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The generalized de Gennes model for the nematic to smectic-A phase transition in liquid crystals with an
order parameter with n/2 complex components is investigated using the e expansion in the vicinity of four
dimensions. It is found that anisotropic critical behavior with correlation lengths in directions parallel and
perpendicular to the direction of molecular alignment diverging at different rates described by exponents v~~

and v~ is possible. When the splay elastic constant E, = oo and n ~ n„= 238.17, there is an accessible
fixed point with v)) & v„. If K& is large but not infinite and n = 2, it is expected that there will be a series
of crossovers from anisotropic quasicritical behavior to isotropic heliumlike quasicritical behavior and finally
to a first-order transition. Present theory and current experiments are compared briefly and found to be in

incomplete agreement.

I. INTRODUCTION

The nematic to smectic-A phase transition in
liquid crystals' has received a great deal of exper-
imental and theoretical attention since McMillan'
and Kobayashi' first suggested that it might be
second order with a complex order parameter. It
was an appealing transition to study because it was
felt that it should fall into the same universality
class as the A. transition in superfluid helium with
the advantage that order-para, meter fluctuations
would be directly accessible to experimental
probes. de Gennes" was the first to recognize the
importance of fluctuations in direction of molecu-
lar orientation [described by the director n(r)j on
the transition. He introduced a phenomenological
I andau-Ginzburg free energy which was very sim-
ilar to that of a superconductor with the director
playing the role. of the vector potential. It is theo-
retically expected that fluctuations in the vector
potential will lead to a first-order transition to the
superconducting state. ' Thus, the N-A transition
is also expected to be first order. ' Nevertheless,
for nearly second-order transitions, it was gen-
erally assumed that effective critical exponents
would be the same as the A transition in helium. ' '
This view was corroborated by a renormalization
group calculation that indicated that anisotropies
that are present in the liquid crystal, but which
are not present in the superconductor, are sup-
pressed by fluctuations. ' Thus, the more nearly
second order the N-A. transition is, the more the
critical exponents should approach those of the ~
transition in superfluid helium.

Early experiments yielded critical exponents that
were either heliumlike' " (i.e., had the same val-
ues as the X tra'nsition in helium) or nearly mean-
field-like for pure systems, but strongly purity

dependent. " More recent light-scattering experi-
ments" "show twist and bend elastic constants di-
verging at different rates and apparent anisotropic
critical behavior below T, . All experiments show
a transition that was more nearly second order
than theoretically predicted. " It was these ex-
perimental observations that prompted us to rein-
vestigate the critical properties of the de Gennes
model. We find that anisotropy is inherent in the
de Gennes model and that anisotropic quasicritical
behavior is possible. In other words, we find that
it is possible for correlation lengths parallel and
perpendicular to n to diverge at different rates.
This anisotropy is fundamentally different, for ex-
ample, from that of an Ising model with asym-
metric coupling where the ratio of the parallel to
perpendicular correlation lengths is a constant as
the critical point is approached. The extent to
which critical behavior is anisotropic is controlled
by the value of the splay elastic constant K,: large
K, leads to large anisotropy. One can easily see
how large K, might lead to anisotropic critical be-
havior. If K, is infinite, splay deformations are
prohibited. This means that bending of the smectic
layers is prohibited in the smectic phase. Thus
large K, enforces large anisotropy in the smectic
phase.

Subject to some qualifications which will be dis-
cussed briefly in Sec. V, the x-ray structure gives
a direct measure of the parallel and perpendicular
correlation lengths in the vicinity of the nematic
to smectic-A transition. As this paper was being
prepared, Als-Nielsen et al."reported the results
of x-ray measurements of the structure factor that
are an order of magnitude more precise than pre-
vious results obtained by McMillan. " These mea-
surements show parallel and perpendicular corre-
lation lengths diverging at essentially the same
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rate (that varies with temperature) over more than
two decades to within a few millikelvin of the tran-
sition. These results are in disagreement with
published results obtained by light scattering. It
is possible, however, that a reanalysis and rein-
terpretation of the light-scattering data will yield
agreement.

We had originally planned to present a rather
detailed analysis of experimental data in light of
the new theoretical information presented in this
paper. However, in view of the incompletely re-
solved discrepancy between x-ray and light-scat-
tering measurements of critical exponents, we
will refrain from presenting a detailed analysis.
Instead, we will indicate in the final section what
experimental behavior is predicted by the present
theory. We do not fully understand why experi-
ments fail to agree among themselves or why they
fail to agree with the theory presented here. There
are some aspects of the de Gennes model peculiar
to three dimensions discussed briefly at the end of
Sec. V, an understanding of which may lead to a
resolution of existing discrepancies. A full study
of these aspects of the model is beyond the scope
of this paper. We stress, however, that the re-
sults presented in this paper stand on their own
and are inescapable properties of the de
Gennes model. They must be taken seriously
in spite of their complexity. It has been
suggested" that the de Gennes model may miss
some of the physics of the nematic to smectic-A
transition. We feel that all of the physics of the
de Gennes model must be understood before such
a drastic step is contemplated. This paper is
another step towards such an understanding.

This paper is divided into five sections of which
this is the first. In Sec. II, we will review the
relevant properties of the de Gennes model. This
section is somewhat condensed. The reader in-
terested in further details is encouraged to con-
sult Refs. 4, 5, 22, and 23. In Sec. III, we discuss
general properties of correlation functions if an-
isotropic scaling holds. In Sec. IV, we develop
renormalization-group (RG) recursion relations
that are sufficiently general to admit the possibility
of anisotropic critical behavior. We find that
there is a stable fixed point with anisotropic scal-
ing when K, =~ and n&238. 17. At the end of Sec.
IV, we review the various types of crossovers
that are possible in the context of the present the-
ory. In Sec. V, we review some problems that
remain in xeconciling theory and experiment. In
particular, we reconsider the magnitude of the
first-order jump, discuss what sort of crossover
might be expected on the basis of the present the-
ory and measured bare anisotropies, and indicate
avenues of future research that might bring about

agreement between theory and experiment. Fi-
nally, in the Appendix, we present some calcula-
tional details.

II. DE GENNES MODEL

Let p(x) be the center-of-ma, ss molecular density
at position x. In the smectic-A phase, there is a
mass density wave parallel to the director n, and

p can be decomposed into Fourier components

p(x) = p, {1+[(1/M2)e'" *t/)('x)

+ (C.C.)]+ ' ' ')q

where qo = (2m/a)n and a.is the interplanar spacing.
If the N-A transition is nearly second order, high-
er Fourier components can be neglected, and ((x)
can be regarded as the order parameter for the
smectic-A phase. The de Gennes free energy E
in d dimensions is given by

+ C,'I, (&~ —iq, 5n) g I

'+ —,K', (v n)'

+ —,'K', (n ' & x n)'+ —,'K,'[n && (& && n) ]'), ' (2)

where A'=a'f„ f, = (T —T,*)/T,*, T~~ is the mean-
field transition temperature, 5n is the deviation
of the director from its uniform equilibrium value
n„(l and L indicate, respectively, directions pa-
rallel and perpendicular to n„and the superscript
zero indicates bare values of parameters. This
free energy leads to correlation functions G(q)
=(I $(q)l') and D,&(q) =(5n, (q)6n&(-q)) with proper
symmetry. If we choose n, to be along the 1 axis
and q to be in the 1-2 plane, we have"

G (q) = as T[A (f) + C ~q,', + C,q,'] ', T &T„(
r, (ks T(K3q,', +K2q~] ', T & T~,

(3b)

D„(q) -=D, (q) =
g

(k~T[K,q,'+&(q„/q, )'] ', (Bc)

where t = (T —T*)/T*, T* is the limit of metastab-
ility of cooling, and where T, is the actual transi-
tion temperature which will differ from T* in a
first order transition. D and B are new param-
eters which are respectively equal to 2C,g q anOdo

2C„g,'q,', where Q, is the equilibrium value of g in
the ordered phase. 'The zero superscripts have
been removed in the above to indicate that tem-
perature-dependent normalizations of the bare pa-
rameters can, occur. For nearly-second-order
transitions, A(t) - t' for T & T„where y is the
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6K, =K, K,'- ftf-",
6K, =K, K', - itf-".

(6a)

(6b)

If mean-field behavior for field g is assumed, 6K,
and 5K, can be calculated'"

6K, = (ks T/24')qo)~/$'„,

6K, = (ks T/24m) 'q$„,.
(6a)

(6b)

From Eq. (4), $„and $~ diverge in the same way
in mean-field theory so that 6K, -6K, -t ' '

(K,
= r, = 2). We also introduce exponents p and p'
to describe the critical behavior of B and D,

In mean-field theory, p = @'=1, and D/B=C,'/C'„.
Equation (4) for )„and $, is only valid in mean-
field theory. When critical fluctuations become
important $g and g~ diverge more rapidly, and v„
and v, become greater than —,'. Since g is a com-
plex number, de Gennes" and McMillan' argued
that the N-A transition is in the same universality
class as the X transition irk 'He. 1hey, therefor&,
predicted that the N-A transition would be second
order and that

v, = v, = g, = f, = y= y'= 0.66.

It was later predicted, using RG analysis based
on an extrapolation from four dimensions that the
gauge coupling of a complex order parameter to
an electromagnetic field such as occurs in a super-
conductor would lead to a first-order transition, '
characterized by the temperature difference &T'

A similar prediction applies to the
N Atransition du-e to the coupling of g to n. Furth-
ermore, fluctuations lead the system toward
isotropy so that if &T' is sufficiently small, one
would indeed expect isotropic heliumlike expon-
ents. ' Thus, the generally accepted theoretical
predictions based on the de Gennes free energy

susceptibility exponent. For T & T„A(t) ha. s a.

more complicated form unless the transition is
actually second order (T*=T,) in which ease A(t)- Itl" ~

In mean-field theory, the free energy of Eq. (2)
yields correlation lengths

(4)

describing, respectively, correlations parallel and
perpendicular to n, . Both of these lengths diverge
as t '~' in mean-field theory, and their ratio $„/
$, is a, constant (C'„/C,')' t'. The mean-field correl-
ation length exponents are thus, v„= v, = &. 'The

gaugelike coupling of g to n leads to critical en-
hancements of the elastic constants K, and K, .
We introduce exponents g, and g, to describe this
enhancement

[Eq. (1)j were that the N A-transition would be a
nearly-second-order transition. with isotropic heli-
um exponerits. &T' was estimated to be of order
10 mK (Ref. 7) or larger.

1he experimental situation at the moment is
somewhat ambiguous. Essentially all experiments
show a &7.' of order 3 mK or less. X-ray mea-
surements" seem to indicate that the correlation
length exponents are isotropic. There is evident
crossover for these exponents from heliumlike
values up to t of order 10 ' to mean-field values
for 10.'& f& 10 4.

Published values for g, and f, would indicate
anisotropic behavior. Chu and McMillan" find

f, = 0.47 a 0.0'7 and Birecki and Litster" find f,
= 0.75 + 0.04. Both of these values were obtained
by light-scattering experiments. The analysis
of the raw experimental data to obtain g, is quite
complicated, and it is possible that greater weight
was given to data points far from t, than to points
close to 5,. Since x-ray experiments show v de-
creasing with t, it is 'possible that &, is overes-
timated. On the other hand, measurements of K,
using techniques other than light scattering" give
approximately the same value Of f,. Below T„
Birecki et al. ' find p = 0.333 + 0.05 and p' = 0.50
+0.02. As we shall see in Sec. III, these should
be equal, respectively, to f, and f, if anisotropic
scaling is to hold. They are clearly too small to
satisfy scaling. Thus, some experiments indicate
the possibility of anisotropic quasicritical behavior
and others do not. In Sec. III 'we will reinvestigate
the de Gennes model to see if critical anisotropy
is theoretically predicted.

III. ANISOTROPIC SCALING

If the N-A. transition is second order, we expect
scaling to hold in the vicinity of the critical point.
We also wish to consider the possibility of lengths
parallel and perpendicular to n, scaling differently.
Furthermore, the elastic constant K, remains
constant through the transition"'"'" and must,
therefore, appear explicitly in any scaling rela-
tions. Thus, &„.and G should obey homogeneity
relations' of the form

G(q, t, K,)=b' "'G(b""~'q„bq„b'~"~t b ~K )

D„.(q, t, K,)=b' "~D,~(b""~~q„, bq„, b' "'t, b 'K,), (8b)

where q and q, are the components of the wave
number q parallel and perpendicular to n, . Paral-
lel and perpendicular correlation lengths emerge
naturally from Eq. (8),

v„= (1+ p„)v~.
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We can also see from the above and Eq. (3c) that
& must satisfy

(10)

in order to keep K, constant through the transi-
tion.

Because of the gauge (rotational) invariance of
this system, not all of the exponents appearing in
Eq. (8) are independent. The vertex function 1',.(k,
q) defined via

&4(k)(t (-~ —q)&;(q)& = G(k)&;;(q) 1,(k, q)G (-k —q),

satisfies lim, , I'&(k, q) = 2qoC, k& because of gauge
invariance. This means that the rescaling proper-
ties of qo can be obtained from those of )I), 5n, k„,
and k~ by simple power counting, and q,

b" "-~ )~' 'q, under the rescaling transformation
described in Eq. (&), where @=4 —d. We now

choose q„so that q, remains constant under re-
scaling. Thus we have

the E expansion. "" We begin with an anisotropic
volume-preserving rescaling of Eq. (1) so that
C', , C,'-C', and q, . remains unchanged. This leads
to a new Brillouin zone which is in general non-
spherical and different for (1) and n. For the pur-
poses of this discussion, however, we will assume
both Brillouin zones are spherical with radius A.
We now rescale lengths so that the Brillouin zone
is of radius unity and (I) so that the coefficient of
(VP)' in F/T is unity. Furthermore, we consider
the more general system where the field g has 2n
complex components. We then have

H—=—= d"x r, + + iq06n

+ —,'u,
I
p I

'+ —2Ko, (& n)'

+ —,'K', g (v/, n, —&,n;)'

(14)

There is a certain arbitrariness to this choice of
Other choices which keep other potentials con-

stant are possible. Properties of physically ob-
servable quantities remain constant for different
choices of 2)„. Combining Eqs. (8)-(10) and (3),
we obtain

5K —
$ $' ' /)K —

$ 'f'"
1/6 1 g $ $6 3

2+61
$

2

(12)

IV. RENORMALIZATION-GROUP RECURSION RELATIONS

We now use Eqs. (8) as a basis for developing
r enorma1. ization-group recursion relations using

TABLE I. Anisotropic scaling relations.

General dimensions Three dimensions

= v~(2 R~)

A = 2 —(d+ p(() p~

I ii
= (~ii —~i)/'~.

'6n = & —Pi)

(3 = v((+ (6 —1)pg

(p = (&+ 1)

9 = (3 —&)&i- ~)i

= p)(+ (1 —E') pg

V = ~.(2 —n.)

~ =2 —(d+ p~~)

All (~II ~J.)/ ~J.

'Oq = 1 —pii

=2pj.- v

=2&~- v~~

I

Scaling relations among exponents implied by Eq.
(8) are summarized in Table L A particularly
relevant prediction of this type of anisotropic scal-
ing is that

C1/C)( —5K2/5K 3
—t (13)

~ ~ ~t
where n, is in the 1 direction, the summations M
are over 2 to d,

2, = (C') 'A 2A

(Co)-2TAd 6f/0

K; = T-'A'-'(C, ', /C,')"'K'„

K', = T 'A' "(C,', /C,')' 'K'„

K = T 'A "(C, /C ) ~ ' "K3 3P

Co (Co)1/d(CQ)1 1/d

Experimentally, "'"C'«C',
~

so that K', and K2 are
expected to be larger than K', . We will discuss
this further below.

Recursion relations for the potentials in Eq. (14)
that are valid for all values of K', cannot be de-
rived without further discussions. Equation (14)
is expressed in terms of what we will call the
liquid-crystal gauge with 5nLn, . This gauge pre-
sents certain problems in three dimensions. D, (q)
diverges when q„=0 and K, =0. Furthermore, in
three dimensions, this gauge leads to fluctuation
destruction of long-range order. " Equation (14)
can be reexpressed in terms of what we call the
super conducting gauge in which V A = 0, where
A = 6n —VL and 4' = e "o p,

2

+ —g, K;q'+K', -~' q' Ia, (q)I'

'

(6',6' r7 6))6,(tO) 'I', *,



370 T. C. LUBENSKY AND JING-HUEI CHEN 17

where A, (q) is the component of A in the q-n, plane
and A, (q) is the (d —2)-dimensional component of
A perpendicular to the q-n, plane. The difference
between the two gauges is depicted in Fig. 1. In
the superconducting gauge, there are no divergen-
ces when Ky 0, and 4 has long-range order in
three dimensions. This is the gauge that was used
in Ref. 7 to calculate the first-order jump for the
E-A transition. Clearly, calculations of fluctua-
tion enhancements of potentials should be done in
the superconducting gauge. On the other hand, an-
isotropy is most naturally described in the liquid-
crystal gauge. Keeping this in mind, we develop
recursion relations as follows: (i) gauge transform
from the liquid crystal to the superconducting
gauge; (ii) integrate out degrees of freedom with
wave number q between the ellipse q,'+5'- ~~q'=5 '
and the unit sphere

~ q~
= 1. To obtain equations

correct to order E, the ellipse may be replaced
by the sphere ~q~ =b ' in all integrals because p„
will be of order E. This process creates aniso-
tropy in the coefficients of V,g&/g, i.e., it creates
C„e C, W 1; (iii) gauge transform from the super-
conducting to the liquid-crystal gauge; rescale
lengths anisotropically (q, —bq„q„-b'""q„) to
regain the unit sphere Brillouin zone, rescale t/r

and 5n,

(t(( /b) I ( 2 ((I((-I(IIlj )/2q( —
)

On((I/O) I/"'"-(( """5n(q),
and choose g, and p. , so that C = C, = 1 and g„ so
that q, remains unchanged under the transforma-
tion.

If we let b = e' and remove an infinitesimal
shell at each iteration, the above prescription
yields the differential recursion relations

no

= (2 —g, )r+ ', (-n+ 2)C, + C,q,
'

"1+x

~II, (~K, I K,)' MK+,'") '

dK, = -(& —p(()K»

dK, 2

dl
= -(e —l/, „)K,+ —,nC„(I,

dK3 = —(6+ p„)K~+ 6 nC&qo,

where C„'= 2~ '7/~/'I'( ,'d) In—th.is equation, we
have dropped the bars over K„K„and K, for
compactness, arid we have dropped "naught" sub-
scripts and superscripts to indicate we are talking
about renormalized quantities.

'The equations for Ky K2 and K, decouple from
those for x and u as does the equation for the
cha'rge in a superconductor. We, therefore, in-
vestigate the fixed-point structure in this sub-
space. Let f; = C„qo/K;, i = 1, 2, 3, then we have

&(()f»

n

FIG.. l. Equilibrium director no is along the 1 a,.is.
Variations tsn in n must occur in the plane perpendicular
to no. A on the other hand must be purely transverse,
i.e., perpendicular to the wave number Q. A ~ lies in
the 50-Q plane where as A

&

———6n
&

lies in the remaining
d —2 dimensions.

df~ 1 2

dl
= (&+ p, „)f, ——,nf, .

These equations have the trivial fixed point with

f,*=f,*=f,*=0. In this case P is completely de-
coupled from the gauge field 6n, and the system
reduces to the usual classical n-component gauge-
less model. Below four dimensions the n-com-
ponent Heisenberg fixed point is stable" with cor-
relation-length exponent v„(n). The stability ex-
ponent" X&. =—v„'p& for turning on any of the f, 's is

The crossover exponent is thus avH(n).
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'The other fixed points of these equations are
most easily found by observing that the equation
for f, has a possibility of three fixed points: f,
=0, f, = ~, and e = p, ~. We will now consider each
of these cases separately.

Equation (22a) has three real roots for 0(z(~
one of which is positive and two of which are nega-
tive. The. negative roots are physically inacces-
sible and may be ignored. In terms of these vari-
ables, we have

In this case,

1 f =~orK =0
1

,' f,/(—1+R),

rl, = ——", f,/(1+R),

(23a)

(23b)

p„= ——', f, (1 —R)(1+ 2R)/(1+R),
where .

R = (f,/f, )"'= (Z, /Z, )"'.
Thus, at the fixed point

[ 6 n(1+ R)'+ —', (1+ 2R)](1 —R) = 0; (18)

Cdu*= 1+ 8 2

1+8
z/af

—8f,R '(n+ 8)

(23c)

A = 1 is the only solution with A real and positive.
Two other solutions with negative A exist, but
they are of no interest to us since they are physi-
cally inaccessible. The fixed point with & = 1 is
that of the isotropic superconductor with

f 2* =ff = 6E/n, K, = 0 . (19)

The stability exponents at this fixed point are

A., = -e(l+ 12/n),

(2o)

where s refers to the symmetric perturbation (6f,
+ 6f, ) and a to the antisymmetric perturbation (5f,
—6f,). This fixed point (if it can be reached is
stable with respect to perturbations which destroy
charge anisotropy as indicate'd in Ref. 7. As dis-
cussed in Ref. 1 however, u does not reach a
stable fixed-point value when n& 365.9 and a first-
order transition is predicted.

2. c=p((

In this ca,se f,*= 0 (i.e., R, = ~) and f,*= 12&/n.
These values can be inserted into the equation

to obtain an equation for R, = (f,/f, )' ~ '. The
resulting cubic equation

R', /(1+ R,)'+ ~n = 0 (21)

3. fi =O, K

In this case, g„=—', f,/(1+R), where R = (f,/f, )'~',
and the equations determining the fixed-point va-
lue for R and f, resulting from Eqs. (16) and (17)
are

R'+ (1+32/n)R —R —1=0,

f, = 6a[n+ 16/{1+R)l ~.

(22a)

(22b)

has one real root which is negative for all n. Since
R, &0 is physically inaccessible, we can ignore this
fixed point.

1/v, = 2 —g ——,'(n+ 2)C~u*. (23d)

7'= g„=0.137123&= X~,
(24)

&, = -1.678 732&,

where ~, and X, are stability exponents for linear
combinations of f, and f, . If this fixed point in the

f, f, plane is app-roached, the elastic-constant
exponents become

l2 = (6 —p), )vg = 0.137 123tvg ~ (25)
r, = (a+ p„)v, = 1.862 877&v, ,

where v, can be viewed as an effective exponent
in a nearly-second-order transition. Note that
this leads to a ratio t,/t, = 13.59 which is quite
large.

It is perhaps worth reviewing in words the re- .

sults of this section. Fixed points can be clas-
sified according to the number of potentials with
respect to which they are unstable. Thus, fixed
points for usual second-order transitions are un-
stable with respect to a single variable, the tern-
perature (if anisotropies are not permitted) fixed
points for tricxitical points are unstable with re-
spect to temperature and a nonordering field, and

v[( f 2 p f 3p ~, etc ., are obtained from the scaling
relations in Table L As can be seen from Eq. (23),
u* may not be real. 'This occurs for n &238.17,
and as for the superconductor, the recursion re-
lations drive u negative and lead to a first-order
transition. For n &238.17, a true fixed point un-
stable only with respect to K,' and temperature,
can be reached with critical exponents given by
Eq. (23). Even though the transition is.first order
for all n &238.17, it is still instructive to note the
fixed-point values of R, f» and the exponents that
do not depend on u* for n = 2,8:0 27 1 308

p pi~: 0 862 877K

f2*= 0.411369&, qi = -1.725 76m,
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so on. In the de Gennes model, there is a single
once-unstable fixed point for n&~„= 365.9. This is
the isotropic superconducting fixed point discussed
in Ref. 6. In addition, there are various twice
unstable fixed points. Of particular interest is the
fixed point at E,= ~ which is unstable with respect
to temperature and K, ' only. It is characterized
by extremely anisotropic critical behavior (i.e.,
v„4 vi). Thus, if the initia. l Hamiltonian is in the
vicinity of this fixed point with A', small but not
zero, there will be a crossover from mean-field
to anisotropic-critical and finally to isotropic-cri-
tical behavior. Depending on initial conditions, ef-
fects of other fixed points such as the isotropic
Heisenberg (chargeless) fixed point may also be
felt. Even for ~z &365.9, there is a domain of initial
potentials that leads to a, first order rather than a
second order transition. For 238.17 &n &365.9,
there is no once unstable fixed point. 'The fixed
point at K, =, ~ and K„E„u&0 still exists, how-
ever. Thus, initial Hamiltonians starting in the
vicinity of this fixed point would show crossover
from mean field to anisotropic critical to isotropic
critical to a first-order transition. The first-
order transition may come before the isotropic-
critical behavior is seen. There is a true con-
tinuous transition only for K, = ~ (or for q, = 0).
When n &238.17, there are no once-unstable fixed
points; there are only the Gaussian and isotropic
chargeless Heisenberg fixed points. Thus, the
transition will be first order unless q, is identical-
ly zero. Nevertheless, quasicritical behavior may
be observed and the sequences of crossovers dis-
cussed above can also be expected to occur. 'This

may make analysis of experiments somewhat dif-
ficult and even lead to apparent discrepancies be-
tween different experiments. Because the transi-
tion is never under the influence of a single fixed
point, effective exponents may be nonuniversal,
i.e., they may depend on starting potentials. 'This

sort of behavior has been calculated for the first
order transition in superconductors. " The curve
of f f f ver sus temper ature, for exampl e, depends
on the initial values of u, and q„and the maximum
value of p,« is not determined by the isotropic
chargeless Heisenberg fixed point as might have
been expected. Similar and more complicated be-
havior for the nematic and smectic-A transition is
to be expected. A program to calculate crossover
functions from Eq. (15) is currently under way and
should be relevant to the analysis of experimental
data.

V. DISCUSSION

In this section we will indicate what experiment-
al behavior might be expected as a result of the

where

1 (p')' (k~T, )2

32w' 2' (Ci)' Cii

is the Ginzburg' reduced temperature and

2 q' C', (C', )'
(U')'(K')'

K' KoCO 2
3 3 ll' K C K', +C R', +2(C O'K, K )' )

(27)

where z, is unity (for type-I systems). For type-
II systems, this result changes to

&T —
9 zl bc Tc~ H 9 z& Sc Tc (28)

where y„ is the crossover exponent ei„(-—', for
c = 1) for turning on the charge at the isotropic n
= 2 chargeless fixed point. z, was estimated to be
of or'der unity in Ref. 7. A recent calculation, "

theory presented here. Since, as discussed in
Sec. I, the experimental situation is not completely
understood, we will not make any attempt at com-
pleteness.

We begin with some experimental information.
The value of C~', /C', as obtained by x-ray measure-
ments is of order 20 (somewhat smaller in
McMillan's measurements" and somewhat larger
in those of Als-Nielsen" et al.). KO„K„and K,'
are equal, respectively, "'"'"to 11.6&&10 ', 5.5
&&10 ', and 5.7&10 ' dyn. Thus K',/K,'=(C'„/
C', )K',/K', is of order 40, K',/K,'= (C,'/C', )Z',/Z,'
is of order 20, and K',/K', = K%K', is of order 2.
K', is by far the largest elastic constant; and one
might expect anisotropic quasicritical behavior un-
til the renormalized value of K', is of order the
renormalized values of K, and K'„at which point
more isotropic behavior characteristic of the
chargeless Heisenberg fixed point should set in un-
til the transition (first order) occurs. K', becomes
of order K', within a few mK of 5 mK above T, .
Thus, one might expect anisotropic-critical be-
havior to be almost as close to the transition as can
be reached experimentally. This is not in disac-
cord with the behavior of K, and K, as obtained
from light scattering"" but is in disaccord with
the most recent x-ray measurements. "

The analysis presented here does not change the
theoretical prediction that the de Gennes model
should have a first-order nematic to smectic-A
transition, "though it probably reduces somewhat
the estimate of AT' in the extreme type-II case.
In Ref. 7, AT' was calculated for type-I systems.
This calculation is reproduced in the Appendix with
result

(26)
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however, shows z, to be equal to 0.3 to first order in e
and very possibly much smaller to higher order in
E' since n„= 365.9 appears to decrease" with E.
No calculation of z, exists as yet though it appears
likely that it is less than one. Note that K,/K',- 1, whereas the secorid term in the large paren-
theses of Eq. (27) is of order 2 for large Cia/Ci.
Thus ~ ' for small z, is of order one third its val-
ue for z, equal to one. Therefore, the estimated
value of b,T' as calculated from Eq. (28) might be
a factor of 10 or more smaller than the value cal-
culated with z, =z, =1. There is thus some possi-
bility of reducing the estimate of AT'- 10 mK given
in Ref. V. A correct estimate of AT' is not the
whole story, however. In order for theory and ex-
periment to agree they must produce among other
things the same latent heat and size of critical re-
gion. It appears very difficult to choose a value of
U', the only unknown in Eq. (28) other than z, and

z, to agree with hT'( 3 mR, a critical region of
order several degrees (in order that the smaller
type-II prediction for hT' can be used) and latent
heat values' obtained by scanning calorimetry" or
by volume change" and pressure-temperature"
data via the Gibbs-Duhem relation. Since new ex-
perimental data is constantly being obtained, we
will not attempt at this point to reconcile present
experiments with present theory on these issues.

It is worth noting at this point that the interpre-
tation of x-ray experiments is not completely
straightforward. X rays measure the density-
density correlation function, i.e., they measure
the Fourier transform of the order-parameter
correlation function (P(x)g*(x )) in the liquid-crys-
tal gauge. The correlation lengths $~ and $ii ap-
pear naturally in superconducting gauge. For
large separation

(29)

((L (x) —L (0))') = k T (2)()' K, q'qadi + K,q'q',

where position-dependent prefactors have been
omitted. The correlation function in the liquid-
crystal gauge is easily related to that in the. super-
conducting gauge

($(x)g*(0')& = (4'(x)e t (0') e'"

(@P)@t (~0)) e-qp((L( x)-L(0)) &/2 (80)

. The second expression is only approximate. It
does, however, suffice to show what problems
may exist in interpreting ($(x)$*(0)). From Eqs.
(Al) and (A2) in the Appendix, we see that
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APPENDIX

In this Appendix, we will present'various cal-
culational details. We first present the liquid-
crystal to superconducting gauge transformation.
Figure 1 shows the directions of n„along the 1
axis, q, ()n (in the n, -q plane), A, and A, = ()n, .
A is defined via

A= 5n —VI, (Al)

and the constraint V 'A= 0. Therefore, we have
I (q) = i(q /q')( -(q))n(()n, —= ()n,

I
and q=- Iql), A,

. +g( qg/q qadi/q, 0) where 5 is the (d- 2)-
dimensional null vector wi;th

A, (q) = (q„/q)6n, (q), (A2)

in three dimensions. This quantity is proportional
to ized at large ized with angular-dependent coeffi-
cients. (For d)8, it grows more slowly than ixi
at large separation. ) Thus correlation lengths ob-
tained from ($(x)g*(0)) contain contributions from
$i, and $i, and from phase fluctuations, and it is
not obvious that x rays measure $, i

and $ directly.
This problem is current under investigation and
will be discussed at some future time.

Obviously, further theoretical and experimental
work is required before a full understanding of the
nematic to smectic-A. transition is reached. On
the theoretical side, a number of questions still
within the context of the de Gennes model need to
be investigated. We list some of these questions.
(i) Is the experimentally observed transition much
closer to the Lifshitz point" separating smectic-A
and smectic-C phases than usually assumed' This
might explain the difficulty in observing eyidence
of a first-order transition. On the other hand, if
this were the case, one might expect greater an-
isotropy than is observed. (ii) Is the system close
to a tricritical point (u = 0)? This would lead to a
prediction of a smaller AT' but also to a prediction
of essentially mean-field exponents. (iii) Does the
possible existence of different cutoffs for the order
parameter and director fields play an important
role in determining properties near the transition?
We feel that all of these questions must be investi-
gated before the de Gennes model is rejected as
being unable to explain experiments.
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and finally we have

2

&~&.(q)~'&=(—" &~&n'(i&'&

R, the rescaling of length and fields. The opera-
tion R~ involves calculations of diagrams that re-
sult from a perturbation expansion in q, and u.
The propagators are

u~T
K,q'+K, (q, /q„)'q'

This result is used in Eq. (15).
The renormalization-group operation R de-

scribed in Sec. IV can be written R=R,G 'R~G,
where G represents the gauge transformation
from the liquid-crystal to the superconducting
gauge, R~ the removal of degrees of freedom, and

)=e e
1

(J 0 — J.l JJKq2+P (q/q)2q2

"K q'+K q'

G(q) = 1/(r+ q'),

where 6;j=q;qJ+ eIfei,.+ et1etj, with

(A4)

and

q = q/q = (cosy, siny cosP) siny sinP cosa, siny sinP sine)

e, = (-siny, cosy cosP, cosy sinP cosn, cosy sinP sina)
l

jn four dimensions where y and p run from zero to m, and n from zero to 2m. All diagrams can be ex-
pressed in terms of the general integral

L „~(K3,K,)=
cos' y sin'"y cos''P dQ,
K, cos'y+K, sin'y (2g)' ' (A5)

(A6)

(AV)

I =
3

where dQ4 is the solid angle in four dimensions. L „~ can be evaluated using

K, cos y+K, sin'y (K,K,) ~K, +~&,

and trigonometric identities relating cos"y to cosPy. We take the momentum of any external legs to be k
=(k(, , k.0, 0). The integrals I~ corresponding to diagram j of Fig. 2 in four dimensions are

&-& K,q'+K, (q, /q„)'q' q'+r (2m)' -~ Kq(')+K, q', q'+r (2m)'

= fk)(L»0(K~, K,)+k'[L2«(K3, K,)+I 0«(K„K2) —L«,(K„K2)])A(r),

1 2
I2 —

K 2 ), ,2 2+2 2 2 I ~4 [L~()0(K3)K~)+2L o(ooKK3)2)]2(1 b ))b, K q +K Lq, i'q~~ q K3q]] +K2q,
1 ]. 2 ] 2 d4q+) . - . .) „=— l-, (K, , K +2&, I. -. , K„&K )(&ll&,.

3q + ~q~//q]] ) q

~2~~~~~2~~ ~~~
dK

~

~

~
~

~K

~

t~ i
K3q]~ +K2q~ (2m) dK3 1

I„.(k) =4 D;, (q)(2k+q), G(k+q)

= 8(no k((Li 0(K3 Ki)+ei ki(I, 20O(K3 Ki)+L«0(Ks K2) Looi(K3 K2)])A( )

where

L„o(K„K,) =3L,O,(K„K,) = —,'C~(3&K~+ vK, )/(~K, +&~K,)',
Lo()()(K,K2) =3L«, (K~K, ) =2C~PK, (vK, +&K~)] ~,

1L„,(K„K,)=C, (~ ~, L. -. .=2C„, „~, A(r&=
3 3 2/

q dq
2-1 q+g

(A8)

Note that I„=(e/sk,.)I( as requir. ed by gauge in-
variance. Because of this, g~, which appears in
the rescaling factors for q, is canceled by the con-
tribution of I4, to the recursion relations for qo.

The momentum independent parts of diagrams
5a and 5b cancel as required by gauge invariance.
If we set y =0, which is consistent with the first
order in e calculations presented here, we obtain
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L J
2.

Following Ref. 6, we ignore spatial variations in

4 and obtain

1 dK, ff
~01+I +«.I+ I'

+ q', I4 I(& A', ) + & A', ) ),

where 0 is the volume and
f

d'
K,'q'+K', (q /q„)'q' +2q', l4' I' (2m)' '

(A12)
g

K,'qii+K2q', +2qol4'P (2~)' '

If we assume I4'I is small enough that we can ex-
pand the above in 4, we obtain

', (+)) = &A', (0))-
4 q

5a, 5b.
FIG. 2. Diagrams contributing to renormalization of

potentials to first order in &. Wiggly line represents
D;~ (g) and solid line, t" {cf). The three-point vertex is
(2 k+q);.

&
~', (~)& = &&', (o))—

va
(A13)

1„,(I ) = (5,, —i,k,.)k'-,'n C„. (A9)
Thus

&
Xeff becomes

36.«/&=~. l+I' ~I+ I'+ l-«.I+ I', (A 14)

-sc,ff t q j d -ocg+, A) (A10)

Equations (A7) and (A9), the well-known results
for diagrams 5a and 5b, and the renormalization
procedure outlines in Sec. IV yield the recursion
relation Eq. (16).

Finally, we outline how Eqs. (30) and (31) are
obtained. %e begin with the rescaled Hamiltonian
3CI@,A] -=F/T in Eq. (15), where FI4, A] is the re-
scaled free energy. An effective Hamiltonian
which is a functional of 4 alone can be obtained by
integrating over A,

where

1
+ —p q

=p

The critical value of rp at which the first-order
transition occurs is given by

/«0. (A15)

Substitution of the above expression for w and per-
forming the transformation prescribed after
Eq. (14) yields Eqs. (30) and (31).
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