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The theory developed by Feuchtwang for tunneling in normal metals is extended to supercon-
ductors. It is shown that for metal—insulator—superconductor and metal—insulator—thin-
metal—superconductor junctions, our results agree with the standard Bardeen "tunneling Hamil-
tonian" approach. In the latter case, however, if there exists a potential barrier at the thin-
metal—superconductor interface, then the standard approach is found to be incorrect. We give the
proper-expansion for the tunneling current in this case.

I. INTRODUCTION

The /- V characteristic of a normal metal-
oxide—superconductor tunneling junction gives de-
tailed information on the density of states in the su-
perconductor. This fact is inferred both from experi-
mental observation and from the standard "tunneling
Hamiltonian" theory. Analysis of experimental tun-
neling characteristics in terms of the standard theory
and the theory of strongly coupled superconductors
has produced a wealth of detailed information on the
electron-phonon interaction and phonon density of
states in many metals.

However, rigorous theoretical justification of the
tunneling Hamiltonian theory has only been obtained
recently, in a series of papers by Feuchtwang.' But
his theory specifically describes tunneling in normal
junctions; also, interactions such as the electron-
phonon interaction are neglected.

Therefore, in this work the Feuchtwang theory is
extended to deal with tunnel junctions in which one of
the metallic layers is superconducting. Specifically, we
consider normal-metal—insulator—superconductor ang
normal-metal—insulator—thin-normal-metal—
superconductor junctions. The latter involves the
proximity effect, which is dealt with in more detail in
a separate paper.” The influence of interactions on
tunneling is accounted for by making a local approxi-
mation for the self-energies.

As the extension of the Feuchtwang theory is not
entirely straightforward, all the details of the exten-
sion of this theory have been presented here, for clari-
ty. In Sec. I we calculate the Green’s function for a
three-layer system which has translational invariance
in the y and z directions. The form of the results is
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shown to be similar to Feuchtwang’s results, if the
Green’s functions are interpreted as matrices. In Sec.
[T the tunneling current is calculated, using the
Kadanoff-Baym approach® for obtaining the Green’s
functions for a system which is out of equilibrium. In
Sec. IV we describe the technique for calculating
Green’s functions for the single layers. Finally, in
Sec. V, we derive the results for the dependence of
the tunneling current on the densities of states for the
components of a three-layer system when the central’
layer is a simple rectangular potential barrier. These
results are shown to agree with those of the standard
theory in the two cases mentioned above, providing a
rigorous verification of that theory in these cases.

However, in the proximity-effect configuration with
a step potential barrier at the N-S interface, such as
would arise from a difference between the N and S
metals in the height of the common Fermi level above
the bottom of the band, we find that the standard
form is altered. This leads us to conclude that the
standard expression for the tunneling current may be
incorrect when applied to proximity-effect tunneling, if
there is a significant amount of reflection from the po-
tential barrier at the N-S interface.

II. GREEN’S FUNCTION FOR THE
TUNNELING SANDWICH

We consider three slabs of material: a left elec-
trode, a barrier region, and a right electrode (see Fig.
1). For simplicity, we choose all interfaces to planar
and parallel, so that there is translational invariance in
the y and z directions. We therefore may define the
quasi-one-dimensional Green’s function

iE(t—1")
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Causal boundary conditions dictate that £ contain a
positive infinitesimal imaginary part, i8. This yields
the "retarded"” Green’s function. The "advanced"
Greep’s function requires an energy with negative
infinitesimal imaginary part. For notational simplicity,
the dependence of the Green’s functions on k., k.,
and £ will not explicitly be indicated except when con-
fusion might arise.

The equations satisfied by the retarded or advanced
Green’s function are taken to be

[E — Hy(x) — 3, (x)]g (xx) =L, (x) g (xx")
=3(x —x"), xx'€ D, ,
N ; (2.2)
[E—Hyx) = 2(x)]G (xx) =L(x) G (xx")
=8(x —x')
The adjoint equations are
g 0x ) [E = Hy(x") —2,(x"]
=g (xx") f,(x') =8(x—x"), xx'€D, ,
, (2:3)
G(XX,) [E —H()(X,-) - E(X )]
=G Ox)L(x) =8(x —x")
We have defined
2 i 252
H()(X) ==[ —# 8 - [.U-_ Ll ]ITS

2m dx? 2m

__ﬁ-2 aZ
=15 T aa M

| 2m 9x? T (2\'4)

where w is the chemical potential, %k is the magni-
tude of momentum parallel to the interfaces, and
71, T2, T3 will represent the three Pauli matrices, in the

+
s
i

J' T G O™ (x) g, (x"x) =G Lex") Lxg (x"x)]=G(xx)0(x' € D) —g(xx)0(x €D,) .

FIG. 1. Geometry of the tunneling junction considered

here. The layers are labeled by Dy, D\, D,.

notation of Nambu.* The matrix self-energies 2(x),
3,(x) apply, respectively, to the entire tunneling

sandwich and to the ith slab D,. For convenience, we

define
st=5+49%, s =s5-3,
s €D, s €D,

It is assumed throughout that all self-energies are
well approximated by self-energies which are local
with respect to the x coordinate, i.e.,

S(xx'k k.) = Z‘(kark’:)ﬁ(x —x')

for x momenta near the Fermi momentum, p, = pg.
These happen to be the momenta of interest in tun-
neling. This approximation is similar to the approxi-
mation made in bulk materials when the momentum
dependence of the self-energy is neglected.
Following Feuchtwang’s prescription, we construct

(2.5)

The © function 6(x € D,) vanishes if xis notin D,, and is unity otherwise. Partial integration yields

G(xx)B(x' €D)=g(xx)6(x € D) +

+f LH dx" GOx" ) [2(x") —2,(x")]g (x"x")

where we define

—#2 § 7
—2{;—[6 (ex")' 738, (x"x") — G (xx") 738" (x"x")] |"++'

2.6)

G'ox) =G x), Glx) ==2-G ), G'xx) =22 G(xx) Q.7
ox ’ ox Ox

ox'

Similarly,
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f k:H dX” [g} (XX”)E,(X”) G(X”Xl “‘g,v(XX”)‘E(X”) G (X” r)]

1

=G(xx)ex €D) —g(xx)0(x' € D)
s

=|——[g(xx")71:G (x"x) — g (xx") 736G (x"x")]
2m

These equations are similar to Egs. (2.6) and (2.7)
of Ref. 1(b) except for the matrices and the self-
energy difference within the ith region. We will as-
sume that the self-energy =,(x') can be chosen such
that this term vanishes. Because Z(x") must be
determined self-consistently from the Green’s func-
tion G (xx'), which one is trying to calculate, this is
not a trivial requirement. We shall assume that it can
be met to accuracy sufficient to leave the self-energy
difference within the ith region as a small perturbative
correction.

It is sometimes convenient to interpret these results
in terms of a pseudo "tunneling Hamiltonian" [see
Egs. (2.15) and (2.16) of Ref. 1(b)]:

G(xx)—g(xx)+f dx" g (xx")YH (x") G (x"x’
=g(xx") +f‘ ’ dx" G (xx"YH (x")g (x"x")
0
2.9
where
xx"€D, ,

g (xx') =g (xx",

and (neglecting the self-energy difference at the boun-
daries)

|,0|+f g, GexI[E(x") = 3,(x"] G (x"x)dx" . (2.8)

r

2
Hy(x") =Sy S 50—

=0

5,7) =d(x" =57 )]'W

=—H{(x") . (2.10)

The large parentheses indicate an anticommutator.
The & functions 8(x" —sy") and 8(x" —s; ) may be set
equal to zero because all the Green’s functions will be
required to vanish at s, and s;.

It must be understood that the limits s, ——oo and
s3 —+oco are to be taken, otherwise the Dirichlet
boundary condition would lead to no net current. In
these limits, the temporal boundary condition on the
Green's functions (retarded) automatically leads to the
required outgoing-wave behavior, as we show for a
specific case in Sec. V, Eq. (5.3). This procedure as-
sumes that what occurs at sy and s3, the free surfaces,
has no effect on the observed current, so that the
finite-sized sample may be regarded as effectively
infinite in extent.

The boundary conditions on the g (xx') at s, and s,
may be chosen for convenience.' We shall require
that the first derivative of g (xx') (with respect to x or
x') vanish at s, and s,. At (x,x') =s, or s; we require
that go(xx') and g,(xx') vanish, again with the implied
limits sy ——o0, 53 —+oco, and the temporal boundary
condition, which combine to produce the correct
outgoing-wave behavior.

Thus Egs. (2.6) and (2.8) reduce to

B .
G(xxN6(x' €D) =g (xx)0(x €D, + Eﬁ;;[ G(xs,") 18,5, x) = G (x.5,7 ) 73g,(s, 5, xD] 2.1D)

G(xx)6(x €D) —g(xx)e(x € D)+

[g(xs N3G (s, x)—8,(x,57) 713G ' (s,7,x)] . (2.12)

The ﬁrst derivatives in Eq. (2.12) are found by evaluating the first derivative of (2.11) at s," and s,;;. One thereby

obtains

G(xx)B(x €D) =g (xx)0(x'€D,) -

g(XS*)[F(S, 58,050 x) =T (s, 578 (s,7,x']

+5%g,(x,s,11)‘[F(s,;I.s,*)g,(s,*,x')—r(s;;,,s,;,)g,(s,';l.x’)] , (2.13)
where the limits
IFox)=—(8)/2m) 3G (xx)'75 . (2.14) s, ST TS

All functions in Eq. (2.13) are now continuous, so that

may be taken.
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The onl){ remaining unknpwns are.the F matrices. LG (s 1551) =G (5,8, 001 =2m /B2 (2:15)
To determine these, we derive equations from the .
equation for the discontinuity of the first derivative of In combination with the first derivative of (2.11) at
the Green’s function at the source point x'=x =s, s, 11, this yields
i’}
(501,508,840 + (s 050086000500 0000800800 (0 S ) =T (s 01,500 801 (502,800 =2m /8. (2.16)

Since the first derivative of G (xx') is continuous in x' away from the source point (x =x'), we have

730G (5,41,57) —G'(5,.,s D1 =0 73[G'(s,5,7,) —G'(,,s,5)]1=0
In combination with the first derivative of (2.11) at s,,,, the first of these yields

~T(S8, 41,8 -0 &1 (s,-1,8) +T(s,11,5)81(s,,8) +TCs,10,5)8,(s,8) =T (s, 41,58 (s, 11,5) =0 2.17)
and the second yields

—1(s,5)g,(s8,0) 0,808 (5,50 F0Gus008 0085 0)=T(s,51) 80 (502,80 =0 . (2.18)

To facilitate comparison of these results with Eq. (2.10) of Ref. 1(b), we relabel the regions Dy— D,, D, — Dy,
D, — Dy and set s, =R, s,=L. Using the boundary conditions on the g (xx"), one finds [from (2.16), (2.17), and
(2.18)]

gL(LL)+g,;(LL) —gB(LR) 2m

—gs(RL) gk (RR) +g3(RR) |~ 2 (2.19)

r(LL) r(LR)
I'(RL) I'(RR)

In the normal state, where all the matrices I' and g are diagonal, this is identical to Eq. (2.10) of Ref. 1(b).

In the limit L = R, all of the I'’s above must be equal. To show what the result for I' is in this limit, we consider
the case in which the barrier region is a rectangular potential barrier of height V. Then, using the appropriate boun-
dary conditions at L and R (Ref. 5):

coth[K,(L —R)I/K, 0
‘g’/;(RR)=gB(LL)=IH/ﬁ2 0 —colh[K*(L—R)]/K,_ (220)
(K . sinh[K (L —R)1}™ 0
(i";g(RL)=g;;(L'R)=m/)‘iZ 0 —K_sinhlK (L — R)]}~! (2.21)
where K+ =1Qm/ )V —u, 7 E)'2
Note that all of these functions diverge at L = R. We now consider the solution for ['(LL),
C(LL) =Q@m/ #) g, (LL) +g5(LL) —gg(LR)[1 + gz (RR) 'gr (RR)]'gg(RR) "'gp(RL)}™ (2:22)
Thus we find, in the appropriate limit,
lim U(LL) =Q@m/ &) g, (LL) +gr(LL)]™! (2.23)

Equation (2.23) follows from (2.22) if one expands
[+ g5 (RR) g (RR)T '

to first order in the small quantity gzg(RR) 'gz (RR) as L — R. One thus obtains
lim D(LL) = (@m/ 7L (LL) +gy(LL) = g5(LR) g3 (RR) "'gs(RL)

+g3(LR)g3(RR) 'gx (RR) g5 (RR) 'gz(RL)H]!

Using Egs. (2.20) and (2.21), it is easy to show that the second term minus the third term is diagonal with
diagonal elements equal to

_ _ 1 _ m_ . _
I coth[K +(L —R)] cosh(K+(L =R)] iﬁzKismh[Kﬁ(L R)]

+
0
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Thus, this term vanishes as L — R. Again using
(2.20) and (2.21), one finds that

liir}(gg(RR)*‘gg(RL) =1,

so that the fourth term becomes gz (RR) =gp(LL),
by continuity.

ITI. TUNNELING CURRENT

In the Nambu formalism,* the Green’s function is
defined by

GAT) = (T MWa) G.1)
where (illustrating the notation)

\PI(?ltl)

vl VA = (W) W (D)

w(l) =

and ¥,(Tyr)) [W[(7)1))] is a destruction (creation)
operator for a fermion of spin up (down) at t at time
t;. The brackets indicate a grand canonical ensemble
average with respect to the exact Hamiltonian. The
operator T orders the operators in parentheses in ord-
er of increasing time from right to left.

It is useful to define two auxiliary functions,®

i)

o1,

and

’_/.3_?_1(;(11')> (<) ‘G(ll')> (<)H0(r|')
1

ARNOLD 17

G =6A1)<8('—1)
+G (1Y@, —) . 3.2)

We also need the retarded and advanced functions
G(11),G (119, which obey the same equation as the
"full" Green’s function, with a'temporal boundary
condition that requires G (11')’ to vanish for ¢," > 1,,
and G (11)“ to vanish for ;" < t,. The latter two
functions are related to those in Eq. (3.2) by

Gy =[car>-acar<iet, -9 ,

3.3)
GU1)'=-[GA1)>-ca1r)<Ie,'-1) .
Thus,
G -GA1)Y'=GU1)Y<-G11)>
=-3G(11) . (3.4)

The last definition above is made for later conveni-
ence.

In Ref. 3 [see Egs. (8.27) and (8.28) of this refer-
ence] equations are derived for G(11)< > in the
normal state. Since the generalization of these equa-
tions to the superconducting case is straightforward,
we merely quote the necessary results,

l/—a— —Ho(r,)]c(11')> - [aTlexaDG A1) Dol —1)

~3(D> D8G T1060(, -] =H (DG (1) > < (3.5)

—de[G(ITV‘<’52(1"1')e(z,—7,)—50(11‘)2(‘1"1')>‘<>e(r.'—7.)=G(11')>‘<’HT(1') . (3.6)

where
53(1D=3UD>=301D<, s3(1DO6G, — 1) =2011)

Making use of these results, one can readily verify [using (3.3)] that the retarded or advanced Green’s function
satisfies

[i% -—H<)(/'|)]G(11’)——deE(ll_)G(l_l')=HT(1)G(11’)+6(] —1) 3.7
1
and
—i%c;(n')—c(u')ﬁn(r,')—fdl‘c(u‘)z(l‘l')=G(11')HT(1')+a(1~1') . (3.8)
1

A Fourier transform of this equation, defined as in Eq. (2.1), yields Eq. (2.9), since g (xx') is to be constructed to
satisfy Eq. (3.7) for H;=0. A similar Fourier transform of Eqgs. (3.5) and (3.6) likewise leads to
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G o) =g =Gar) + ] " [g Go) Hy () G (x) < g (o) < Hy (1) G ()] (3.9)
or
G<(xx") =g<(xx") -i—fs\3 dx) [G Gox ) <H I (x)) g Ox )+ G (ex ) H () g (xyx7) <] (3.10)
0

By conservation of current, we obtain. the total current through the planar junction of Fig. 1 (X is a unit vector in
the x direction),

;(x)—ffx J(r)dy(’b“ff [ 2im ]Ha?

The symbol "Tr" signifies a trace in the two-dimensional space. The 11 component of the Green’s function is pro-
jected out by means of the matrix (1 +7;). A Fourier transformation according to Eq. (2.1) yields

() = _1_1_ dk, dk. dE
J 2im 27)3

dy dz 3.11)

_T/ "Tf[(l(l’l . ’_l,(l +T3)]
or

9 TrlG (xx) <], (1 + 79)]
ox

a‘
- 12

To evaluate the x derivative we use Eq. (3.10), while for the x' derivative we use (3.9), in order to obtain results in
terms of the I' matrices. Thus

JIRIETITY T8y T

{3l (s, D) <g, (s, P x) = Txes, 50) <, (s,706) ¢

2im 2wk ford
+ T (xs,")'g, (5,7 x)< = T(xs5,7,) g (s,71,x) <]
—[g(xsH)'T(s, ' x)<—g(xs5,5,) T(s,7,x)<
+g,(xs,)<T(s x) —g,(xs,7)<T(s71x)M7) A +73)] . (3.13)
where
_
rab)” <= S 8 DoG o) > 0l
0x 0x :

[t is most convenient to calculate the current either at x =s,=L or x =s,=R. Using the fact that the Green’s
functions for the ith region vanish outside this region, we find

A dk, :
sy =2l frobe [ B (i) <, (LLY" + D(LLY g, (LL) <]

— g (LL) T(LL)< 4+ g, (LL)<T(LL)I75}(1 +735)) (3.14)

after-evaluating (3.13) at x =s; =L, and taking the limit L~ — L. The equation for j(R) is the negative of the
above with L replaced everywhere by R. Using Eq. (3.4), we see that

>

[“—T'=T<=T> and ¢/ —g¢ =g<—¢g

Equation (3.14) can therefore be written

GRS EC N S TN (L) 0 (LL) 7 =T (LL) < (LL) ")+ (L) g (L)

=g (LL)C<(LL) 734 730“(LL) g~ (LL) — g~ (LL)T“CLL) 73} (1 + 73))

This form is obtained by making the indicated substitutions into the first two terms of Eq.-(3.14). A similar sub-
stitution in the last two terms of this equation yields
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Jey = Aol [ O T4 ) e (LL) T (L) i (LL) T (L))

+ (0 +7)N(LL) g (LL)—g, (LL) “T(LL) < +T(LL)'g, (LL) <

—g (LL)<I(LL)1) .
One-half the sum of these expressions yields (after using the cyclic property of the trace)

dk . dk- ‘ :
jy=Lel [ e ot 3 T ) ML) 7 (L) <), = ML) g (1)) )

+73(M(LL)<,g, (LL)' +g, (LL)'T_

+ 7 (D(LL)“+T(LL) g (LL)<])) . (3.15)

To complete the calculation of the current, it is necessary to determine the matrix I'” ‘<. For convenience, we
reproduce here the approach in Appendix A of Ref. 1(b). Using the results in Egs. (3.5)—(3.10) we have, symboli-

-cally,
G> D =g> (o, G g OHGO
G =g'+g'H/G=¢'+GHlg .
Thus
G> =1 —g'Hy) 'x (g7 "' +g> " "H;G")
and ;
G(g) '"=(—g'H) '=1+G'H] .
The combination of these last two equations gives the required result, .
G> V=>4 g> VMG +GHlg” < +GHg” " "H G . (3.16)
Using Eq. (3.16) and the boundary conditions on the Green’s functions, one may obtain

2
_%[v (<) (xx) = E (r(xs, g, (<)(S/ fs s x) — g7 (<)(s,r51;l )T(s, 1 1x)]

1=0

=T ) (g s,y DTCs 'x) — g7 Gy o ) TG )] (3.17)

The quantities of interest are now easily found to be

__2);__’21r> K’(LL)=I"(LL)[},’L>(<>(LL) +&'B> ‘<)(LL)][‘{I(LL) —r’(LL)g,f (<)(LR)1“'(RL)

~T/(LR) g “"(RL)I“(LL) +T"(LR) [gg ‘<" (RR) + g5 “““RR)IT"(RL) (3.18)
r
Equations (2.19), (3.15), and (3.18) determine the complex spectral density function defined by Egs.
tunneling current once the single-layer Green’s func- (3.14) and (3.15) of Ref. 1(b). As noted in this refer-
tions are obtained. ence (just below the aforementioned equations) this
One has the relationship function vanishes over energy intervals in which

.(xx) vanishes. But
g, (x> D =gip, (xx)f P(E) (3.19) P
: Jxx) =g, (xx)—g,(xx)'1=—=2iImlg, (xx)'1,
where /(E) =1—f(E) = £ (E) is the Fermi dis- i & 8 £
tribution function for the ith layer and p,(xx') is the because p,(xx) is real. Thus, at energies for which
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gp(xx)" is real, We find
g[;(XX’)>(<)=O. (320)

That is, (3.20) holds if there are no states in B at the
energies of interest for tunneling. One can verify this
statement for the special case of a simple rectangular

dk, dk. |
Zm f Qm)? 2

N

barrier by examining Eqgs. (2.20) and (2.21). Barriers
for which (3.20) holds at the energies of interest for
tunneling will be termed "structureless barriers" in the-
following. '

For a structureless barrier, the first two terms of
Egs. (3.15) can be written

a1 +r;)%[l“’(LR)pR(RR)I“’(RL),pL(LL)]} U1 (E) — fo(E)] . (3.21)

When the tunneling junction is biased with a voltage V, this term is nonzero. Otherwise, it vanishes, since

S (E) = fr(E) =f(E —eV) — f(E) —0.

The last two terms of (3.15) are finite even when V' =0. Hence they represent the "zero-bigs anomaly" or Joseph-
son effect (in the absence of a magnetic field). Using the identity

Tr(4[B,C) =Tr([C,41B),

we may rewrite the "anomalous” terms

(L )__]_LJ‘ dEfdl‘ dk.

Jan 2m Qm)? 2

If L is the normal state then the Green’s functions g,
contain elements on the diagonal only, and the com-
mutators vanish. Since only one of the three layers of
the tunneling sandwich we consider is a superconduc-
tor, there will be no Josephson current. Thus, the
current is given by (3.21).

IV. SINGLE-LAYER GREEN'S FUNCTIONS

An important approximation is made in the neglect
of the self-energy difference at the metal boundaries
[sce Egs. (2:6) and (2.8)]. If one can make an accu-
rate initial guess for the local self-consistent self-
energy of the sandwich, then this neglect will be
justified. A crude, but tractable, ansatz for the self-
energy in each layer will be adopted here: the self-
energy will be assumed spatially constant in each
layer, with step-function discontinuities at the boun-
daries. Such an ansatz is generally taken in studies of
normal metal-oxide—superconductor tunneling. The
accuracy of this is to be evaluated by calculating the
self-consistent self-energy using the Green’s functions
obtained by means of this ansatz.

The quasi-one-dimensional Nambu Green s func-
tion can be written

G(xx')=E.d,t.\l’,\.(x))lb_&,(x<)* ) 4.1)

where ¥,(x.) is a two-component vector wave func-
tion satisfying the Bogolyubov equations with boun-
dary conditions appropriate to the right of the source
point at x =x', ®,(x ) a solution for boundary condi-
tions applying to the left-hand side of the source
point. The index g accounts for the inherent (two-
fold) degeneracy in the solutions of the Bogolyubov

L Tl (LL) 4 g, (LL), 7 T(LL) < + g, (LL) <, 7

)l[r(LL)"fr(LL)']}‘. (3.22)

T

equations. The constants d, are to be determined
from the discontinuity in the first derivative of the
Green’s function,

_2m (4.2)
dx (lx< A '

A\

L ]G(xx)

where x. (x.) is the greater (lesser) of the two coor-
dinates x,x".
The self-energy ansatz is

E(X)=(1*Z,)E+¢,T|+V,T;, XGD, . (43)

Thus, for x in the ith layer, the Bogolyubov equations
are

B9

ZE+
2m dx?2

tpe—

Tx—di,fllq’:-”(x) =0

(4.4)
The general solutions are

(E+0)/Q]1

vi'(x) = (ETQ)/Q]" [4 cos(K‘i")x)
+Bsin(KY'x)], (4.5)
where
A=¢/Z

Q, E(EZ_A'Z)I/Z ,
K =lki = Qm/B)(V, 5Z,0)]"
k= Qmp/8H'?

(4.6)

and A4, B dre constants.
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Using Egs. (4.2) and (4.5), we write

(E + Q,/n,)”]

. (/) . ()
‘pt (x.) = (£ '?-Q//Q,)”l Uy (x.) .,
o) CdEes ) (Ex0)”
[ (x)]"= O , O by x),
and find the solutions for d +,
di=+m/BPWY 4.7)
where W!’ is the Wronskian
dyi (x 1Yy’
Wl — Uy )(l):)(x)—l]/(f/'(x)(d)i (3(_)
dx - - dx
(4.8)

which is independent of x. One can now write the
Green’s function for any of the layers.

mcoslK: (x, —L)]sin[KE (x . —s)]
KL cos K (L —s)]

g (xx') =
0

since we choose to have the left-hand slab in the nor-
mal state. In all cases, we assume that the left-hand
slab will be so thick that, since the current [according
to Eq. (3.21)] is being probed at L, the boundary con-
ditions at s, will have negligible influence. Thus, we
take the limit s,— —oo. Since the function in (5.2) is
a retarded Green’s function, the energy £ has a posi-
tive imaginary infinitesimal part. Thus

- sin[K' (x. —s0)]

+. A Lo
; —t—ie T (53
sy e COS[K{ (L - SI))]

and therefore, at the energies of interest,
g (LL)Y=im/ik; . (5.4)

Here we have assumed that K/ =~ K ') == ;.
From Eq. (4.6) we observe that this requires

2 mki
L/\'/Z\'=M\=M‘ >>V, +Z, E
2m 2m

(Q, =E since L is in the normal state). Except for
values of k. very near k= (2mu/#?)""? this is an ex-
cellent approximation. As noted in Ref. 7, the dom-
inant values of &, for tunneling electrons are very
near zero, because the effective thickness of the struc-
tureless barrier which must be traversed by a tunnel-
ing electron increases rapidly as A, increases, ex-
ponentially decreasing the tunneling probability for

—mcos|K" (x, = L)]sin[K" (oo =)l |

V. TUNNELING CURRENT: EXAMPLES

Using the technique described in Sec. IV, one may
construct the Green’s function for the barrier of width
R — L. The results are given in (2.20) and (2.21).
Assuming that K+(R —L) =K(R —L)>>1 for the
energies of interest, we find

g(RR) =gy (LL) =—~(m/K°K)7; ,
A’/g(RL) :L’/;(LR) = ”‘(2/71/EZK)(’ AR '[')T_;

(5.1)

Referring to the expression just after (2.21), one
observes that the approximate equality of K. and K
requires ¥ —u, to be much greater than £, the energy
of interest (measured relative to the equilibrium
chemical potential u). The barrier height (i.e., V —p)
is typically of the order of an electron volt or more,
while the energies of interest (£) in superconducting
tunneling are of the order of phonon energies, so that
this approximation is well justified.

The solution for the Green’s function of the left-
hand slab (D,) in Fig. 1 is '

0
(5.2)

K" coslKL (L —s,)]

such electrons. A general form for the Green’s func-
tion gx (RR) is

g (RR)=(m/m) (4 +B7+C7y) . (5.5)

Now, neglecting terms of second or higher order in
¢ NE-L Swe obtain

F(LR) = Qm /) g (LL) + gz (LL)] !

X gp(LR) [gx (RR) + g4 (RR)] !
(5.6)

I'(RL)=T(LR)" .

Using (5.1), (5.4), and (5.5), we obtain the "tunneling
matrix"
F(LR) =—(4e MR L/K)(i/kpy —1/K73) !
X 73{Ad +(C—-1/K)mrs+Br]1 ' . (57
Now, from Egs. (3.19) and (5.5), ]
pr(RR) =—2Imgr (RR)'
=—Qm/m)Im(A +B7r, +Cr), (58)
and, from (5.4),

=2m /B kpy, ko< ky
P LL) =10 Sk,

b

(5.9)
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Using (5.6)—(5.9) in (3.21), we find that the current is given by

/‘I" k||(/k|k Z(I/k/,(\)2+(1/K)Z

Ji(E) = fr(E)

el [ a8
J(L) - f_m .

0 (2m)?

(/ki)?+(1/K)? |4 = B2 = (1/K — C)?|2

XTrl(1 +73) M gkB Im(4 +B7) +Cry) M1 (5.10

where
T2 =16e ~2I\’(R~L)k£\,kil_€.\.K2
x (ke + KD kD)2 + K1) (5.11)

is the transmission coefficient of the barrier, with

kB =1k = k212, kR being the Fermi wave vector
of the right-hand layer of Fig. 1, k, the Fermi wave
vector of the left-hand layer. We have also defined

MLRE(i//\'p‘\"f‘l/KT;)T;[A —BT| +(1/K—C)T}]. .
(5.12)

Using the fact that region Dy is a structureless barrier
in the evaluation of (5.10), we obtain for the in-
tegrand in (5.10)

. _M wﬂ ke r’\'”dku 2 N2 R
J(L) = Pl By —(27r)2 T*(m/ 72 kf Im

Now, according to the standard tunneling Hamiltoni-

" an’ theory, the expression in (5.14) should reduce to
2kf ImA,® i.e., the result should be given solely by
the diagonal part of the Green’s function in the super-
conductor. This means that ImC must vanish and

det[gR(RR) +g/;(RR)]
=—(m/m)[A/kE)* + (/K] . (5.16)

if the standard result is correct.

We have verified (5.16) in two cases. For the nor-
mal metal—insulator—superconductor junction, we cal-
culate the Green’s function for a semi-infinite super-
conductor and find that

A=i|E|J(L ), B=iEA KK QRIE].
Cc=0,

(5.17)

which satisfies (5.16).

For a normal metal—insulator—thin-normal-metal-
(N) superconductor (S) junction we can also show
that (5.16) holds. In this case we solve for the
Green’s function in the right-hand layer of Fig. 1 by
calculating the Green’s functions in the thin N layer
(of width @) and the semi-infinite S layer.

We assume that the metals N and S are identical ex-
cept for the strengths of .their electron-phonon and

(/kF)2+(1/K)?

=THA/kE)+ (/K) D (mkf ] 7D ‘
X Im(Tr{(1 +73) [gr (RR) + g5 (RR)T™'))
X [f () = fr(ED] . (5.13)
The imaginary part of the trace is readily evaluated as
(#2/m)Im{(4 —=C +1/K)/[4° = B> = (C —1/K)]} .
(5.149)
Using (5.1) and (5.5) we identify
A2=B*—(C —1/K)' = (#/m)’
x detlgx (RR) +g3(RR)]

Using this result in combination with (5.14) and
(5.13) we obtain for (5.10),

detlgr (RR) + g5 (RR)]

A4-C+ l/K)][./},(E) —fr(E)] .

(5.15)

Coulomb interactions. Thus, k7, the Fermi wave vec-
tor in N, is equal to k7. Using the technique
described in Sec. Il for R = L [see below Eq. (2.19)],

- we obtain the Green’s function for the double layer.

We find’®
(E/NEDkFea
=(E/Q ) F(E) cos(AKYd) +sin(AK"d)]
+iG(E)(Ay/Qy) (5.18)
(E/NEDkEeB '
=(Av/QIF(E) cos(AKYd) +sin(AKYd)]
+iG(E)(E/ Q)
C=0, ¢=iF(E)sin(AKYd) —cos(AK"d) ,
where

F(E)=(E? = AsAy)/QsQy
G(E)=E(As—AV/QsQy (5.19)
AKYd=(KY—-KY)d .
By simply evaluating 42— B2 — (1/K)?, one verifies
(5.16) in this case.

One might hope thét the simple tunneling Hamil-
tonian result would hold in all cases in whjch conly one
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of the three metallic layers of Fig. 1 is superconduct-
ing. However, a simple extension of the calculation of
the N-S double-layer Green's function in the above
example shows that this hope is nor realized.

We find that when k7 5 k7, i.e., there exists a step
potential barrier at the NS interface, then the F(£)
and G (E£) of (5.19) are multiplied by

(1 =R)/(1 +RY =2k*k/ (kD + (kDT (5.20)

where 1 — R? is the transmission coefficient of the step
barrier

1= R2=4k K/ (kY + kD) (5.21)
We also have kf = k. Thus, we find that
A2 =B = (1/K)? =[4R*/(1 + R)? — )]
x (kive) 2= (1/K)?> . (5.22)

Even in the normal state, this leads to a "nonstandard"

form for the tunneling current. We emphasize that
this is #ot a density-of-states effect, but rather an
effect arising in the total transmission coefficient, involv-
ing the interference between waves scattered from two
potential barriers: the tunneling barrier B and the step
potential at the N-S interface. The formalism we have
developed here has enabled us to treat a problem to
which the standard theory could not be applied.

Since, even in a perfect N-S contact, there will al-
ways exist a step potential barrier, the proximity-effect
configuration will in general require use of the general
expression (5.15) unless

(KK + (kA T4RY e (1 + R << 1,

in which case (5.22) reduces to yield the standard
result for ‘the tunneling current. .

In Fig. 2 we have illustrated a possible configuration
for a proximity-effect tunneling sandwich. Using
(5.18), (5.19) with the modifications described in
(5.20), and (5.22), we have calculated the first and
second derivatives of (5.15) normalized by their
values in the normal state. In doing, we assumed that
T? was a very sharply decreasing function of k7, so
that a good approximation to the k7 integral could be
obtained by simply evaluating the integrand at k,=0.

The S metal was chosen to be Pb and, for simplici-
ty, we chose' Ay =0. The combined effects of finite
temperature and modulation voltage smearing were
simulated by averaging the results over 1 meV. The
energy dependence of A¢(E) was obtained from the
experimental results of Rowell and McMillan’ for tun-
neling into Pb. We chose to compare the results ob-
tained from the standard tunneling theory with those
obtained from the present theory for two values of the
reflection coefficient R2. The ratio

(AKVYA/E) = Qd/ hvy)

was fixed at 0.1 meV~'. For a metal with a Fermi
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FIG. 2. Proximity-effect tunneling configuration con-
sidered in the text. U, y and Uy are the energy differences
between the bottom of the conduction band in N and the
bottom of the conduction band in L and S, respectively.

FIG. 3. Normalized first derivative of tunneling current
for a reflection coefficient of 0.1. The dashed line is the
result of the standard tunneling theory, the solid line the
result obtained from Eq. (5.23).
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FIG. 4. Normalized first derivative with R2=0.5, compar-
ing result of the present work (solid line) with standard
result.

velocity of 10® cm/sec, this gorresponds to.an N layei
thickness (¢) of about 300 A. The parameter
(K/k)*=(V —uw)/(u+U.y) (see Fig. 2) was set at
0.5.

In Figs. 3 and 4 we show the results of our calcula-
tion of the normalized first derivative with a reflection
coefficient of 0.1 and 0.5, respectively. For the small-
er coefficient, the deviation of the standard result
(dashed line) from the correct result is slight. At the
higher coefficient, however, the deviation is pro-
nounced.

In Figs. 5 and 6 we have graphed the normalized
second derivative, for completeness, since this is also
measured in experiments. -Here we observe, more
clearly than in the first derivative results, that the de-
viation of the standard result (dashed line) from the
correct result increases with increasing energy, and
tends to damp the phonon structure arising from the
energy dependence of Ag(E).

We thus conclude that for a significant amount of
reflection, the effective transmission coefficient tends
to damp the structure which appears in the local den-
sity of states at the barrier—N-layer interface. Since
the result of the standard theory is that the normal-
ized first derivative is equal to this local density of
states,’ we find that the standard theory result is in-
correct when applied in this situation.

0.06 — —

5 - 10 15
E (mV)

FIG. 5. Normalized second derivative comparison derived
from the curves in Fig. 3.

The purpose for introducing the situation pictured
in Fig. 2 was to indicate that there is at least one tun-
neling situation in which the standard tunneling Ham-
iltonian theory cannot be applied. Further details on
the nature of tunneling into NS double layers with a
potential barrier at the N-S interface will be deferred
to a more complete treatment of proximity-effect tun-
neling.

VI. CONCLUSION

" The Feuchtwang approach for calculating Green’s
functions for metals in perfectly planar contact has
been extended to the superconducting state. The
effect of interactions has been accounted for by mak-
ing a local approximation for the self-energies.

Feuchtwang’s approach for calculating the current
through a tunnel junction in the normal state has been
extended to the superconducting state. We have

5 10 15
E (mV)

FIG. 6. No'rmal‘ized second derivative comparison derived
from the curves in Fig. 4.
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thereby rigorously verified the standard tunneling
Hamiltonian expression for the relationship between
tunneling current and the local density of states in two
cases: metal—insulator—superconductor and
metal—insulator—N-§ double-layer junctions. In the
latter case, we have found that the presence of a step
potential at the N-S interface, due to a difference in
the height of the common Fermi ievel above the bot-
tom of the band'for the N and S metals, alters the
standard result by modifying the effective total

17

transmission coefficient for the whole junction. We
conclude, therefore, that future work on proximity-
effect tunneling may have to account for this altera-
tion.
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