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Electron-magnon interactions I Ni
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%'e demonstrate that the minority-spin-electron {or majority-spin-hole) self-energy due to magnon exchange
for the case of strong ferromagnetism can be calculated from the one-electron energy bands of the local-spin-

density-functional Hamiltonian. This is a good model for Ni where we estimate both the real and imaginary
parts of the majority-spin-hole self-energy to be less than 0.01 eV, thus demonstrating that many-body

effects play no role in the photoelectron-spin-polarization reversal observed in Ni.

%'e have recently shown' that the photoelectron-
spin-polarization reversal obsexved' 0.1 eV above
threshold in Ni could be entirely explained by on@-
electron surface energy -band th-eory. It was
pointed out' to us that many-body effects were
believed to be large and therefore the agreement
between one-electron theory and experiment might
be fortuitous. VVe argued that there were no pro-
pagating final states near threshold for (100) Ni
and that the final state had to be an evanescent
LEED state so that even if many-body effects were
important, they had to be calculated at the surface.
We further argued that strong many-body effects
would smear out structure in the density of states
(DOS) and that it appeared impossible to explain
the extremely rapid rise in photoelectron spin
polarization from negative to positive values (as
a function of photon frequency) without having a
very sharp peak in the majority-spin surface DOS,
just below the Fermi energy. The question of the
importance of many-body effects remained un-
x'esolved.

The many-body theories "are generally based
upon the single-band Hubbard Hamiltonian which
we believe to be an extremely inappxopriate model
for Ni for the following reason. The 'E(3d'4s')
and 'D(3d'4s') configurations of an atomic Ni are
essentially degenerate. ' The single-band Hubbard
model, in which the electrons interact via a strong
short-range replusion when they occupy the same
Rtomlc orbital, lgnox'es the posslblllty of R d elec-
tron being promoted to an s state at almost no
cost in energy, undergoing an interaction which
otherwise would be inhibited by the strong short:-
range I epulsion seen by d electrons, and then re-
turning to the d state. Because the d electrons in
Ni are itinerant and because energy-band calcula-
tions made within the spin-density-functional Rp-
proxlmatlon RppeRr to be fRlx'ly Rccux'R'te, we
here base our calculation of the electron self-
energy (due to magnon scattering) upon the local-
@pin-density -functional Hamiltonian'

&= -bV'+ V,(r) + Vz(r)o n(r),

where V,(r) contains the Coulomb and spin-aver-
aged exchange and correlation potentials obtained
fl"om the lons RIld self-consistently cRlculRted
electron charge distribution and V&(r) represents
the difference between the self-consistent up- and
down-spin electron exchange and correlation po-
tentials. In principle V, and V& contain electron-
magnon self-enex'gy .contributions but ln px'Rctlce
of course, they do not. %'e shall here assume that
Vo and V& include all exchange and correlation
contributions except for the electron-magnon in-
teraction and use Eq. (1) to determine the effects
of that interaction. The unit vector n which nor-
mally points in the z direction may be written

n = [1 ,' (n„'+ n '„—)]i, + n„i„+n,i,
to second order in n, and n . Defining

o, =-(o„bio,),

we find the perturbing potential due to the devia-
tion of 8 from the z direction is

V'(r) = Vz(r)(-hn, n. o, +n, o +n o, ).
%e now assume the magnons are independent

elementary excitations of the interacting electron
system just as Bohm and Pines' assumed for
plasmons. Then

2V 1/2+ g elf f'
1

where a- and at are magnon destruction and crea-
tion operators. Here N is the number of (majority
spin") electrons and the factor 2N '~' in (6a) and
(6b) is required so that the creation of the magnon
will reduce the z component of spin by unity. "
Second quantizing the electronic part of V'(r) and
adding a magnon ki.netic-energy term" we obtain
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FIG. 1. (a) Magnon Dyson equation. The diagram in
parenthesis does not exist because it fails to cons'erve
spin at the vertex marked X. (b) The self-energy-of an
electron. in the otherwise empty minority spin bands.
The first diagram in parenthesis does not exist because
it fails to conserve spin at the vertex marked X. The
second diagram does not exist in the case of strong
ferromagnetism studied here but does exist when mag-
nons of spin+1 are present.

Z (&„'f i &„,g, I ~g~g) „,p p;, ;,~+ H. c.)
nn '1fk'q

N' ' ~ C k) C„k) ~ -M„-k) „k)
nkvd

Q~Q «qQ~q,

where Ct„-, creates an electron (or destroys a hole}
in the nth band with z component of spin 0 =+ 2

1or Q and wave vector k lying within the first
Brillouin zone. ' The matrix element is given by

Mnkff n'j'a. = 2X"' '
Vg ) nkfy r +n~k~~ r d + r

where u„„,(r) is the periodic part of the (nko)
Bloch function. Noting that fif„)„„-„,= -N ' '&(&k)
where &(nk) is the exchange splitting, we see that
the last two terms in H' are just

fi',„=(4+ 0;)atag,
where & is the average &(n, k).

The magnon Green's function is defined as

D(j, f) = -i (0
)
T [af (t)a~(0)] (0},

where T is the time ordering operator. This dif-
fers from the corresponding phonon Green's func-
tion because of the lack of the spin nonconservi. ng
term"

(10)

C,'g ) C.k)&&M. k ~,.-k)~r, k. &

and its Hermitian conjugate in Eg. (7). The time
Fourier transform of (10) for noninteracting mag-
nons is

D (q, qo)=(qo 6 0 +i5) ',
where 6 is a positive infinitesimal. The Dyson
equation for the clothed magnon propagator

D(i, q.)= [q. -&-fl; -&(a, qo}+if] '

is diagramatically displayed in Fig. 1(a). We have
that

r(q, q,)=-) 2 (2')' f d'), lM. i..
x 'G(~, k}G&(n', k+ q),

where the

G;(n, k) =(0, a'„;~i7)'„g) '

are the one-electron propagators for the eigenstates
of Eq. (1}with energy &~g and gP~ is a positive
(negative) infinitesimal for e~g & Er(&Er}. Note
that p ~,k~ is always positive because we have as-
sumed" the minority spin bands lie above &&.
The ko integration in (13) thus yields a nonzero
result only if p„„ is negative and we obtain

(15)

where the f„'.(k) are zero above &r and unity below.
Although &(q, q,) could in principle be calculated

exactly from the energy bands obtained from Eq.
(1), we will limit ourselves to a, free-electron
approximation with

e'„-„=(2m*) 'I), '

&'„1,.-, =(»~*) '(k+g)2+-.' ~,

and ~„~,„.~...= -&"'~'&. Thus, we obtain

2 f

7'(q, q„) = 2 —, no* ',———+ —1 — m*
cg

' 2 2g
q ") 2'*(qo —4) —q + 2k~+i')l

(16)
2m*(q, —a) —q' —2k„q+iq
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((];= 6 y 0- + v'(q. v;) . (17)

In the free-electron limit the pole in X(q, ((];) oc-

where we have used IV = kn~/Ger' .Because the
clothed magnon frequency v~ may be obtained
from the pole in the transverse magnetic suscept-
ibility ]t(q, m;) [which also can be calculated' from
the energy bands obtained from Eq. (1)], we see
that 0- is obtainable from those energy bands
through the relation

curs" when &+ &(q, (d;) = 0, so in that limit 0;
We note that diagrams ';ike the last one in

Fig. 1(a} (magnon vertex corrections) do not con-
tribute to 7' because they cannot conserve spin
at both vertices of the interior magnon.

Now that we have magnon propagator we may
proceed to cal.culate the self energy of minority
spin electx'on stRtes shown dlagramatlcally ln
Fig. 1(b). We have

(le~pi p(]) 2 ~& I l(n, (' nnnl ] . [q n g r(q q ) J(p q q] +&l)( )

t (f((j —.-q)] iM;& „,. -~ ('

(df(f t /d&) d&

P, e b, Q l(P, c)+il)

yielding

Im Zl(p„) = --' llew 'ivy '(df(f'/d&), -

& [1 —(d7/dq„)„] 'R(P, —~ —&~), (20)

where Qp is Rn Rvex'Rge ~g a,nd 8 is a smeared out
step function. " We can estimate the renormaliza-
tion factor [1 —(dv'/dq, )] ' by noting that because
Hew + d vanishes on the energy shell in the free-
electron limit, Re& can be expanded in a Taylor
ser'Les

Re&(q, q,) = P a„(q, -(u;)" —&. (21)

An expa, nsion of (16) in the smRO qo and q lcm
yields u);= (1 —2k~/54)q' and a, = -1. Thus (dr/
dq„)„,= -1 for any o in the free-electron limit and

Ill obtaining (18) we llRd i'0 close tile pRtll of lll-
tegration in the positive imaginary half-plane, be-
cause of the branch cut along the real axis intro-
duced by T. Note that the third diagra. m on the
right side of Fig. 1(b}, a vertex correction with a
backward propagating magnon, is not a.llowed be-
cause it fails to conserve spin at the vertex marked
with Rnx. The last diagram, which also contains a
backward propagating magnon, is allowed but only
when, splrl + 1 magnons Rx'e px'esen't.

If we assume we have a s&ngle band of magnons
with infinite lifetimes (i.e. , real &), ImZ (n, p, p, )
can be estimated by replacing M„;&,,», -

&
by its

average value, "M= -(5K) '~'6 and assuming the q
dependence of 0-„+&(q, p, —en, ~; „-) is negligible
compared to that of &„', -„-. Vfe then have

the renormalization factor is simply 2. For the
remaining factors in (20) we need not rely on the
free-electron approximation. Inserting values
appropriate'" to Ni dNl/de = 30 electrons per atom
per Ha, rtree, %=0.56 electrons per atom, Rnd

& =-0.5 eV, we obta. in for a typical value,

RSZ] (pn) may be obtained from the Kramers-
Kronig relation. ' It peaks where ImZ~ varies
-most rapidly, .e. for E & p & F- +(d . If

is larger than 0.2 eV, then
~

ReZ]
~

will not
exceed 0.2 eV. Due to finite magnon lifetimes the
inten. , ity of neutron scattering" by Ni magnons
with wave vector q = O. 27 q„where q„ is the
zone-boundary wave vector" (in any of the three
principal directions) is about. 2% of that by small

q magnons. Thus '7 (q, P(] —&ne g q) in Eq. (18) has
a large imaginary part for q in the 98Voof the zone
with q&0. 27 qs, . This will cause ImZl(n, p, P,)"
to be considerably smaller than our estimate in

Eq. (22). It will also smooth out the structure in

ImZ (n, p, P„) ma, king an even larger reduction in

HeZ (n, p, p,). Thus we think it quite likely that
both the real Rnd imaginary parts of Z ~ are less
than 0.01 eV in nickel. (We of course refer only
to the magnon contribution to Z ~. The imaginary
pa.rt of Z for low-lying holes in Ni is so iarge
that the lower part of the photoelectron distribu-
tion curve i.s completely wiped out. This probably
involves a process in which a M electron drops
into the Bd hole and excites anot;her 3d electron
into the nearly-free-electron bands without any
spin reversals. This contribution to Z should be
very small nea. r the top of the majority d band
which is the region of interest for explaining the
photoemission polarization r ever sal. )

Thus, we have demonstrated that the self-energy
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of minority spin electrons due to magnon exchange
can be calculated directly from the eriergy bands
arising from the one-electron spin density func-
tional Hamiltonian, at least for the case of strong
ferromagnetism where the bottom of the minority
band lies above the Fermi energy. The same
theory applies to the majority spin holes in Ni
because the top of their band lies below &F
(ignoring the s and p majority spin states except
for their possible effect on magnon lifetime). Our
estimate of the Ni majority spin hole self energy,
though crude, is sufficiently accurate to demon-
strate that its contribution to

G'(n, k, k,) = [fo, —e„'; —Z'(n, k, k,)+i)) „'-„] ' (23)

and hence to the majority spin density of states

p'(E) = —P 1m''(~, k, Z)
7T

is negligible. Therefore the belief that Zi(n, k, ko)
causes the majority spin density of states to have
a large value at or immediately below &F is shown

'

to be incorrect. The one-electron surface-state
explanation of the photoelectron spin polarization
reversal appears to be not only sufficient but also
necessary.
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