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The cluster-Bethe-lattice method has been used to study the short-range-ordered state of an itinerant
magnetic system. We assume a local moment on each lattice site, but the moments may point up or down
and have long- or short-range order. The electronic structure is solved, and “the size of the local moments is
determined self-consistently. It is found that the Friedel criterion for local moments in the disordered state is
different from the Stoner criterion for ferromagnetic state. The phase transition from the ordered state to the
paramagnetic state is, in most cases, described by a transition to the local-moment state with short-range
order. In the disordered state the energy bands remain spin split over a large part of the wave-vector space.
The wave vectors are complex due to spin disorder, and the electron wave function is a mixture of majority

and minority band states.

1. INTRODUCTION

In the Stoner theory of itinerant magnetism the
paramagnetic phase of the system is described as
consisting of spin-degenerate electron bands. This
description has been questioned by many authors
in recent years. Moriya' and his co-workers have
pointed out that the Stoner paramagnetic state un-
derestimates the entropy of the system, and con-
sequently overestimates the critical temperature.
When they take into account localized spin fluctua-
tions, they obtain a much-reduced critical temper-
ature, a good Curie-Weiss temperature dependence
for the static susceptibility, and a good description
of the spin dynamics in the pararriagnetic phase.
Therefore, it appears' to be essential to copsider
short-range spin fluctuations in the theory of weak
itinerant ferromagnets. ’

Roth® and the present author® have studied the
condition under which magnetic moments may be
localized in the Friedel-Anderson sense in the pa-
ramagnetic phase of an itinerant magnet. The ba-
sic idea of their calculation is as follows. The
kinetic energy of the conduction electrons is mea-
sured by the width of the d band, which is approxi-
mately 2 eV for 3d transition metals. The Kkinetic
energy of the spin motion is measured by kT,
where T, is the magnetic ordering temperature.
Taking T = 1000 K as a typical value, one finds
kT, =0.1 eV, which is much smaller than the elec-
tron bandwidth. Consequently, for the purpose of
discussing the electronic structure, one can make
the Born-Oppenheimer approximation and treat the
spins as a set of local moments that are frozen in
a randomly oriented pattern. To simplify the cal-
culation further, the local moments are assumed
to be Ising-like, i.e., they can only point up or
down along a specified direction. Then the prob-
lem becomes identical to the random-binary-alloy
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problem with the additional condition that the ex-
change potential must be tied self-consistently to
the size of the local moment. Just like the single-
impurity problem, the authors showed that the as-
sumed spin structure could exist for a narrow
enough band and strong enough Coulomb repulsion.
They offered this spin structure as the description
of the paramagnetic phase of strongly coupled itin-
erant magnets such as Fe, Co, and Ni. This view
enjoys the support of the recent photoemission
study on Ni,* for which the photoemission spectrum
is found to be insensitive to the magnetic ordering,
indicating that there is essentially no change in the
spin-split energy-level structure when the system
undergoes order-disorder phase transition.

In Refs. 2 and 3 the paramagnetic phase is as-
sumed to be a structure of completely random
spins. This was done in order to apply the coher-
ent-potential-approximation (CPA) method to solve
for the local electronic structure. However, it is
well established that in itinerant ferromagnets
there is a great deal of short-range order just
above the critical temperature.® Therefore, the
description of the disordered phase by a random-
binary-alloy analogy is not entirely realistic. In
this paper we study the effects of short-range or-
der on the localization of the magnetic moments.
Although methods have been developed recently to
incorporate short-range order into the CPA for-
malism,® we have found it more convenient to study
the problem from a real-space approach proposed
by Sen and Yndurain for binary alloys with short-
range order.”® To make the problem tractable we
restrict the spin direction to be either up or down
along a fixed axis in space. We also take the size
of the local moment to be the same on every site,
and obtain a self-consistent equation which gives
the dependence of the size of the local moment on
the bandwidth, interaction strength, and the degree
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of short-range order. We can include ferromag-
netic and classical antiferromagnetic ground states
as special limits when the range of ordering ap-
proaches infinity, but we cannot treat the helical
Spin state and the spin-density-wave state by this
calculation. Since the main goal of this work is to
discuss the electronic properties of the disordered
phase, we feel that even with these restrictions it
still represents a significant step toward a realis-
tic theory.

II. METHOD OF SOLUTION

We represent the system by the single-band Hub-
bard model defined by the following Hamiltonian®:

H=—t ; (cfoci+§'0+H.c.) +U Z NNy, (2.1)
100 i
where ¢ is the hopping integral, U is the Coulomb
integral, the sum on i is over the lattice sites, the
sum on § is over the nearest neighbors of site 7,
and the sum on ¢ is over the spin states of the
electrons. The number of nearest neighbors of a
given site is denoted by Z. '

The first step in the solution is to replace the
last term of the Hamiltonian by a site- and spin-
dependent potential. This approximation, original-
ly suggested by Hubbard,? has been extensively
used by many authors.'®"*® For a spin-up site we
take V,, =3Un — oA, where A is the product of U
and the size of the local moment, and » is the
average number of electrons per site. For a spin-
down site, the spin-dependent part of the potential
has the opposite sign. In subsequent discussions
the zero-energy level is redefined to remove the
spin-independent part of the effective potential.
The size of the local moment, assumed to be the
same on every site, is to be determined self-con-
sistently. We may distinguish between two broad
kinds of magnetic states: (i) the Pauli state in
which A =0 on every site; and-(ii) the local mo-
ment state in which A#0. The Pauli state will be
shown to be distinct from the disordered local-mo-
ment state, although they are both paramagnetic.

Following the formalism in Refs. 7 and 8 we
write the equation for the local electron Green’s
function of a spin-up site

(w+ O'A)G“O<(.U):1—t ZG;.Lﬁ'i,c(w)- (2.2)
[

Among the Z nearest neighbors of ¢ there are Z’

neighbors in spin-up state and Z - Z’ neighbors in
spin-down state. We define the following transfer
functions:

T(cf'”=Gi+6,i.o(w)/Giio(w), (2.3)

depending on whether the moment on site ¢+90 is
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up or down. Then we can solve for the Green’s
function in terms of the transfer functions:

Giio() = [w+oa+Z"t TGV + (2 =20 TGH] .
(2.4)

Similarly, for a Spin-down site which has Z” near-
est neighbors in spin-down state, we have

Giio) = [w+oA+2Z"t TG + (2 =2 TG 7],
(2.5)
where the transfer functions 7¢*~) are defined in

analogy with Eq. (2.3).
The equations for the transfer functions are de-

rived from studying the equation of motion of

Gis,1,0(w). Assuming that both sites i andi+5 are
spin-up sites, and of the Z nearest neighbors of
i+0 there are Z, in spin-up state and Z -Z, in
spin-down state, then

(w+oA)TGH) =t —i(z, - 1)(T§D)?

“HZ=Z)TCHOTED . (2.6)

. Similarly, if 7 is spin-up but ¢+ 6 is spin-down, we

find

(w=0oA)TCH =t =(Z = Z )T TS
=l Z,-0T8 T 2.7)

where Z, is the number of nearest neighbors of ¢
+0 that are in spin-up state. An essential approxi-
mation has been made at this point, namely, that
the transfer functions defined in Eq. (2.3) are in-
dependent of the position of the site . The valid-
ity of this step requires that the lattice branches
out indefinitely without forming closed loops, and
that each site is surrounded by an average environ-
ment which depends only on the spin direction of
that site. The first requirement means that we ap-
proximate the real lattice by a Cayley tree or
Bethe lattice.'® The second requirement is met
rigorously only when the moments are ordered. In
the disordered phase the average environment is
realized after making suitable configurational av-
erages.

Following the original work of Bethe on the
short-range order in binary alloys,” we denote by
¥ the probability that a nearest neighbor of a site
i has its local moment parallel to that of #, then
7=1 is the ferromagnetic state, » =0 is the anti-
ferromagnetic state, =% is the ‘random spin
state, and all other values of » characterize short-
range order. After averaging over configurations,
Egs. (2.4) and (2.5) become

Giiow)=(w+oA+rZt TC +sztTG)™ (2.8)

for a spin-up site, and
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Giisw) =(w=ca+rZt TG +sZt TG )™ (2.9)

for a spin-down site. Here we have abbreviated
(1=7) by s. )

The configuration averaging of the equations for
the transfer functions is more subtle. For in-
stance, Egs. (2.6) and (2.7) should be averaged
over only those configurations in which at least one
nearest neighbor of i+ is spin-up. Therefore,

Z 1z
(Z,-1)= 3 ( >rzlsz-zl(zl_1)

zZ,=1
1 Z1

z 7 -1
X[Z ( é>rzlsz‘z 1:,
Z7\z,

= _lef:s%‘—l =7, (2.10)
(7= 2,)=2(s ~)/(1=s%)= 2,
(Z=2)=2(r-r%)/(L=r?)=2,,
(Zy=1)=(Zs+r% =1)/(1~v?)=2Z,.

The complete set of equations for the transfer
functions are

(W+oA) TG ==t —tZ, (TG D) =tZ5TSITG
(w=0A)TGH) ==t =tZoTSITGY) <12, TE TG
(=0T ==t =12, (TG V) =1Z5TG TG,
(w+oA)TY D = =t =12, TG TCE Dy Z,7COTE ),
2.11)

In actual calculations these equations are solved
and the results put into Egs. (2.8) and (2.9) for the
local Green’s functions.

The local densities of states are determined
from

Dy(w)==(1/7) ImG;;5(w) . (2.12)

The average number of electrons per site is

B .

n= [ [0.(@)+D_(v)]do, (2.13)
which relates the Fermi energy to the occupation
number, and the size of the local moment per site
is

S= f” D, (w) =D _(w)] dw . (2.14)

To complete the self-consistency loop we relate
the local exchange splitting to the local moment by
A =US. In the above two equations we have left out
the temperature-dependent Fermi distribution
function because in most itinerant magnetic ma-
terials the ordering temperature is much lower
than the Fermi temperature of the electrons.
Before we proceed with the solution of the

coupled equations for the transfer functions we
write down the results for three simple cases for
later reference. In the Pauli paramagnetic state
A =0 all the transfer functions reduce to one:

To={~w+il4(Z = )2 = w?]V2}/2(Z = 1)t . (2.15)
The electron band is confined in the energy region
where T, is complex, or |w| <2{(Z -1)2"® The
density of states for each spin'is found to be
7 [A(Z = 1) - W22

Dlw)=5- 7 ot

(2.16)
In the ferroniagnetic phase, r=1,A+0, there are
two different transfer functions

—(wxA)+i[4(Z - 1) —.(wiA)Z]l/2
2(z - 1)t ’

T.=TGM =

(2.17)

All other transfer functions are undefined. The

energy bands are rigidly split by 2A, and there is
a local moment on each site as long as n+#0 or 2.
In the limit of A— 0, the equation for the local mo-
ment, Eq. (2.14), reduces to 1=UD (i), where
D(u) is the density of the unpolarized band at the
Fermi level as determined from Eq. (2.16).
Therefore, the criterion for ferromagnetism is the
familiar Stoner criterion UD(u)>1.

In the antiferromagnetic phase, »=0,A#0, there
are two distinct transfer functions

T(+-+) :T(: -) = T1 , T(: =) :T(_-+) =T,,
where

(W =A%) +i[4(Z - 1)t."’(w2 —A?) — (w? = A?)?]Y2

Th= %(Z ~1)(w-2) k
T,=[(w=A)/(w+A)]T,. (2.18)
The energy bands are bounded by ,

A< wl <[a%+4(Z - 122, (2.19)

There is an energy gap of the size 2A in the middle
of the band. For a half-filled band (z=1) in the
weak coupling limit, the energy gap is related to
the coupling constant U by

A=4Egexp|-1/ZUD(0)], (2.20)

where Eg=2t(Z -1)Y2, D(0)=(Z -1)"?/nZt. This
result is quite similar to that of the Fedders-Mar-
tin theory of itinerant. antiferromagnetism®®

A= 44 exp[—l/Ul?(O)] .

The differences between the two results come
partly from the difference in the band models and
partly from the Bethe-lattice approximation.
Next, we consider the disordered phase in the
limit of small A. This determines the phase

_boundary between the Pauli state and the local-mo-
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ment state, thereby giving the generalization of
the Friedel criterion. In this case all transfer
functions differ from T, by quantities of the order
of A, so the coupled equations may be linearized
and solved for the deviations. After a straightfor-
ward but tedious calculation we find the stability
criterion for the local-moment state to be U>U,,
where

U;1—4 f Im

and
A=T o+ (Z -W)tTy=(Zp-Z)tTy|/D
B=Ty|lw+(Z =1)tTy=(Zc —Z )t T,|/D, (2.22)
D=lw+(Z =WtTo+ZstT,]
X[+ (Z =INTy~ZptTo |+ ZgZot?TE.

1-ZrtA+ ZstB

oz 4 (2.21)
0

The result of the calculation of U, as a function of
the short-range order parameter 7 is summarized
in Fig. 1. The abscissa is the occupation number
n in the range 0 <xn <1, and the ordinate is the in-
teraction strength U normalized by the bandwidth
Eg. Due to the complete particle-hole symmetry,
the part of the graph for 1 <z <2 can be obtained

Ue/2t/Z-1

1
0] 0.5 I
n .
FIG. 1. Critical interaction U, which stabilizes a lo-
cal-moment state with short-range order parametef v,
plotted as a function of » and average electron occupa-
tion number ». The dotted curve marks the phase
boundary between the Pauli state and the local-moment
state with the lowest U, .
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FIG. 2. Critical short-range parameter v, corres-
ponding to the local-moment state of lowest U, plotted
as a function of the average electron occupation.

by reflecting Fig. 1 along the n=1 line. The three
curves labeled by »=1, »=0, and =3 represent
the critical interaction strength for ferromagnetic,
antiferromagnetic, and random spin states, re-
spectively. The dotted curve which envelopes the
U, curves marks the phase boundary between the
Pauli state and the local-moment state which has
the lowest U,. The corresponding short-range or-
der parameter 7, is plotted as a function of the oc-
cupation number in Fig. 2.

The two graphs Figs. 1 and 2 point out that the
generalized Friedel criterion for local moments in
the disordered state is different from the Stoner
criterion for ferromagnetic state.'® This result is
in qualitative agreement with that of the CPA
study.??° For n=1 the antiferromagnetic state is
stable for an infinitesimal value of U. For small
values of »n the system transforms from the Pauli
state to the ferromagnetic state when the interac-
tion strength is increased beyond the critical value
U.. For a wide intermediate range of = the first
local-moment state that becomes stable upon in-
creasing U has short-range order.

III. PROPERTIES OF THE LOCAL-MOMENT STATES

When A# 0 we must solve the full set of coupled
nonlinear equations for the eight transfer functions.
With suitable transformations the equations may
be solved by first solving an algebraic equation of
deoree 8, and the solution of phys1cal interest is
one of the complex roots. There exists no algor-
ithm which allows this root to be picked out auto-
matically. Therefore, we have devised a sim-
plifying approximation which reduces the task of
numerical analysis significantly without sacrificing
accuracy. The approximation is made when we
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average the equations for the transfer functions
over configurations. For example, consider the
equation for T¢*), Eq. (2.6). The equation is de-
rived under the condition that the sites ¢ and i+
are both spin-up. The other Z -1 nearest neigh-
bors of ¢+ 0 are assumed to have independent
probabilities of being in up or down state, and
these probabilities are » and s, respectively. The
averaged equations for the transfer functions have
the same form as Eq. (2.11) except that

Za=2e=7(Z =1), Zg=Zp=s(Z -1). (3.1)
We define
Ne=rTC) +sTCH , ¢ =rT$ ) +sT¢),  (3.2)

then we can express all the transfer functions in

terms of 7, and ¢ ,; .
TG = —t/[w+oa+t(Z -1)n,], (3.3)
TG =t/ [w—oAa+HZ - 1)t 4],

etc. Furthermore, the equations for 7, and ¢,
are

= 4 4 - st
Mo w+oA+H(Z =11, w-ocA+tH(Z-1)E,’

vt . St
w-0A+H(Z -1)¢, w+oA+i(Z-1n, "

(3.4)

—§o=

There is also the symmetry relation
Ne=6_g- (3.5)

By eliminating either n, or ¢, from the coupled
equations, we obtain a quartic equation which in
general has two pairs of complex roots. The roots
can be determined by the well-known algorithm for
solving quartic equations, and the root of physical
interest can be picked out as the one which satis-
fies the original coupled equations and has the cor-
rect analytic property. .

We have tested the accuracy of this approximate
averaging scheme by comparing the critical inter-
action parameter U, calculated this way with that
determined in Sec. II. It is obvious that for »=0
or 1 the two averaging methods are identical. For
intermediate values of » the U, curves differ by
less than 5% for Z=6, and 1% for Z=12. We are,
therefore, confident that the simple averaging
scheme should give results which are very close
to those given by the more rigorous scheme. In
addition all the physical quantities can be calcu-
lated with great precision. This allows us to com-
pare the energies of local-moment states with
slightly different degrees of short-range order.

In Fig. 3 we show the result for the local densi-
ties of states of the short-range ordered state and

w/Eg
r=
1.6 Z=12
A=06 Eg

MINORITY

N
\\_

MAJORITY

/E
w/Eg 7

r=0.7
Z=12
A=0.

1.4997 =06
MINORITY k
\\‘@
-1.4997 '

FIG. 3. Local densities of states of the ferromagne-
tic state (top) and the disordered local-moment state
(bottom).

5
Eg

compare them with those of the ferromagnetic
state. The major differences are that in the dis-
ordered state the energy levels spread out over a
wider range of energy while the main peaks of the
densities of states are narrower. Both features
can be understood from a consideration of the mo-
tion of the electrons through the lattice. In the
disordered state an electron must travel among
sites of opposite spin directions, thereby experi-
encing a fluctuation of the Coulomb potential. This
makes the overall bandwidth larger. However, the
hopping of an electron between sites of opposite
spins is not as easy as that between sites of paral-
lel spins, so the electron prefers to travel among
sites of parallel spins. In the disordered state
there is a decrease in the number of parallel spin
nearest-neighbor sites, and consequently the high-
density part of the bands become narrower.

For the one-dimensional case (Z =2) the equa-
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SRO
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PAULI

u/2t vz

|
0 0.5 1.0
n

FIG. 4. Phase diagram of the itinerant magnetic sys-
tem according to the cluster—Bethe-lattice calculation.
SRO indicates the short-range-ordered local-moment
state.

tions of the transfer functions also have real roots

corresponding to local states. Unlike the calcula-

tions of Refs. 7 and 8 the simple averaging scheme

we have used does not give local states for Z >2.
The internal energy per site is given by

1
E=%Un?+ f [(w+3A)D, (w)

-0

+(w=3A)D _(w)]dw, (3.6)

where we have reinserted the spin-independent
part of the Coulomb interaction. For fixed values
of U and n we choose a value of 7 and solve the
equations self-consistently for A. The most stable
~configuration for the set of U and # is found by
lminimizing E with respect to . This enables the
determination of the phase diagram in Fig. 4,
which is computed for Z =12 in order to minimize
the error due to the simple averaging scheme. '
Again the phase diagram is only drawn for O <n

< 1. The part for 1 <z <2 may be inferred from
particle-hole symmetry.

The following features of the phase diagram are
worth discussing. In the large U limit we find that
the preferred spin ordering is ferromagnetic ex-
cept when n=1. This result agrees with the con-
clusion of Nagaoka®! and others.?*"2* For very
small values of »n the system makes a transition
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from the Pauli state to the ferromagnetic state
when U is increased, in agreement with the Stoner
theory of ferromagnetism. However, for a wide
range of intermediate values of » and U our theory
differs from the Stoner theory in that it predicts a
disordered local-moment state to be more stable
than both the Pauli state and the ferromagnetic
state. The Stoner theory is based on a band Har-
tree-Fock approximation, so it precludes from
consideration any state of disordered local mo-
ments. Our theory, which is based on a local
Hartree-Fock approximation, includes such states
and predicts that they are rather important. By
the same argument our theory is limited by the
constraints mentioned in Sec. I, so it may preclude
from consideration other types of states with even
lower energy than the disordered local-moment
state. Therefore, the phase diagram definitely
does not imply that the ground state of the system
is a state of short-range order.

Penn studied the stability of a number of mag-
netically ordered states and the paramagnetic lo-
cal-moment state in the one-band Hubbard model.?®
His phase boundary for stable paramagnetic local-
moment state is virtually identical to our y=%
curve in Fig. 1. Since he did not consider local
moments with short-range order, he could not have
obtained the phase boundary between the Pauli state
and the local-moment state as shown by the dashed
curve in Fig. 1. Nevertheless, this particular
phase boundary has close similarity with Penn’s
stability criterion for ordered magnetic states. We
can not describe the special ferromagnetic state of
Penn in our calculation. This state is identical to
the antiferromagnetic state for #=1, and the sta-
bility of this state is reproduced by our calcula-
tion. For n+# 1 our short-range order state repre-
sents the best we can do to mimic either the heli-
cal-spin-density-wave state or the special ferri-
magnetic state.

The energy calculation allows us to estimate the
Curie temperature of the spin system. In the
Weiss theory the molecular field parameter X is
twice the energy difference per site between the
fully ordered phase (» =1) and the totally random
state (* =3), i.e.,

E(r=3)=- Er=1)=3x. (3.7)

On the phase diagram in Fig. 4, A is positive above
the phase boundary between short-range order
(SRO) and F. The mean-field approximation stipu-
lates that in the partially ordered phase for which
the relative magnetization per site is m(0<m <1),
the internal energy is

E(m) - Er=1)=3x(1 —m?). (3.8)
The entropy of the partially ocrdered state is
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The entropy of the fully ordered state is zero.
Minimizing the free energy (E —TS) with respect
to m gives the familiar results

m =tanh(Am/kT) , (3.10)
and the Curie temperature
RTo=X\. . (3.11)

In Fig. 5 we show the dependence of the Curie tem-
perature on the bandwidth and U for »=0.6, a
number representative of Ni. We find that for a
wide range of U, kT, =0.04 E5=0.08 eV for Eg4
=2 eV. This gives T, = 1000 K, which is of the
correct order of magnitude. We hasten to empha-
size that this is a very crude estimate. In view of
the over-simplified band model and the Ising ap-
proximation for the local moments, we see no
point in trying to improve the estimate by using
more sophisticated theories of phase transition.
At a temperature comparable to the level split-
ting A, the local moments must dissolve away as
shown by Langer et al.”®* We have not studied the
temperature dependence of the local moment.
However, we may estimate the order of magnitude
of the temperature T, for stable local moments by

.08~
4]
o w
¢ E
~
=
.04 (.
20
0 1 1 0
2 3
U/Eg

FIG. 5. Curie temperature 7. and the moment
localization temperature T, as functions of U/ and
bandwidth E 5 for a ferromagnetic system with»z =0.6.
For U/Eg > 3.5, T decreased slowly with increasing
U.
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kT y,=A. Above T, the Pauli state is obtained. It
is shown in Fig. 5. that 7. = 0.1 T,. That T is
so much smaller than T, is partly due to the fact
that the local moments ¢arry a much larger entro-
py than the degenerate electron gas as pointed out
by Moriya," and partly due to the fact that the en-
ergy required to change the spin alignment is much
smaller than the energy involved in localizing the
moments. This conclusion is in complete accord
with that of Langer ef al.?® for the antiferromag-
netic (n=1) case.

IV. ENERGY BANDS IN THE DISORDERED STATE

We will show in this section that the cluster—
Bethe-lattice method can be used to investigate the
band structure of the itinerant magnet in the dis-
ordered phase. We first illustrate the method by
considering the ferromagnetic state. We study the
Green’s function G;.; ; o(w) for which the initial
and final electrons are separated by [ steps. By
definition of the transfer function the Green’s func-
tion has the expression

Gi+l,i,o(w):TgGiic(VJ)’ (4.1)

where T, is given by Eq. (2.17). Therefore, the
transfer function determines a phase shift when the
electron moves from one site to another, and can
be related to the wave vector corresponding to the
energy w.

There is one complication which arises from the
Bethe-lattice approximation. It can be verified
that

T 2= (Zz -1, (4.2)

which means that T, introduces both a phase shift
and an amplitude factor. The latter appears be-
cause the Bethe-lattice branches out indefinitely
with Z ~1 new branches coming out of every lat-
tice point. The electron density is correspondingly
diluted whenever the electron moves down the lat-
tice by one step. . We can correct for this effect by
normalizing the transfer function T, by the factor
(Z =1)Y2, Then we can define the wave vector by

et =(z 1)t (4.3)
This gives the band dispersion relation
wtA=-2t(Z ~1)"2cosk, O<k<m. (4.4)

The energy bands are plotted in Fig. 6.

In the disordered phase the Green’s function can
be generated from a set of recurrent relations. If
(¢+1) is a spin-up site, then the Green’s function
G, ;i o(w) is related to Gy,,_, ; o(w) by either 7"
or T7¢ ) depending on whether the site (i+1 -1) is
spin-up or spin-down. Therefore
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G(it)t,i,o(w) :VTg+)G(i:)l—1_,i,o(w)

4TS IG 0 (w) (4.5)

Similariy, if the site (+1) is spin-down, we find .
G(i—-;)l ,i,o<w) :VT(o— _)G(i:)l -1,i ,a(w)

+STGGE i 0 (w) - (4.6)

The general solution of these difference equationsis

G i o(w) = AU(Z — 1)1/ othe!

+ Bz ~1)71 2 gt (4.7)

where A®), B®) are détermined by the initial con-
ditions, and the factor (Z —1)"/2 has been inserted
at the appropriate places to account for the dilution
effect. The phase factors are explicitly given by

et ett2=1(z — 1)V (TG + 74 ))
L [rA(TG ) — G2
+4s* TG ITGDYR L (4.8)

The dispersion relations are complex due to the
scattering of the electrons from the disordered

local moments.
In Fig. 6 we also show the energy bands for »
=0.75, Z=12, and A=0.6E. The calculation was

w/Eg . 16
r=]i
// 0.4
o] / -
_04/
-6

w/Eg 1.4997
r=0.75 //7

T

-1.4997

FIG. 6. Energy bands in the ferromagnetic state
{top) and in the disordered state (bottom). The horizon-
tal error bars indicate the natural linewidth of the elec-
tron level due to spin disorder scattering.
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performed under the simplified averaging scheme
in Sec. III. In the middle range of k the energy
bands resemble those in the ordered phase in that
the two bands are nearly parallel with a splitting
very close to 2A. We may call the lower band the
majority spin band and the upper band the minovity
spin band. An electron moving through the lattice
spends some time in each band because it must
travel across regions with opposite spin alignment.
The electron mean free path is very close to the
spin correlation length defined by

A = (=In|r —s|)"*. (4.9)

This is to be expected because spin correlation and
electron correlation have the same physical mean-
ing.

Near k=0 the majority band behaves normally
with a relatively small linewidth, but the minority
band makes a sharp turn downward accompanied
by a large increase in linewidth. The explanation
of this behavior is as follows. Consider a low-en-
ergy majority-band electron moving in a cluster
of correlated sites. When this electron moves out
of the cluster and enters a region where the sites
reverse their spin direction, it must go into the
minority band. This is possible only if the minor-
ity band dips down into the energy range of the
majority band. Now this low-energy electron does
not have enough kinetic energy to overcome the
highly repulsive Coulomb correlation potential.
Consequently it suffers a strong scattering back
into the region where it is in an energetically fav-
orable state. The fact that the electron cannot tra-
vel very far as a minority electron is the reason
for the large linewidth of the band in the low-ener-
gy region. Similarly a hole near the top of the
minority band must also be strongly scattered when
it moves out of the cluster of correlated sites, and
this gives rise to the anomalous behavior of the
majority band near k=n. A different manifestation
of this scattering effect was discussed earlier in
connection with the shapes of the density-of-states
curves in the disordered state.

Anderson showed that the electron states in dis-
ordered solids can be divided into two classes, the
local states whose wave functions extend over a
small region of the solid and the extended states
whose wave functions thread through the solid.?"2®
The Bethe lattice is topologically a one-dimension-
al lattice, so there are strictly speaking no ex-
tended states.? However, some vestige of the An-
derson transition can be seen in the band structure
of the disordered phase. The minority electron
states near k=0 and the majority electron states
near k=7 have large linewidths, so these are to be’
identified as local states. In the regions where the
bands are normal, the linewidths are not nearly as
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large, indicating a tendency for the electron wave
function to spread out. The local states are nec-
essary in our description of the disordered phase
because they give rise to isolated down-up spins
surrounded by a cluster of up-down spins.

The band structure explains the lack of sensitiv-
ity of the photo-emission spectrum of nickel when
the temperature is raised above the Curie point.*
The finite life time of the electron is the origin of
the large spin-disorder resistivity of nickel and
iron.%3°

V. APPLICATION TO ONE-DIMENSIONAL MODEL

We have used the cluster—Bethe-lattice method
to calculate the ground-state energy of the one-di-
mensional model for the purpose of assessing the
accuracy of the local Hartree-Fock approximation.
The linear lattice is a Cayley tree, so the Bethe-
lattice part of the method is exact. The exact
ground-state energy of the Hubbard linear chain
has been calculated by Lieb and Wu,*! so we can
use their result as the standard for comparison.

In the linear-chain model we again find that for
n+0 or 1 the state of lowest energy is the short-
range-ordered state. This is definitely wrong be-
cause it is well known that the ground state of the
system is a helical spin-density-wave state for all
values of the occupation number. The error occurs
because we have restricted the direction of the lo-
cal moments to be up or down along a fixed direc-
tion. There is only basis for comparison in the
case of n=1 where the helical spin-density-wave
state becomes the antiferromagnetic state.

The transfer functions for the antiferromagnetic
state are given in Eq. (2.18). Putting these into the
expressions for the Green’s functions and taking the

‘E/2t

Present Work —

1 I 1
[¢] I 2 3 4 5

Us2t

FIG. 7. Comparison of the ground-state energy of
the one-dimensional model calculated by the Bethe-
lattice method with the exact result of Lieb and Wu.

imaginary parts, we obtain the densities of states
for a spin-up site

1 (wz —A2)1/2

Di:(w)z;; lwiA](Fz—wz)I/z ’

(5.1)

where T'= (A2+4£%)Y?. These results are used in
Eq. (3.6) to calculate the ground-state energy per
site. The Fermi energy is zero for the half-filled
band. We obtain

E=3U - (2/aT)[T?EQ2t/T) =% A2K(2/T)], (5.2)

where E(2¢/T), K(2t/T) are complete elliptic inte-
grals. The band splitting A is related to U by

1=(U/7T)K(2t/T). ' (5.3)

These relations enable us to plot E as a function
of U as shown in Fig. 7. In the small U limit

E=-At/n+5 U, (5.4)
and in the large U limit
R =2t2/U . (5.5)

The exact E-vs-U curve is also plotted in Fig. 7
for comparison. In particular, in the small U lim-
it our result agrees with the exact result up to the
order U. In the large U limit the exact result is

E=-4t*(In2)/U=-2.T1*/U . (5.6)

. Our result differs from this by 38%. The overall

agreement between the two curves is reasonably
good. Therefore, we conclude that the local Har-
tree-Fock approximation is a qualitatively sound
method for the problem of itinerant magnetism for
all values of U except in dealing with spin-density-
wave and helical spin states.

VI. DISCUSSION

The work presented here adds further support to
the idea that the paramagnetic phase of itinerant
ferromagnets consists of disordered local mo-
ments, although the size of the quasispins is in
general different from the saturation magnetization
at low temperatures. This is a significant depar-
ture from the Stoner theory in which the paramag-
netic phase is described by the Pauli state with
spin-degenerate bands.

The quasispin model implies locally spin-split
electron bands. Over the whole crystal the elec-
tron wave function is a mixture of both majority
and minority band states and is strongly scattered.
This introduces a new element in the study of the
dynamics of the electrons.

There is definitely room for improvement in the
present theory. We have only considered the aver-
age size of the quasispins and their average cor-
relation. A complete theory must take into consid-
eration the fluctuations both in the size and the or-
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ientations of the quasispins. The size fluctuation VII. ACKNOWLEDGMENTS
may be introduced by the method of Moriya' except
that the local susceptibility must be employed. One
may study the orientation fluctuations by analogy
with the Heisenberg model. The essential question
of how the two types of fluctuations are coupled
together and influence each other seems to be very
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