I.O—

0,2-

I

O. l

I I

0.2 TT 0.3
kT
6J

I

0.4 0.6 0 0.2 Tt OA 0.6
kT
6J

0.8 I.O l. 2

FIG. 3. Temperature dependence of' the (reduced)

specific heat for select values of the reduced anisotropy con-

stant y. The lattice structure is simple cubic (z =-6) and the

(reduced) tricritical temperature is shown as kT, j6J =0.2715.

FIG. 4. Temperature dependence of the (reduced) re-

ciprocal initial paramagnetic susceptibility for select values of

the reduced anisotropy constant y. The lattice structure is

simple cubic (:=6) and the (reduced) tricritical temperature

is shown as I'I, /6J =0.2715.

gI =(—a+b)- '(a+b —d —e)-exp( —2hw)
~(a I,a2, a~, e4, a~)

6(a, b, c, d, e)
(4.7b)

—(a + b)- '(—a + b + d —e}-'=0

p =(1 —b)- ( + +2d) 'exp[ — (—,
' +h)]

—2(a+b)- '{1—2b+e)-"exp( —yw) =0

g~ = (c —e)' —(c + e + 2d) (c + e —2d)

x exp( —4w/z) =0

g4 = {c+ e +2d) (—a + b + d —e)

—(c + e —2d) (a + b —d —e) ' = 0

g; = (a + b —d —e)' —(c + e + 2d) (1 —2b + e)

(4.Sc)

(4.5d)

In the limit of vanishing magnetic field and for tem-
peratures abo»e the second-order phase transition
temperature, one has that a =d =0. The first and
fourth rows of (4.7a) then give, respectively,

[—(z —1) (b —e) +zb] lim ——."b llm
Qa ~ ()d

,)+ 6h „,)+ Qh

= »b(b —e) (4 8a}

—2(c+e) lim —-+[2(b —e)+2(c+e)] lim =0Qa

/I-o+ ~h ()+ 9h

(4.8b)

Solving the last two Eqs. {4.8)„one has

x exp( —w/:) =0 (4.Se)

where h =pI//zj and, as previous—ly, w =zJ/kT The.
initial magnetic susceptibility X is defined by

x—= lim ~ —=- " ltm —,B(N p, a) 1V p,
' . (ja

II-o ~& =J /, —.()

(4.6)

f

~P2 ~Ps' ~F4 ~Ã~=—l&m
0+ Bh Bh Bh 8h 0h

, (4.7a)

where the functions gI, . . . , 1& are given by (4.5) and
the Jacobian matrix 0/, is defined by

where lim, „+(Ba/Bh) can be obtained from the reia-

tion
1

l. Qa 9b 9c 9d Qe

()~
'

()h (jh 9h Bh Qh

9a wb(c + b)
lIm —- =--

.()-i 9A b —(z —1)c
T&T,.

Hence, f'rom (4.6), the initial paj.atnagnetic susceptibilily

is given by

( J/~ 2)
O'6 (c + h)

[b —(z —1}c]
T&T, . {410)

Since, f'rom (3.18), b = {;—1)c is known to be a

necessary condition f'or the existence of a second-
order phase transition temperature T, , one sees that
the initial paramagnetic susceptibility goes to infinity at
T = I', For the case of a siInple cubic lattice (." =6),
Fig. 4 shows resulting reciprocal initial paramagnetic
susceptibility curves for select values of the reduced
anisotropy constant. Once observes that the curves do
not descend to a zero value for first-order phase tran-
sitions.
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V. SUMMARY AND DISCUSSION

Improved results compared to those of Weiss
molecular-field theory have been obtained for the
equilibrium properties of the S =1 Ising ferromagnet
having additional single-ion-type uniaxial anisotropy.
In the spin-pair approximation and for the case of a

simple cubic lattice (:=6), the tricritical point is locat-
ed by the values kT/6J =0.2715, y, = 5,/6J =0.4695
as compared to the Weiss molecular-field results
kT, ' '/6J =0.3333, yt ' =—5,' '/6J =0.4621. This
comparison seems to indicate a f'eature that, although
the tricritical temperature is considerably lowered from
its Weiss value by improved approximations, the tri-
critical y,, is only slightly altered. The spin-pair ap-
proximation results for the location of the tricritical
point are comparable to those of exact series calcula-
tions' ' but it should be pointed out that the calcula-
tions of the present paper are for the case of a simple
cubic 1'attice {." =6) whereas those of Refs. 5 and 6 are
for the case of' a face-centered cubic lattice {:=12).
Also, within the spin-pair approximation, the tempera-

ture and anisotropy dependencies of the thermal aver-
age quantities (S,), (S,'), (SS, ), (SS,.-'), (S,'-S, ') (i,
i' are nearest-neighbor lattice sites) have been ob-
tained and the specific heat and paramagnetic suscepti-
bility have been calculated. Using the simple cubic
lattice (z =6) as an example of application, results are
graphed for select values of the anisotropy constant.
Peculiar features in the shapes of the specific heat por-
traits (e.g. , "bumps" and local maxima upon the
shoulders of the curves) can be traced to the crystal-
field anisotropy and its eAect upon the temperature
dependence of the "quadrupolar order parameter" (S,'-)
but such anomalous behaviors are noticeable only
when the anisotropy constant is positive and the order
of the exchange interaction strength.
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