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Kryptori atoms adsorbed in submonolayer quantities onto the basal graphite surface may be represented by a

triangular lattice gas with nearest-neighbor exclusion and further-neighbor attraction decreasing with

separation. %'e view this as a three-state Potts model with thermodynamic vacancies which are controlled by
a chemical potential. A position-space renormalization-group treatment is performed by adapting Migdal's

approximate recursion to the triangular lattice, and results are compared with experimental data. Our
temperature versus density phase diagram for krypton submonolayers has an in-registry solid phase separated

from a liquid phase by a line of continuous {Potts tricritical) transitions at higher temperatures. At lower

temperatures, the solid phase is separated from a gas phase by first-order transitions. The Potts tricritical
line meets the coexistence region of the f&rst-order transitions at an isolated fourth-order transition point.
This point may be related to the transition of the triplet Ising model, solved exactly by Baxter and %'u. Our
"Potts lattice gas" global phase diagram is in a three-parameter space of pair-interaction constants and

chemical potential. It contains solid, liquid, and gas phases, variously separated by first-order, Ising critical,
three- and four-state Potts, and fourth-order transitions. The Lennard-Jones potential between krypton
adatoms determines the planar subspace applicable to krypton subrnonolayers. Other planes, similarly

determined, are applicable to adsorbed nitrogen, methane, and ethane, for which we estir»ate the

temperatures of the foUrth-order points. Our treatment also predicts a tricfitical end-point topology, instead

of the fourth-order point topology, when second-neighbor adatom pair attraction is not much stronger than
third- and fourth-neighbor attractions.

I. INTRODUCTION

Physisorbed films' have in recent years pro-
vided experimental reaj. izations of two-dimension-
al phase t;ransitions. ' Graphite is extensively
used' "as a substrate. Its hexagonal basal plane
presents a regular array of preferred adsorption

sites, namely the hexagon centers. These adsorp-
tion sites form a triangular lattice f Fig. 1(a)].
Adsorbed atoms are taken to interact pairwise:
For commonly studi. ed adsorbates, ' " two atoms
experience a positive {unfavorable) potential when
adsorbed onto nearest-neighbor sites, and a nega-
tive potential increasing to zero with separation

l

1

I IG. l. (a) Adsorption sites of the basal plane of graphite: They occur at the centers of. the graphite hexa«ons,
three of which are displayed. These adsorption sites form a triangular lattice which is composed of three sublattices,
distinguished herc by full, dashed, and dotted circles. At krypton monolayer completion, all sites of. one sublatticc
are occupied, and the other two sublattices have all their sites empty. Numbers indicate first- through fifth-neighbors
of the site labeled 0. (b) Lennard-Jones potential V(r between two krypton atoms adsorbed onto graphite [Eq. (2.1}j.
The well depth is e=-0 &&(145'K), and V(x} changes sign at the LJ diameter o =-3.60 A (Ref. 8). Numbers indicate first-
through fifth-neighbor separations on the adsorption-site lattice.
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when adsorbed onto further-neighbor sites [Fig.
l(b)]. Two-dimensional phase transitions have

been observed in submonolayers of helium, -'

neon, "' krypton, ' " xenon, ' nitrogen, ""and meth-
ane' adsorbed onto graphite. An "in-registry
solid" phase, whose crystalline structure con-
sists of a preferential occupation of one of the
three sublattices in the adsorption-site. lattice,
has been distinguished from "disordered fluid"
phases with, on the average, equivalent occupa-
tion of each sublattice. It seems reasonable to
develop a theory for these transitions through a
two-dimensional lattice-gas model. " Exact re-
sults for such models are known at isolated spe-
cial cases of equivalence to the two-dimensional
spin ——.' Ising model" with nearest-neighbor inter-
action only and zero magnetic fieM, but no exact
solution has been achieved over the continuous
range of experimental applicability. The Bethe-
Peierls approximation has been applied" to such.

a model for helium adsorbed onto graphite, re-
sulting in first-order phase transitions, in dis-
agreement with experiment. " This can be as-

sociated with the failure of mean-field-type ap-
proximations, which do not yield the known con-
tinuous transition"'" of the two-dimensional
three. -state Potts model, '" since the helium mono-
layer transition has been argued" to belong to the
universality class of this Potts transition. More
recently, Schick, Walker, and Mortis ' have
achieved excellent agreement with experiment"'
by performing the position-space'"" renormal. iza-
tion-group" tx eatment of a helium lattice-gas xnodel.

Krypton subxnonolayers adsorbed onto the graph-
ite basal plane are of particular interest because
vapox'-pl essux'e experiments have produced a
multicxitica/ phase diagram (Fig. 2). The solid
and fluid phases mentioned above are separated
by a line of continuous phase transitions"" at the
higher temperatures; at lower temperatures, the
two phases are separated by first-order phase
transltlons. "' It ha, s been inferred' that the line
of continuous transitions meets the coexistence
region of the first-order transitions at an isolated
higher-order transition point in the temperature-
d ens lty phase d lag ram.
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FIG. 2. Phase diagrams for krypton submonolayers (Sec. II 8) resulting from our PLG treatment; In the temperature
vs. chemical potential diagram (a), I"4B (dotted) is a line of first-order transitions„E&BE& (dashed) is the corresponding
phase-separation boundary in the temperature vs. density diagram (b). In both (a) and (b), I'&h is a line of Potts trieri-
tieal transitions and I3 is a fourth-order point. In the temperature vs. density diagram, the following points from vapor-

0pressure experiments are shown: first-order transitions from Bef, 6 () and Ref. 7 (0); higher-order transitions from
Bef. 6 (k) and Ref. 8 (A). The density values for Ref. 8 are obtained using the graphite surface area. of 11.8 m /g de-
termined from compressibility minima, Densities in Bef, 6 are given as &, fractions of the close-packed monolayer
coverage; multiplication by 1.098 converts these to n, fractions of the in-registry monolayer coverage. The density
scale of Bef. 7 is determined by adjusting the high-density points to Bef. 6.
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In this research, we study submonolayers of
medium-sized atoms or molecules (larger than
neon, smaller than xenon) adsorbed onto the
graphite basal plane. Although we start our treat-
ment from a microscopic picture of adsorbed
krypton) lt will be seen that our moc1el ls applica-
ble to a number. of adsorbates, such as nitrogen,
methane, and ethane. We obtain a global multi-
critical phase diagram" in the space of three ther-
modynamic fields, and the subspace applicable to
a given adsorbate is determined by the corre-
sponding adatom size. Thus, phase transiti. ons
of different types of submonolayers are unified
into one global diagram characterized by a. few
distinct sets of critical exponents, in agreement
with the universality hypothesis. '"'

We obtain the line of continuous phase transi-
tions of krypton submonolayers as a line of three-
state Potts tricritical points, "'""like the helium
case. '" The isolated point terminating this line
is a fourth-order transition point which may be
related to the (fourth-order) transition of the trip-
let Ising model. " The eigenvalues from our ap-
proximate renormal. ization-group analysis agree
to 4% with Baxter and VYu's exact solution" of the
latter transition. However, there are symmetry
and eigendirection differences between these two
transitions. In our temperature versus density
phase diagram, the two branches of the phase-
separation line form a cusp as the first-order co-
existence region reaches this fourth-order point
from the low-temperature side (Fig. 2).

Our method consists of two distinct parts.
First, we further develop the lattice-gas model-
ing of submonolayers, by approximating the kryp-
ton latti. ce gas (KLG) by a "Potts lattice ga.s"
(PLG): a three-state Potts model with thermo-
dynamic" vacancies controlled by a chemical po-
tential. This step, called a prefacing'" transfor-
mation, relies on the net"est-neighbor exclusion
(very large positive potential) in the KLG (Fig. l).
Each PLG site represents three KLG sites (Fig.
3). We are then able to take into account the KLG
second-, third-, and fourth-neighbor negative po-
tentials. These further-neighbor interactions
destroy an infinite ground-state degeneracy at the
zero-temperature transition, thus converting it
from continuous to first-order and inducing a
mul(icritical phase diagram. Second, we adapt'
Migdal's approximate recursion relation'"" to the
triangular lattice and perform a global'~ position-
space'"" renormalszatzon-group" treatment of
the PLG. It is of technical interest that exceeding-
ly simple recursion relations [Eq. (2.9)] yield"
a complex phase diagram (Fig. 6), resulting from
thirteen separate fixed points" (Fig. 5): A space
of three thermodynamic fi.elds is portioned into

KLG PLG

FIQ. 3. Three nearest-neighbor sites of the krypton
lattice gas {KLQ) are represented by one site of the
Potts lattice gas {PLQ), as prescribed in Sec. IIA. A
given KLG site is in one of two states {empty or occu-
pied), while a given PLG site is in one of four states
{empty, occupied at cz, b, or g). Both the KLG and
PLQ sites form, among themselves, triangular lattices,
but the PLQ lattice constant is v 3 times the KLG one,
and the t~vo'lattices are rotated by 30' with respect to
each other.

II. MET. BOD

A. Potts lattice-gas model

The hexagonal basal plane of graphite presents
a regular array of preferred adsorption sites,

solid, liquid, and gas phases. These three phases
are separated by a surface of Potts tricritical
points, and two surfaces of first-order transi-
tions. These three surfaces are variously bounded
by a line of fourth-order points, an Ising critical
line, and a line of Potts tricritical end-points.
These three lines meet at the transition point of
the four-state Potts model. " A Potts tricritical
end-point topology (Fig. 9) is predicted [instea. d
of the fourth-order point topology (Fig. 2) de-
scribed above for krypton] for hypothetical ad-
sorbates with the second-neighbor potential not
much more negative than the third- and fourth-
neighbor potentials. However, all adsorbates to
which we applied our model corresponded to the
topology displayed in Fig. 2. Our treatment does
not include second-layer adsorption"' and be-
havior incommensurate" with the graphite sub-
strate which occur around monolayer completion.

In Sec. II, we construct the PLG model, obtain
exact information by considering its special
cases, and derive our recursion relations. In
Sec. III, we describe the resulting global phase
diagram for the PLG, then discuss and compare
with experiment' ' our predicted krypton sub-
monolayer phase diagram. We also estimate the
temperatures of the fourth-order points for ni-
trogen, methane, and ethane.
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namely the hexagon centers. ' Each adsorption
site can be either empty, or occupied by a single
adatom. The adsorption sites form a triangular
lattice [Fig. 1(a}],with a.: nearest-neighbor sepa-
ration of 2.46 A. Fig. 1(b) shows the Lennard-
Jones (LJ) potential V(r) between two graphite-
adsorbed krypton atoms, deduced' from experi-
mental adsorbate-adsorbent virial coefficients

(2.1)

Second neighbors
Third neighbors
Fourth neighbors
Fifth and further

K+ 2J
K —J
K —J
0

&34/V'

75/r .

&6/V'

(8/y

TABLE I. Krypton pair potentials -P V, as assigned
by our PLG model fEq. (2.2}]and by the experimentally
determined (Ref. 8} IJ potential fEq. (2.1}]. T is tem-
perature in degrees Kelvin.

Krypton pair type on KLG lattice PLG LJ

with LJ well depth e = k x (145 'K), where k is the
Holtzmann constant; V(r) changes sign at the LJ
diameter o = 3.60 A. The first- through fifth-neigh-
bor separations are indicated by the numbers on
the v axis. The very large (350 times the well
depth) positive potential of a would-be nearest-
neighbor pair causes net'est-nei gM ox exelusi on.
Further-neighbor interactions are favorable (nega-
tive potential} and essentially short ranged. Thus
the krypton monolayer is completed when one of
the three triangular sublattices [Fig. 1(a)] is en-
tirely occupied, while the other two are empty.
As the submonolayer approaches this state, as-
suming no formation of multilayer patches, one
sublattice is preferential1. y occupied. This sig-
nifies a breaking of the translational symmetry of
the krypton lattice gas, which will happen in one
of three degenerate ways, distinguished by the one
sublattice which has the larger share of adatoms.

In order to make the krypton submonolayer
problem more amenable to renormalization-group
treatment, we approximated, using the nearest-
neighbor-exclusion property, the krypton lattice
gas (KLG) described above by a Potts lattice gas-
(PLG) model. Consider an elementary triangle,
composed of three nearest-neighbor sites of the
KLG, for example trianglei in Fig. 3. Taken as
a whole, this triangle is in one of four states: It
can contain no krypton adatom, or it can contain
a single krypton adatom in position a, b, or c.
We view such an elementary triangle as a single
PLG site. Two variables (f, , s, ) are assigned to
it: t,. is 0 if the triangle is empty, 1 if it con-
tains an adatom; in the latter case, a second
variable s,. = a, b, or c describes the specific po-
sition of the adatom. A regular pattern of non-
intersecting elementary triangles (two of which
are shown in Fig. 3) completely covers the KLG.
This pattern is itself g. triangular lattice, so that
the PLG sites form a triangular lattice, but with
nearest-neighbor separation larger by a, factor of
~3 than that of the KLG lattice, and rotated by 30'
from the KLG lattice. Although Fig. 3 is remi-
niscent of a renormalization-group (rescaling)
transformation, " the step taken in this subsection
is to be distinguished as a one-time prefacing (re-

structuring) transformation. "
We studied the PLG with the Hamiltonian

—PK= -P g V„t;tq —& Q f, , (2.2a)

-P V, ~
-- J(35, , —.1) + K, (2.2b)

where the first sum is over all nearest-neighbor
pairs of PLG sites, the second sum is over all
PLG sites, P—:1/kT has been absorbed into the
interaction constants J, &, and ~, and 6, , is 1S,i~j
(0) for s, =s,. (s, &s,). According to (2.2a),
adatoms have. a chemical potential -P '&, and
interact through a pair-potential V&& when occupy-
ing nearest-neighbor PLG sites. The J term in
(2.2b) is determined by whether or not the two
adatoms of a pa.ir are on the same KLG sublat-
tice. The calculational advantage gained by (2.2)
is that a PLG with only nearest-neighbor inter-
actions does take into account further-neighbor
interactions of the underlying KLG. This is il-
lustrated in Table I, which gives the potentials
assigned by (2.2) to an adatom pair at various
separations on the KLG lattice. Their LJ counter-
parts (2.1) are also given, and from this table one
sees that a reasonable match to the krypton sub-
monolayer problem is achieved by setting

+ 2&= 134/T,

K —J= 3(75/T)+ 3(16/T) .

(2.3a)

(2.3b)

The weights in the averaging in (2.3b) are so
chosen because, on a trriangular lattice, there are
twice as many fourth'-neighbor pairs as third-
neighbor pairs. This PLG only approximates the
KI.G, since the nearest-neighbor-exclusion prop-
erty of the latter is obeyed within each PLG site,
but not when two PI.G sites are involved: For ex-
ample, referring to Fig. 3, the simultaneous oc-
cupation of (ja) and (jb) is not allowed, but (ja)
and (ib) can be simultaneously occupied, being
assigned the potential in (2.3b}. This approximate
nature of our prefacing transformation can be sys-
ternatically improved, ' resulting in PLG models
with more types of interaction. Nevertheless, as
discussed above, the essential consequence of
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KLG nearest-neighbor exclusion is the introduc-
tion of three degenerate ground states, which is
captured by the PLG here: %hereas the second
term in (2. 2b) amounts to an ordinary lattice-gas
interaction, the first term is a three-state Potts"
interaction. Indeed, the model made precise by
(2.2) can be viewed as a three state-Potts model,
but 7AYL tk vacancies in the form of tAerrnodgna'Pnic

ir~PuH ties. "'" The average concentration of.

vacancies is controlled by &. Finally, by applying
Kadanoff's procedure, " it can be shown that the
PLG free energy is a lower bound to the KLG free
energy.

The PLG studied here is a special case, de-
limited by a threefold symmetry, of the spin-z
Ising model with generalized nearest-neighbor
interactions. As a tkree-state Potts model with

vacancies, it is also a direct adaptation of the
extensively studied Blume-Emery-Griffiths mod-
el, '""a two-state Potts model with vacancies.

B. Exact information from special cases

Although our interest is in krypton submono-
layers (Sec. IIIB,C), we first have to study the
global &, K, & space phase diagram (Sec. IIIA)
of the PLG (2:2), because the subspace (2. 3) ap-
plicable to th.e submonol. ayer problem is not
closed under our renormalization-group trans-
formation (Sec. IIC). A globa. l description does
have the advantage of providing a unified under-
standing of the behaviors of various adsorbates
(Sec. IIID). In distinguishing different thermody-
namic phases in the remainder of this work, the
following densities will be mentioned:

can switch KLG sublattices without affecting the
energy. The PLG (2. 2) reduces to an ordinary
lattice gas." An Ising-type" critical point oc-
curs at Kc = ln3 ~c = 3+c+ ln3. A semi-infinite
line, 4 = 3&+ ln3& ~c, of first-order transitions
separates a 'liquid" (dense: n&2) phase at low &
and a "gas" (dilute: n& 2) phase at high h.

2. Pure three-state Potts region. In the & «-1
region, only the configurations (f = 1, s) with no

vacancy contribute non-negligibly to the averages
(2.4). Then only the J term in (2.2) is of any im-
portance, and the PI G reduces to the pure three-
state Potts model. " A higher-order' transition
occurs at" 3J~, = In[1+ v 3/(2cos10')], separating
a, liquid (n = 1, n, = n, = n, ) phase at low J and thi ee
coexisting "in-registry solid" (n= 1, n, &n~=n, and
permutations) phases at high J.

3. Four-state Potts line. On the line J=-,'K
=

—,', 6, the PLG Ha, miltonia. n (2.2) reduces to

-PX= 3J Q (6„.„.—1), z&,.= 0, a, b, or c, (2.6)

which corresponds to the four-state Potts model. "
A higher-order" transition occurs at" J~, =

& ln2,
separating a liquid (n = —,, n, = n~= n, ) phase at low
J and four coexisting phases at high J. These co-
existing phases a,re a gas (n& —,', n, =n~=n, ) and
three in-registry solids (n& —,, n, &n~=n, and per-
mute. tions) .

4. AsynIptotic first-order transition. In the re-
gion 4 & 6Z+ 3K» 1, the state (t = 0) with all P LG
sites vacant completely dominates the averages
(2.4), while at d & 6J+ 3K» 1, the states with all
PLG sites occupied at the same KLG sublattice,
e.g. , {t=1, s=g), completely dominate. Domina-
tion abruptly shifts at the equality, constituting a
first-order phase transition between a gas (n =. 0)
phase and three coexisting in-registry solid (n„n~,
or n, =1) phases.

where the sums are over all (t, s) configurations,
the translational invariance of {2.2) makes i ar-
bitrary, and & is the partition function

(2.5)

n is the overall density of adatoms, and n, is the
density of adatoms on KLG sublattice a. n~ and
n, are defined similarly to (2.4a), and n = n, +n~
+n, . Before launching a position-space renor-
Inal. ization-group treatment, it is useful" to cata-
log any available exact information on the phase
diagram under study.

Ordinary lattice-gas P/ane. In the J= 0 plane,
n, = n~ = n„since any adatom in a given PLG site

C. Migdal recursion relations for triangular lattice

The renormalization-group approach" consists
of the stepwise solution of a statistical problem,
by a recursive elimination of degrees of freedom,
as illustrated below. One version"'" of this ap-
proach, treating the position-space representation
of the partition function, is especially suited to
two-dimensional lattice problems. An exact treat-
ment is usually impossible, because arbitrary
types of further-neighbor, many-site interactions
are generated. Therefore, one resorts to uncon-
trolled approximations (no apparent small param-
eter), which nevertheless have proven to be re-
markably succ essful.

Migdal" has introduced an approximate position-
space renormalization-group transformation which
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has a simple, yet quite useful"'"'" form. This
transformation was shown by Kadanoff' to also
result from a potential-moving" approximation.
Migdal's p.rocedure was developed for, and to date
used on, hypercubic lattices. We now adapt it to
the triangular lattice. -View the entire PLG lattice
as composed of adjacent "supertriangles, " each
involving six sites. Two such adjacent supertri-
angles are shown on the left side of Fig. 4. Th'e
supertriangles, being adjacent, share sides, so
each site participates in either two, or six (if at
vertices) supertriangles. As the first step of our
transformation, the bonds inside the supertri-
angles are moved to their perimeters. A special
concern here, uncorinected with the lattice type,
is the single-site interaction ~. As can be seen
in Secs. IIIB3 and iri IIIB4, important features
of the PLG phase diagram are directly affected
by the ratio of the single-site and nearest-neigh-
bor interaction constants. To keep this ratio in-
tact at each site, we rewrite the PLG Hamilton-
ian (2.2) a.s

FIG. 4. Migdal's renormalization-group transforma-
tion adapted to the triangular lattice (Sec. IIC). The
case of length-rescaling factor 5 = 2 is shown here,
but the transformation can be performed with arbitrary
b.

Jr= —'ln —3 gj = 11n a s

2 2

ft, = 1+ sz', ft, = z'+ (2x '+x')y2z4, (2.9)

B,=z+(2x '+x')yz', R, =z'+(x '+2x}y'z',

interactions, O'=Z'(O', K, tj), etc. , between the ver-
tex sites, as expressed with the recursion rela-
tions

pe= pox, , ,
(2.7)

x=-e", y-=e'~, z -=e "".

and take -PK;,. to be the bond, moved in its en-
tirety. Treating n on the same footing. as 8 and K
also avoids an arbitrariness resulting from para-
meterization, because one could redefine'~s" the
local variables (t, s) and thereby scramble single-
site and nearest-neighbor couplings. This single-
site interaction-moving scheme was also arrived
at, from different considerations, in previous
work. " Thus, at the completion of our first, po--
tential-moving step, the PLG sites are coupled
only along the supertriangle perimeters (middle
of Fig. 4):

(2 8)

where P indicates summation over peripheral
nearest-neighbor pairs only, and for the present
example-b= 2, as can be checked. by comparing
the numbers of moved and unmoved bonds (also
seen easily by imagining the bonds moved per-
pendicularly to their direction without changing
this direction).

The 'second step is a dedecoration": All sites
not at supertriangle vertices are eliminated by
summing over their variables (t, s} in the parti-
tion function (2.5). This induces renormalized

This completes the renormalization-group trans-
formation. The starting PLG has been mapped
onto a new PLG involving only what were the
supertriangle-vertex sites (right-hand side of
Fig. 4). The structure of the problem (kinematics,
coupling types) is preserved, whereas the length
scale is increased by a factor 5= 2, and the inter-
action constarits are renormalized. This trans-
formation can be performed with arbitrary length-
rescaling factor b by choosing supertriangles in-
vo]vtng 2(h y1)(h y 2) sites. Equation (2.8) is valid
for arbitrary h; (2.9) was rea.dily generalized to
an arbitrary number (b —1) of dedecorations by
diagonalizing a 4 ~ 4 trarisfer matrix. Unlike the
case of hypercubic lattices, "this Migdal trans-
formation does not break the symmetry of the
triangular lattice.

Our results in Sec. III are obtained with the b = 2

recursion relations (2.9). The methodology for
arriving at a global, multicritical phase diagram,
once a position-space renormalization-group
transformation is developed, is detailed else-
where. ' %e briefly recall how' densities are
evaluated": Let (n ) be the set of generalized den-
sities adjoint to the interaction constants $K j, so
that

(2.10)

N being the number of PLG sites. Specifically,
n—= (t,)= ~ nFor -a si.ngle step (2.9), K' =K'(K~),
in a renormalization-group trajectory, the den-
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TABLE II. The PLG higher-order fixed points produced by the renormalization-group transformation developed in
Sec. IIC. Exact or conjectured values, referenced in the text, are given in parentheses for comparison. See Figs. 5
Rnd 8 for the fixed-point connectivity, and Sec. IIIA for an overall discussion.

Higher-order Location J*,K",4~
fixed point: type (exact)

Eigenvalue exponents y~ (exact or conjectured)
Even: g2, g4, g(' Odd: vg, 'v3, gg

1 . Flrllte-coUpling

C~: Ising cx'ltlcal

P"' ". Four'-stRte Potts

B~: Fourth-order

0, 1.262, 3K++ 1.037
(0, 1.099, 3K~+1.099)'
0,252, 4J'~, 18J*
(0.231, 4J*, 18J+)'
0.431, -0.151, 1.580

1.8746, 0.77, -~
(1.875, 1)'
1.860, 0.89, 0.58
(1.875, 1.5)
1.489, 0.23, -1.43
(1.5)"

1, -0.52, -~

1.860, 0.58, 0.35
(1.875) '
1.896, 0.61, -0.32

(1.875) "

2. Strong-coupling

P~: Thr. ee-state Potts 0.231, -0.057, -~
(tr lcritical) (0.210)

I*: Potts tricritical 0.231, ~, 3K "+1.504
end-point (0.210)b

~ Section IIB.
bobtained by combining the arguments of Secs. II j31 and IIB2.
Section III A.
Section III C.

0.83, -1, -~

2, 0.83, -1
(2) '

1.868, 0.55, 0
(1.875) '
1.868, 0.55, 0.50.
(1.875) '

sity recursion relation is derived by the chain
rule

The densities at a given initial point in interaction-
constant space are evaluated by iterating (2.11)
until a phase-sink tlxed polllt, with obvious '{II~],
ls virtually reached.

III. RESULTS

A. Global phase diagram of the Po tts )at tice gas

Our renormalization-group transformation pro-
duced thirteen fixed points for the J,K~ 0 quad-
rants of J', K, ~ space. These fixed points are
classified in Tables II and III, and their locations
and higher-order eigenvalue exponents are given,
The odd (magnetic-iield-like) eigenvalue expo-

TABLE III. The PLG first-order and trivial fixed points. The classification scheme of
Ref. 24 is used. See Fig. 5 for the fixed-point connectivity.

Location J*,K*,A* Domain

DlscontlnuoUs nd —ny

Three-solid coexistence

1. First, -order fixed points

Dls continuous n~ nt, ~ n

Thl ee-solid, gas coexisteQce

Discontinuous n

Lic/Uld ~ gRs coexistence
0,~, 3K*+ ln3

Ggg

$ &ac

Liquid sink
GRs sink
Smooth continuation bebveen

liquid Rnd gRs

2. Trivial fixed points

0 0 ~QG

0, 0, +~

0, 0, 0-

Volume
Volume

Surface
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nents are obtained by adding the symmetry-. break-
ing perturbations

-PK,d„=H

+ Q t, t~[l(6, .,+ 5, ,) +M6, ,5, .,] (3.1)

to the Hamiltonian (2.2). The fixed-point connec-
tivity is shown in Fig. 5. The resulting phase dia-
gram" is shown in Fig. 6. The combinations 1/J,
4/J, and K/J wire chosen a.s phase-diagram
axes, because the former two are, respectively,
proportional [see Eq. (2.2)] to temperature and
chemical potential, ' and the latter is fixed,
through (2.3), by the ratio of adsorbate diameter
to graphite site separation. This phase diagram
reproduces all the features derived in Sec. OB
(except the precise transition temperatures, see
Table II and discussion below).

The 4, K ~ 0 quadrants of interaction space are
portioned "' ' into three coexisting "in-registry
solid" (n-l, n, &n~=n, and permutations) phases
at high chemical potential (-d!J) and low tem-
perature (1/J), a "liquid" (n-1, n, =n, =n, ) phase
at high chemical potential and high temperature,
and a "gas" (n-o, n, =n„=n, ) phase atlow .chemi-
cal potential (see Fig. 6). The solid is separated
from the liquid by the surface P,' 'J3'o'P~P3~'P3"'
of Potts tricritical"'"'" points, and from the gas
by the surface I"

~
'B' ~P~P,'~'I"~"' of first-. order

transitions, a locus of four-phase coexistence.
These two surfaces are separated at K/J&4 by
the line 8'o'P4 of fourth-order points, and at K/J
&4 by the line P~P,~ of Potts tricritical end-
points. (Parenthesized superscripts give K/J val-
ues, when necessary. ) At K/J'&4, the liquid and
gas phases smoothly join into one "fluid" phase,
with no intervening phase transition At K/J. &4,
these two phases are separated by the surface
P3~'P4C " of first-order transitions, this surface
being bounded by the line P,C'"' of Ising critical
(second-order) points, beyond which the two
phases again smoothly join into one fluid phase.
(In this region, in fact, constant K/J cross sec-
tions of our phase diagram are like" the familiar,
phase diagrams' of bulk solid-fluid systems, ex-
cept that the solid-liquid transition is higher-or-
der. ) The three lines singled out in this descrip-
tion meet, at K/J=4, d/J'=16, at the four-state
Potts transition point P, [Sec. IIB 3].

The Ising critical (C*), three-state Potts (P~)
and four-state Potts (P,*) fixed points occur in the
respective regions in which these transitions were
identified in Sec. IIB (the domains of C* and P,* do
extend these transitions outside these regions).
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FIG. 6. PLG global phase diagram (Sec. III A). The
K/J = 0, 8 cross sections, and the special lines connect-
ing them are shown. Parenthesized superscripts give
K/J values. First-order (ooa), Ising critical (dark
line), Potts tricritical +VV), Potts tricritical end-
point QoV), fourth-order ( [2 ), and four-state Potts
(a) transitions are indicated.

FIG. 5. Fixed-point connectivity. Henormalization-
group trajectories flowing through the various types of
phase boundaries are indicated: first-order (iso),
Ising critical (dark line), Potts tricritical Q~, Potts
tricritical end-point (go%), and fourth-order ( gQ),
Light trajectories do not coincide with any phase transi-
tion.
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Thus, we know the accuracy of these fixed-point
locations: K~, Jp~, „~~~ are, respectively, 15%,
10%, and 9% away from the exact values"'" given
in Sec. IIB. At the Ising critical fixed point, 4~
is off by -1% from the exact relation 4~~= 3Kc~

+ ln3; this is because our approximate renormal-
ization-group transformation does not conserve
tile Qn1pty occllpled (I = 0 1) synlmetry of the
ordina. ry lattice-gas problem. Qn the other hand,
at the four-state Potts fixed point, J~, =- &K„*,
= —,', &„*,as in Sec. IIB 3, because our approxima-
tion. conserves the symmetry resulting from per-
mutlng"'", the labels (0, a, b, c) of the four states
of a PLG site.

The la.rgest eigenvalue exponents, as usual, ""
turned out to be the most accurate quantities of
Olll' RppX'OxllYlRte tl'eRtlllellt. These Rl'e y2(C )»

y, (P,*), arid y.,(P,*), which are identified as the
magnetic eigenvalue exponents yz(q) of the q= 2

(ising), 3, and 4-sta, te Potts models. " Ac-
col ding to SUzuk1 s Dew Un1versRllty hypothesis)
yII(q = 3, 4) could be equal to the exactly known"

y„(q= 2) = —", . This is supported by series"'~' and
renal"mRl1zRtloYl-gl oUp ' ' calculations, In ou1
pl'esent cRlculRtioII, y~(C ), yi(P~), Rnd y2(P4) in-
deed, respectively, deviate by only 2, 38, and 78
parts in 10 from -':".

The next-largest eigenvalue exponents, y, (C"),
y,'(Pf), and y~(P~~), are identified as the thermal
eigenvalue exponents yr(q) of the q=2, 3, and
4-state Potts models. The ising y, (C~) =0.7't

is below the exact value" of 1. Similarly, y.,(P,*).
= 0.83 and y~(P~) =-0.89 are below the values of
1.20 and 1.32 obtained in more accurate variation-
al renormalization-group calculations, " "and be-
low the conjectured yr(q= 4) value4' of ~. Our
values do reproduce the trend of yr(q) increasing
with q: yr(q)- yr(q —1). When this inequality is
tRkell 11'I conjunction wltll 'tile col'I ect yr(q = 2) = 1»
an increasingly positive specific-heat exponent'
Ix =-. 2 —d/yz, , where d = 2 is dimensionality, results
far q=3, 4.

At our four-state Potts fixed point P~„each of
the two even eigenvalue exponents corresponding
to deviations from the four-state Potts subspace
I,J= ..&= —&) exactly equals an odd eigenvalue ex-

18
ponent: y&= y~ and y6=y, . A proof for th1s type
of degeneracy has been given. ' The smaller pos-
itive, odd exponent at the Potts tricritical fixed
point I', , $, =-0.55, ls to be compRled with the vRl-
ues 0.52 and 0.46 obtained in previous renormal-
ization-group studies. ' ' ' The fixed point I',*~ for
the Potts tl'1crlt1calend-points hRS exRctly the
sRIxle relevR11't (poslilve) elgeIlvaiile exponents Rs
P, , and also the eigenvalue exponent y,, =-2= di-
mensionality, , necessary for a first-order transi-
tion. "' This i~ in accard with the renormaliza-

t1on-group mechan1sm' for end-po1nt behav1or.
The a,symptotic first-order phase boundaries

der1ved 1n Sec. II B Rre reproduced: 4 = 3K+ ln3
»1, J=O a.t E,', and 6=6,I+3K»1 a.t I'4„E,',.
The density (n, —n~) is discontinuous at the do-
mains of So*, E4„E„. This density is the average
value of the local operator t,.(6,., —6,.,), which'. 'i' 'i' '
constitutes an "odd" interaction, i.e. an inter-
action breaking the (a, I», c) permutation sym-
metry, as in (3.1). Accordingly, the firsf:-order
fixed points So*, E~„E~~ have their leading odd
eigenvalue exponent y, equal to 2, the dimension-
ality. " The density n is discontinuous at the do-
mains of E~, , E~„E,, and I',*~. The correspond-
ing operator t,. constitutes an "even" interaction
[the -hZ; t; term in (2.2)], which does not break
the (Ix, b, c) permutation symmetry Th. e latter
first-order fixed paints have their leading even
eigenva. lue exponent y, equal to 2.

We have deferred until Sec. IHC the discussion
of the fixed point &~, which controls the fourth-
order line B'0&P

B. Krypton submonolayer phase diagram

Eq. (2.3), connecting the PLG Hamiltonian (2„2)
and the Lennard-Jones (LJ) potential (2.1) between
krypton adatoms, ' reduces to

(3.2R)

(3.2b)

where the temperature j' is in degrees Kelvin. The
right-hand side of (3.2a) is entirely determined by
the ratio of the Rdatom I J diameter 0 to the gra-
phite site separation a. Equation (3.2R) selects
a cross section of. the global phase diagram in

Fig. 6 as applicable to krypton submanolayers.
Eq. (3.2b), determined by both II/»I and the LJ
well depth &. sets the temperature scale.

The resulting temperature versus chemica, l poten-
tial" (-&/J) phase diagram for krypton submono-
layers is shown in Fig. 2(a). Three coexisting
in-registry solid" (n- 1, n, & n, = n, Rnd pe rmu-
tations) phases occupy the low-temperature high-
chemical-potential region. These are separated,
by the line I',J3 af Potts tricritical points, fram
the liquid ' (n-1, n, =n, =n, ) pha. se of the high-
temperature, high-chemical-potential region. The
solids are separated, by the line I"~B of first-or-
der transitions, from the ga.s ' (n-0, n, =n, =n, )

phase of the low-chemical-potential region. On

the latter line, the three solids Rnd the gas co-
exist. These four phases become indistinguishable
at the point B, which is therefore a fourth-order
transition point. In this diagram, the liquid Rnd

gas phases connect smoothly, without any inter-
vening pha. "e transition, {in contrast to Fig. 9).
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The temperature versus density (n = (f;)) version
of the krypton submonolayer phase diagram results
from evaluating ' n at the phase boundaries men-
tioned above, and is shown in Fig. 2(b). At higher
temperatures', again the Potts tricritical line I',B
separates the three coexisting solid phases fI om
the liquid phase. At lower temperatures, a.

"phase-separation" region I'~BI"~ separates the
solid phases from the gas phase: A given temper-
ature, density point inside I' ~BE~ Iepresents a
system which actually has separated into solid
and gas domains, at respective densities deter-
mined by drawing a constant-temperature [in Fig.
2(b), horizontal] line to the two "branches" E,&
and I'~J3 of the phase-separation boundary. Again,
this means a four-phase coexistence inside
I'~SF~, terminating at the fourth-order point &.

This temperature versus density phase diagram
pI'ovldes diI'ect compare. son betweeIl 'expeI'lmentRl

data on the krypton-graphite system and the posi-
tion-space renormalization-group treatment of
our 'idealized system„Points from the vapor-
pressure experiments of three groups""" are shown
in Fig. 2(b). These span both tricritical and first-
order regions, implying" the existence of the
fourth-order point in between (Sec. IIIC).

The branch (E~B),„,„of the phase-separation
boundary, deducible from the experimental points,
occurs at lower coverage and is much steepeI,
almost vertical, in Fig. 2(b). This disorepancy
may be due to second-layer adsorption"' or, pos-
s'1bly~ due to defects of the grRphlte substlRte.

As deduced from Thorny and Duval's' original
data [dark circles in Fig. 2(b)1, the other branch
(Eo&),„„departs from our theoretical curve in a
different manner. I et us follow this (EcB),„.„as
the density n increases from zero to (n )s,„„= .085.
The boundary temperature first increases simi-
larly to our curve, but evidently undergoes a
broad maximum at n-0. 43 and proceeds to de-
crease. Further on, at n-0. 69, it undergoes a
minimum and increases to T~. This amounts to
distinct liquid and gas phases on each side of the
maximum„separated by a first-order transition.
The tip of the maximum is an isolated critical
point, presumably Ising type, and the tip of the
minimum is a solid-liquid-gas coexistence point„
an analog of the bulk triple point. The liquid
"valley" spans a temperature interval of 9 K,
with the triple point at VV K. Thorny and Duval
presented' this low-temperature, low-density data
in analogy to the bulk-krypton phase diagram.
Subsequently, Larher' scanned the low-tempera-
ture region. His data (open circles) does not ex-
plicitly exhibit decreasing temperature of the low-
density branch with increasing density. Extrapo-
lation of this data implies a liquid valley spanning

R temperature interval of less than 2 K, the triple
point occurring at 85 'K. Our present work cannot
claim to determine the existence or nonexistence
of such liquid-valley, triple-point structure: If it
exists, our approach, at the present level of ap-
proximation, probably would miss it, because our
renormalization-group flows are in an (only)
three-parameter space [however, in Fig. 9, see
a similar structure for a different (K/J&4) regime
of our calculation]. Hut, if the krypton lattice gas
does have this structure, this should be recovered
by our approach carried to a higher level of ap-
proximation with higher -dimensional renormaliza-
tion-group flows. Finally, we mention specific-
heat data on nitrogen" and, recently, on krypton'
adsorbed onto graphite, and the Monte Carlo
study'" of a triangular lattice model with nearest-
neighbor repulsion and next-nearest-neighbor at-
traction. These do not exhibit a liquid-valley,
triple-point structure, but a phase boundary like
ours. On the other hand, another triangular lat-
tice model""'" with nearest-neighbor exclusion and
infinitely weak, infinitely long-ranged (Kac) at-
traction does have the triple point, but no multi-
critical structure.

'Mrre turn our attention to the line I',B of Potts
tricritical phase transitions, separating the solids
from the liquid. Its n= j. intercept I', should
move to infinite temperature as the PLG is made
to better represent the KLG, by taking into ac-
count inter-PLG-site nearest-neighbor exclusion.
However, at n & 1, the KLG itself is a poor rep-
resentation of adsorbed krypton. Second-layer
formation"" and behavior incommensurate" with
the graphite substrate are experimentally known
to occur. The experimental phase diagram con-
tinues to values greater than unity of the density
n as defined here, with finite-temperature phase
transitions involving layers compressed from the
in-registry structure considered in this work.
Away from the n= 1 axis, the slopes of our curve
and of the experimental points'" are in good agree-
ment. The slight upward concavity" (d'T/dn'&0)
of our curve is also seen in the data of Putnam
and Fort' (open triangles). Our curve is dis-
placed from the experimental points by about
17% towards high temperature. Previous authors"
have noted the quantitative difficulty of construc-
ting a phase-transition model from a LJ potential,
due to the steepness of this potential at short dis-
tances, Besides, our present treatment is a low-
level approximation with no adjustable parameter,
and any agreement in transition temperatures
much better than the 1V% quoted above would be
fortuitous. The LJ potential itself is only an ap-
proximate descrhptlon of the DllcI'oscoplc sltuR-
tion, and it would be worthwhile to match our PLG
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approach to a more refined potential.
The experimentally accessible tricritical expo-

nents at P,B are determined unfortunately by our
inaccurate subdominant eigenvalue exponents [see
discussion of y(P,*) in Sec. IIIA]. Thus we obtain
a, negative specific-heat exponent n = 2 —d/y,
= -0.41, whereas best estimates are o. =0.33 from
varlatlonal renormalization groups, ~"~' 0.42 & 0.O5

from series expansion, "and 0.36+0.02 from the
transition of heliuxn monolayers on graphite. 4 For
the isothermal density singulax'ltles

in n, i- Jp. y3i'- as } -~„
(n, n, )-(p, —p, ,)'~= as u& V, ,

(3.3a)

(3.3b)

where n, and p, are the deQsity and chemical po-
tential at the transition, we obtain the exponents

P» = [d —y.(P.*)]/y. (»*) .—1 «,
P„= [d —y, (Pf) ]/y, (P,*)= 0.159.

(3.4)

Using y, =. -'
—,', y, =d/(2 —n), and the n

values """"quoted above, the correct P„ is es-.
timated between 0.53 and 0, 67, and the c:orrect
p» between 0.096 and 0.104.

-pKTgM=R p s)sgsg, sq = kl.
&l~u)

(3.5)

Ths sum is over all nearest-neighbor triplets of
sites, and we take A non-negative. The TIM was
salved exactly by Baxter and Wu. " It has a con-
tinuous phase transition at Ra = —,

' ln(l+ v 2), be-
tween a. high-temperature (R &Ra) phase and four
coexisting low-temperature (R& Rs) phases. The
ground state of each low-temperature phase is
shown in Fig. V(a), where s,.=+1(-1) is now de-
fined to mean occupied (empty). Each' of three
low-temperature phases has one triangular sub-
lattice predominantly occupied and two triangular

"C. Fourth-order transition point 8

The fourth-order transition point B appearing
in the krypton submonolayer phase diagrams of
Fig. 2 is the intersection of the "krypton plane"
K/7= 2.10 [Eol. (3.2a)] with the fourth-order line
B'"P~ of the global phase diagram of Fig. 6; This
point occurs at Aa/7~=11. 8, T 1s08'K, and ns
= 0.747. Extrapolation from the phase-boundary
points proposed by Thorny and Duval' gives
(Ts),„ t = 98 'K and (ns),„„=0.853. However, ex-
amination of the vapor-pressure isotherm points
in this reference suggests 89 'K&(TS),„„&98'K.
Indeed, Putnam and Fort" observed a continuous
transition at T=95 K, n= 0.798.

In discussing the point B, we' first mention
another model defined On a triangular lattice, the
triplet Ising model (TIM):

( a ) Triplet I si og ModeI

( b ) Sub m or) o I oyer

FIG. 7. Ground states of coexisting low-temperature
phases {Sec.IIIC). Occupied sites are shown with dark
circles. Each site in this figure exhibits the occupation
state of its entire sublattice.

sublattices predominantly empty; the other low-
temperature phase has all three sublattices pre-
dominantly occupied. The transition at A~ is a
'foUl th-order transltlonq since the foUl coexlstlng
A&.R~ phases continuously become indistinguish-
able. Two exponents at Rs are" n = -', (exact) and
p= —,', (conjectured). These correspond to thermal
and magnetic eigenvalue exponents yr(TIM) = —,

'
and y„(TIM) = —".

Returning to the krypton submonolayer problem„
consider the leading even and odd eigenvalue ex-
ponents of B*, the fo"ed point which produces the
singularities of the fourth-order transition at 8,

y.,(B"')= 1.489

is -0.7/o off yz(TIM), and

y, (B*)= 1.896

(3.6a.)

(3.Gb)

y, (B")= y„(TIM) =", (3.&b)

are probably correct. The latter eigenvalue ex-
ponent is seen in several two-dimensional sys-

is 1.1/o off yz(TIM). To appreciate the'meaning of
these numbers resulting from an approximate cal-
culation, consider all three of our finite-coupling,
higher-order fixed points, shown in Fig. 8. They
occur consecutively as B~, P~, and C* Qn a cross-.
over line, and exhibit analogous eigendirection
structures. The analogs of y, (B*) are y, (P,*) and

y, (C"), which are -0.8% and -0.02Vo off their
expected values, respectively (Sec. DIA). One

analog of y, (B*) is the neighboring y, (P~}, which
is aga, in -0.8% off its expected va, lue. [No ex-
pected value is available for y, (C*), probably a
redundant24'" exponent. ] We conclude the follow-
ing:

(i) As far as these eigenvalue exponents are
concerned, it is reasonable to assign a 1% ac-.
curacy to our calculation. "

(ii) Therefore, the relations

y,.(B~) = yr(TIM) =-
—,', (3.7a)
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The higher, fourfold symmetry is not manifest
in the submonolayer problem. In the TIM, orie
consequence of this symmetry is that at the tran-
sition the nearest-neighbor triplets are equally
distributed between the configurations shown in
Fig. 7(a). The analogous statement, with the con-
figurations in Fig. 7(b), is fulfilled to 1% at the
submonolayer point B. More generally, if the
fourfold symmetry were present in the submono-
layer problem, the density relation

n(gas) = 3[1—n(solid) ] (3.8)

FIG. 8. Finite-coupling, higher-order fixed points,
and the crossover flow line connecting them. The Ising
critical g* is in the J= 0 plane, the fourth-order g* is
slightly behind the K = 0 plane, K tB ) = -0.151, and the
four-state Potts p4 is inside the quadrant shown. The
long and short arrows at each fixed point are the eigen-
directions of the dominant y2 and subdominant y4 eigen-
value exponents.

tems (as predicted by Suzuki's new universality, "
Sec. IIIA), but the equality (3.7a) would be quite
remarkable.

To continue the comparison between the fourth-
order points in the. TIM and the submonolayer
problem, we recall the four low-temperature
phases which coexist at the first-order line I"4B
in Fig. 2(a), and which become indistinguishable
(achieve fourfold criticality) at B These .are the
three in-registry solids and the gas. The ground
state of each is shown in Fig. 7(b). Ea.ch solid has
one. sublattice predominantly occupied and two
sublattices predominantly empty; the gas has all
three sublattices predominantly empty. The three
solids map onto each other under the symmetries
of the triangular lattice, while the gas remains
invariant. The three analogous phases of the TIM
also map onto each other under the symmetries of
the triangular lattice, while the other phase re-
mains invariant. However, the TIM phases actual-
ly have a higher symmetry: The Hamiltonian (3.5)
is invariant under the transformation which flips
all spins on two sublattices. Together with the
symmetries of the triangular lattice, this makes
it possible to arbitrarily permute the definitions
of any two low-temperature phases. This is the
symmetry of the four-state Potts model. ""' In
fact, the conjectured exponents ' of the four-state
Potts model equal the TIM ones. Thus, these two
models should be in the same universality
class."

[n(solid) —n(gas) ] r - [(Ts —T)/Ts]~&&,

where

f),.= [d y, (B') ]/y-, (B') = 2.2.

(3.9)

Unfortunately, this value probably is very inac-
curately large, because y4(B*)= 0.23 has the . con-
secutive analogs y, (P,*) and y, (C*), which deviate,
respectively, by -41/o from the conjectured value '
and by -23% from the exact value. " If the correct
y~(B ) were larger than 2, the cusp would be re-
placed by a rounded curve. This would be the
ca,se if, in analogy to (3.7), the correct y~(B*)
were equal to -', the conjectured value" of the

would hold, at any given temperature, at the co-
existence boundary. Eq. (3.8) is satisfied to better
than 3% in our calculation. Finally, in puzzling
contrast to the TIM, our four-phase coexistence
trajectory does not leave B*along the direction
of the even eigenvalue y, = 1.5, but asymptotically
along the direction of the subdominant even eigen-
value y4= 0.23.

The occurrence in the submonolayer phase dia-
gram of the fourth-order point B has several rel-
,evant consequences. This point is certainly in a
universality class different from that of the line of
continuous transitions it terminates. The large
specific-heat exponent a = -' could be measured
[we tentatively use the values in (3.7) rather. than
(3.6)]. Crossover to this large value should be
noticed as the Potts tricritical line P,B is ap-
proached at decreasing densities n. The isotherm-
al (T = Ts) density singularities have the exponents
P»= [d —y, (B*)]/y,(B*)= & for the overall occupa-
tion (3.3a), and P» ——[d —y, (B*)]/y, (B*)= —,', for the
preferential occupation (3.3b), as distinct from
the respectively estimated -0.6 and -0.10 at the
tricritical line. .Overall occupation is observed in
vapor-pressure experiments.

'"' Preferential oc-
cupation could be observed by neutron" and low-
energy electron" diffraction. Another experi-
mentally verifiable result of our treatment is that
the two branches E~B and I"GB of the phase-sepa-
ration boundary [Fig. 2(b)] form a cusp at B,
given by
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subdominant eigenvalue exponent" of the TIM.
Then P,4 would be —.

B. Other adsorbates and tricritical end-point behavior

Our model is in general applicable to any ad-
sorbate whose adatom pair potential is qualita, -
tively represented .by Fig. 1(b). Quantitative con-
tact is established as in Sec. IIA, with equations
like (2.3)„only with different numbers inside the
parentheses in the right-hand side. In each case, the
ratio of the adatom LJ diameter 0 to the graphite
site separation a selects a constant: K/J cross
section of the global phase diagram in Fig. 6;
both o/a and the LJ well depth E set the tempera-
ture scale.

We have applied this analysis to nitrogen, meth-
ane, and ethane, obtaining phase diagrams similar
to the one in Fig. 2. The I J parameters"'" which
we used, the corresponding PI 6 parameters,
and the resulting temperatures T~ of the fourth-
order points are in Table IV. As best estimates,
(Ts),~,. are obtained by one overall adjustment of
all the temperature scales, matching for krypton
the experimental"' T~. The latter is taken in the
range 89 to 98 'K (Sec. IIIC); corresponding
(T~),„, ranges for. other adsorbates are in Table
IV. Experimentally observed first-order and con-
tinuous transition temperatures constitute lower
and upper bounds to T~. Available results are
given in Table IV. Our best estimate falls within
these bounds for nitrogen, "but is still somewhat
high for methane. ' Neutron scattering" indicates
thai argon does not adsorb in-registry with basal
graphite, and our model probably is not applicable.
The third-neighbor potential" is most favorable
in xenon adsorbed onto basal graphite. This qual-

I

itative dissimilarity to Fig. 1(b), or equivalently
to the LJ entries in Table I, makes (2.3) unjusti-
fied: The meaning of J i.s dubious. So, again, our
present treatment is not applicable. However,
since xenon does form in-registry submonolay-
ers,"a modification of our approach may be use-
ful.

When the adatom second-neighbor pair potential
is not much more negative than the third- and
fourth-neighbor potentials, equations like (2.3)
give K/J' values greater than 4. These cross
sections of the global phase diagram exhibit a tri-
critical end-point topology, as distinguished from
the fourth-order point topology discussed above.
This is illustrated w'th K/ J=4.4 in Fig. 9. In the
temperature (I/4) versus chemical. potential (n//)
phase diagram, Fig. 9(a), the Potts tricritical"""
line separating the solids from the liquid termi-
nates at the Potts tricritical end-pojni P,.E. No
new critical exponent appears at this point. " The
liquid and the gas are separated by the first-order
line P»C, which terminates at the isolated Ising
critical (second-order) point C. This phase dia-
gram looks like' the familiar phase diagrams'
of bulk solid-fluid systems, except that the solid-
liquid transition is higher-order. In the tempera-
ture vs. density (n) phase diagram, Fig. 9(b),
I'"~P~P~I'"G is a phase-separation region with solid
and gas domains, and P~CP~ is a pha, se-separa-
tion region with liquid and gas domains. P.,P~PG
is a, locus of Potts tricritical transitions, and C
is the isolated critical point.

The use of a mixture of gases as adsorbate
should be an experimental procedure for contin-
uously varying an effective K/J value. " Thus,
if an adsorbate having the tricritical end-point
topology were discovered, one could also mix it

Yourth-order point temperatures/('K)
Tg (Tp} d„: Experiment

Ar
Kr
Np

CH4
C pH6

53 to 58
108 89 to 98
61 50 to 55,
94 77 to 84

131 107 to 118

TABLE IV. The PLG model applied to various adsorbates (Sec. rno). Since no IA parame-
ters are available for adsorbed nitrogen, methane, and ethane, we made estimates: The LJ
diameters 0. are expected to be little differ ent from the bulk cases (e.g. , +1.9o/o for Ar and
+ 1.0% for Xe in Bef. 63, anct. unchanged for Kr in Bef. 8), so the bulk 0 were used for N&,

CH4, and C2H&. The LJ well depth & is depressed from the bulk value by 20.7% for Ar and
16.7% for Xe in Bef. 63, ancl by 15.2% for Kr in Bef. 8; the average of these numbers, 17.5%,
was taken as the depression for N&, CH4, and C&H6.

LJ parameters PLG parameters
~/a e/a ( K) K/J TJ/( K}

] 4] R 95K 1.98 19.8 no registry '
1.46 145 " 2.].0 32.8 89 to 98
1.50 78 22.0 50 to 65'
1.55 122 2.50 32.9 9 to 77'
1 61c 200 d 3.22 ?

Reference 63.
"Reference 8.
"Bulk o. from Ref. 64.

Estimated as 82.5% of bulk & from Ref. 6'4.

'Reference 6.
~ Reference 65.
"Reference 12.
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FIG. 9. Phase diagrams
with Potts tricritical erid-
point topology (Sec. III D),
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order transitions, and
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with for example krypton, to obtain an experi-
mental realization'"" of the four-state Potts
transition at effective K/eT= 4.
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