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The theory developed by I"euchtwang for tunneling in normal metals is extended to supercon-

ductors. It is shown that for metal —insulator —superconductor and metal —insulator —thin-

metal —superconductor junctions, our results agree with the standard Bardeen "tunneling Harnil-

tonian" approach. In the latter case, however, if there exists a potential barrier at the thin-

metal —superconductor interface, then the standard approach is found to be incorrect. We give the

proper:expansion for the tunneling current in this case.

I. INTRODUCTION

The /- V characteristic of a normal metal-
oxide —superconductor tunneling junction gives de-
tailed information on the density of states in the su-
perconductor. This fact is inferred both from experi-
mental observation and from the standard "tunneling
Hamiltonian" theory. Analysis of experimental tun-
neling characteristics in terms of the standard theory
and the theory of strongly coupled superconductors
has produced a wealth of detailed information on the
electron-phonon interaction and phonon density of
states in many metals.

However, rigorous theoretical justification of the
tunneling Hamiltonian theory has only been obtained
recently, in a series of papers by Feuchtwang. ' But
his theory specifically describes tunneling in normal
junctions; also, interactions such as the electron-
phonon interaction are neglected.

Therefore, in this work the Feuchtwang theory is
extended to deal with tunnel junctions in which one of
the metallic layers is superconducting. Specifically, we
consider normal-metal —insulator —superconductor an/
normal-metal —insulator —thin-normal-metal—
superconductor junctions. The latter involves the
proximity effect, which is dealt with in more detail in

a separate paper. ' The influence of interactions on
tunneling is accounted for by making a local approxi-
mation for the self-energies.

As the extension of the Feuchtwang theory is not
entirely straightforward, all the details of the exten-
sion of this theory have been presented here, for clari-
ty. In Sec. II we calculate the Green's function for a
three-layer system which has translational invariance
in the y and z directions. The form of the results is

shown to be similar to Feuchtwang's results, if the
Green's functions are interpreted as matrices. In Sec.
III' the tunneling current is calculated, using the
Kadanoff-Baym approach' for obtaining the Green's
functions for a system which is out of equilibrium, In
Sec. IV we describe the technique for calculating
Green's functions for the single layers. Finally, in

Sec. V, we derive the results for the dependence of
the tunneling current on the densities of states for the
components of a three-layer system when the central
layer is a simple rectangular potential barrier. These
results are sho~n to agree with those of the standard
theory in the two cases mentioned above, providing a

rigorous verification of that theory in these cases.
However, in the proximity-effect configuration with

a step potential barrier at the N-S interface, such as
would arise from a difference between the % and S
metals in the height of the common Fermi level above
the bottom of the band, we find that the standard
form is altered. This leads us to conclude that the
standard expression for the tunneling current may be
incorrect when applied to proximity-eA'ect tunneling, if
there is a significant amount of reflection from the po-
tential barrier at the N-S interface.

II. GREEN'8 FUNCTION FOR THE
TUNNELING SAND%ICH

We consider three slabs of material: a lef't elec-
trode, a barrier region, and a right electrode (see Fig.
I}, For simplicity, we- choose all interfaces to planar
and parallel, so that there is translational invariance in

the y and z directions. We therefore may define the
quasi-one-dimensional Green's function

6(xx') = d(y —y') d(: —z') d(I —i') exp ik, (y —y') —ii; (z —z')+-IF. (r —r')
OO OO OO
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Causal boundary conditions dictate that E contain a

positive infinitesimal imaginary- part, i 5. This yields
the "retarded" Green's function. The "advanced"
Green's function requires an energy with negative
infinitesimal imaginary part. For notational simplicity,
the dependence of the Green's functions on k, , k,
and E will not explicitly be indicated except when con-
fusion might arise.

The equations satisfied by the retarded or advanced
Green's function are taken to be

[E —H()(x) —X, (x)]g, (xx') = L, (x)g, (xx')

Zj(
I:jo-

So S„=L Sq=R S~

=5(x —x'), x,x' C D, ,

[E —H() (x) X(x) ] G {xx') = L (x) G (xx') (2.2)

= 5(x —x')

We have defined

I-l,)(x) ==
h k'

2/71 Qx 2/7?
p,

The adjoint equations are

g, (xx') [F. —Ho(x') —X, (x')]

=g, (xx') L,(x') =- h(x —x'), X,X' 6 D,
(2.3)

G {xx') [F. —Ho(x') —X(x') ]

.= G(xx') L{x')=6(x -x')

FIG. l. Geometry of the tunneling junction considered
I

here. The layers are labeled by Do, D], D2.

notation of Nambu. The matrix self-energies X(x),
X, (x) apply„respectively, to the entire tunneling
sandwich and to the tth slab D, . For convenience, we
define

s, '=s, +5, s, =s, —5,

s, 'CD„s, CD, . ]

It is assumed throughout that all self-energies are
well approximated by self-energies which are local
with respect to the x coordinate, i.e.,

X(xx'k, . k ) = X(xk, k ) 8(x —x')

f2 g2
7'3

2p? Qx

where p, is the chemical potential, tk][ is the magni-
tude of momentum parallel to the interfaces, and

~], ~2, T~ will represent the three Pauli matrices, in the

for x momenta near the Fermi momentum, p,- = pF.
These happen to be the mornenta of interest in tun-
neling. This approximation is similar to the approxi-
mation made in bulk materials when the momentum
dependence of the self-energy is neglected.

Following Feuchtwang's prescription, we construct

f
'" dx" [G(xx")L,(x")g(x"x') —G(xx") L(x")g(x"x')]=G(xx')6(x'ED) —g(xx')8(x ED)

I

(2.S)

The 6 function 9(x 6 D, ) vanishes if x is not in D„and is unity. otherwise. Partial integration yields

2

G(xx')B(x' C D) =g, (xx')6{x E D) + [G(xx")'v,g, (x"x') —G(xx")r,g, '(x"x')]~ '„'
I?? 5

+ dx" G(xx") [X(x")—X, (x")]g,(x"x')
I

(2.6)

where we define

G'( x') =—G{ '), G(xx')'= -, G(xx'), G'{ x')'==, G(xx')
Bx ' ()x . Bx Bx

(2.7)

Sim ilarly,
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d»" [g, (xx")L, (x")G(x "x') —g, (xx")L(x")G (x"x')1
I

= G {xx')6('x C D, ) —g, (xx') 6 (x' e D, )

t 5

[g (xx ) r3G (» x ) —g (xx ) r)G {» «)] 'p + g (xx ) [g(» ) —y. (x )] G(x «)d»2'
J ' I

These equations are similar to Eqs. {2.6) and (2.7)
of Ref. 1(b) except for the matrices and the self-
energy difference within the ith region, We will as-
sume that the self-energy X, (x") can be chosen such
that this term vanishes. Because X(x") must be
determined self-consistently from the Green's func-
tion G(xx ), which one is trying to calculate, this is
Aot a trivial requirement. We shall assume that it can
be met to accuracy suNcient to leave the self-energy
diAerence within the ith region as a small perturbative
correction.

It is sometimes convenient to interpret these results
in terms of a pseudo "tunneling Hamiltonian" Isee
Fqs. (2.15) and (2.16) or Ref. 1(b)]:

(xx') = g {XX')+ '
p]x" gr {XX")H.(.{x")6 (x"x')

l)

= g (xx') + dx" G(xx")HI'(x")g (x"x')
0

(2,9)

g(xx') =g, (xx'), x,x' C D,

and (neglecting the self'-energy difference at the boun-
daries)-

t

H, (x") = r, $[g(x"—s, +) —5(x"—s, „~)],
201 Qx

= —H(-(x")

The large parentheses indicate an anticomrnutator.
The 5 functions h(x" —so') and h(x" —s3 ) may be set
equal to zero because all the Green's functions will be
required to vanish at s{) and s~.

lt must be understood that the limits s) — and
s& +~ are to be taken, otherwise the Dirichlet
boundary condition would lead to no net current. In
these limits, the temporal boundary condition on the
Green "s functions (retarded) automati~a/ly leads to the
required outgoing-wave behavior, as we show for a

specific case in Sec. V, Eq. (5.3). This procedure as-
sumes that what occurs at so and s3, the free surfaces,
has no effect on the observed current, so that the
finite-sized sample may be regarded as eAectively
infinite in extent.

The boundary conditions on the g, (xx ) at. 5] and 52

may be chosen for convenience. ""We shall require
that the first derivative of g, (xx') (with respect to x or
x') vanish at s] and s2. At (x,x') =so or s3 we require
that go(xx') and g2(xx') vanish, again with the implied
limits so —~, sq +~, and the temporal boundary
condition, which combine to produce the correct
outgoing-wave behavior.

Thus Eqs. (2.6) and (2,8) reduce to

2

G(xx')6(x' C D) =g, (xx')6(x C D) +- -[G(xs, ')'r3g(s, ',x') —G(xs, , ()'r3g{s, ), )]x
2 EPI

(2. 1 1)

G(xx')6(x C D) =g (xx') 6(x' 6 D)+ [g (x s, ') 73G'(s+x') —g(xs, ,)) r)G'(s, ,(,x')]
2 In

The erst derivatives in Eq. {2.12) are found by evaluating the first derivative of. (2.11) at s, and s, +]. One thereby
obtains

2

6(xx') 6(x e 0,) =g, {xx')e(x' e D, ) — g, (x, s, ') [I (s, +, s, ')g, (s, ',x') —1 (s, ', s, ,] )g, (s, ,],x']2'
2

+ g {x5 ] ) t, r(s, +],s, ')g, (s, ','x') —r(s„],s, ., ] )g, (s,-„,x'))
2/0

(2.13)

the limits

I (xx') =——(g')/2m) rgG'(xx')'r3 (2.14)

All functions in Eq. (2.13) are Aow «ontinuous, so that
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The only remaining unknowns are the I matrices.
To determine these, we derive equations from the
equation for the discontinuity of the first derivative of
the Green's function at the source point x' = x = s, ,].'

73[G'(s, ,~, s, +~ ) —G'(s, +~, s, +~ )] =2m/g' (2;1S)

In combination with the first derivative of (2.11) at

s„[, this yields

I {s( +), s()g) (s), s( ~)) + I (s(+) s( ~))g( (s( ~[, &,~ [) + (s& y~, st+1) go+I (st+I &&+I) V (s&+} i+2) g&+1 (st+2, s, .p]) = 2 IB/ g ~ {2.I 6)

Since the first derivative of G(xx') is continuous in x' away from the source point (x =x'), we have

r)[G'(sg, ) s, ) G (s„] s, )]:0 ir[G (s, s, .p]) G (~ s„[)] 0

In combination with the first derivative of (2.11) at s„], the first of these yields

-I.(s„],s, ])g, ](s, ] s, ) + r(s„],s, )g, ](s„s,) + r(s, „],s, )g, (s„s,) —r{s„],s„])g, (&„],,}=0,
and the second yields

I (s, , s)g, (s, , s, ~) +I'(s„s, ~)g, (s, ~, s; ~)+I (s, , s, . ])g, ~(s, ],s, ~) I'(s, , s, p)g, ~(s, „y, .b', , t) =0

(2, 17)

(2.18)

To facilitate comparison of these results with Eq. (2.10) of Ref. 1(b), we relabel the regions Do —D~, D] D~,
Di —D& and set s~ = R, si = L Using th. e boundary conditions on the g, (xx'), one finds [from (2.16), (2.17), and

(2.18}]

r(LL) I.(LR) g {LL}+g(LL}
I (RL) I'(RR) —gs(RL)

—g, (LR}
g(g {RR)+gg(RR)

(2.19)

In the normal state, where all the matrices I and g are diagonal, this is identical to Eq. (2.10) of Ref. 1(b).
In the limit L =R, all of the I 's above must be equal. To show what the result for I is in this limit, we consider

the case in which the barrier region is a rectangular potential barrier of' height V. Then, using the appropriate boun-

dary conditions at L and R (Ref. 5):

coth[K~(4 —R)]/ K.,
g8 (RR ) = gB (LL) = z)z t'

r

[K+ sinh[K+(L —R)])
j„(RL}=g (LR}= n 0

0
—coth[K (L —R)]/K

0
—[K sinh[K (L —R)]}

{2.20)

(2.21)

where K+ =—[(2m/ g')(V —p, , 7-E)] '-".

Note that all of these functions diverge at L =R. We now consider the solution for I (LL),

I (LL) = (2m/ g ) [pL(LL) +ga(44) —gs(LR) [I +ga(RR) gq(RR)l gs(RR) gs(RL)]

Thus we find, in the appropriate limit,

lim I (LL) = (2nt/ g') [p, (LL) +g„(44)]
1C

—I

Equation (2.23) follows from (2.22) if one expands

[1+g (RR) 'g (RR)l

to first order in the small quantity gq(RR) 'gq {RR) as L R. One thus obtains

lim I (LL) = (2m/ g'-) [gi (LL) + g„(LL) —ga(LR)gs(RR) gs(RL)
R =I.

+g„(LR)g„(RR) 'g (RR)g (RR) 'g„(RL}] '

(2;22)

(2.23)

Using Eqs. (2.20) and (2.21), it is easy to show that the second term minus the third term is diagonal with

diagonal elements equal to

+ coth[K+(L —R)]-a'e+
= +,'" sinh [K+(L —R ) ]
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Thus, this term vanishes as L R. Again using
(2.20) and (2.21), one finds that

lim g (RR) 'g (RL) =1,
L -R'

so that the fourth term becomes g~(RR) =g~(LL),
by continuity.

G(»') = G(» ).e(t] —», )

+6 (11') e(T —
T ')

%'e also need the retarded and advanced functions
G(11')',G(11')", which obey the same equation as the
"full" Green's function, with a'temporal boundary
condition that requires G(11')' to vanish for t]' & t],
and G(»')" to vanish for t]' & f], The latter two
functions are related to those in Eq. {3.2) by

In the Nambu formalism, the Green's function is

defined by

6(»') = —(&(q (1)q"(1'))),
I

where (iliustrating the notation)

6 (11')'= [6(11')' —6 (11') ']8(T
~

—
T ~')

G(»')"=-t G(»') —G(»') ]8(», '-» )

Thus,

G(11')"—G(»') = G(11') & —G(l 1')

=--~G(11') .

and 'P~(rIT~) [q't (r~r~)] is a destruction (creation)
operator for a fermion of spin up (down) at r] at time

The brackets indicate a grand canonical ensemble
average with respect to the exact Hamiltonian, The
operator T orders the operators in parentheses in ord-
er of increasing time from right to left.

It is useful to define two auxiliary functions, "

The last definition above is made for later conveni-
ence.

In Ref. 3 [see Eqs. (8.27) and (8.28) of this refer-
ellce] equations are derived lof 6(11 ) ill tlie
normal state. Since the generalization of these equa-
tions to the superconducting case is straightforward,
we merely quote the necessary results,

—X(11) ' '56(ll')e(r, ' —t~)] =Hr(1)6(11')' '" (3.5)

1 l. ') ' ' —G(11') ' '0()(

ZI IG 11.) & '&]Sr»' e(t, - t, ) -~G(11)r(11') ~ '&'e(t]'-»]) = G(»') & ("Il-,-(l'), (3.6)

gX(1 1) =—X(i 1) —X(11), 5X(i 1)e(T, T, ) = X(l 1)—-
Making use of these results, one can readily verify [using (3.3)] that the retarded or advanced Green's function
satisfies

i —Ho(r ) } 6 (11') — d l X(11)6 (11') = Hr(1) 6 (11'}+ g(1 —1') (3.7)

, G(11') —G {11')H„{r]')— d 1 G(») X(11') = G(11')H, (1') + h(1 —1') . (3.8)

A Fourier transform of this equation, defined as in Eq. (2.1), yields Eq. (2.9},since g(xx') is to be constructed to
satisfy Eq. (3.7) for HI-=0. A similar Fourier transform of Eqs. (3.5) and (3.6) likewise leads to
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or

G (xx') =g (xx'} + J dxj [g( xxj)'0 r( x)jG( xjx') +g(xxj) Hy (xj)G(xjx') "]
0

(3.9)

O (xx') =g'(xx') + 'dx] [6(xx]) I-I,'. (x])gy(x]x')" + t-(xx])'e,~(x])g(x]x') ]
'0

(3.10)

By conservation of current, we obtain. the total current through the planar junction of Fig. 1 (x is a unit vector in

the x direction),

j(x) = x j(r) dy d~ = x ' ' —— —,Tr[G(ry r'y')2lel h ()

2im 9r Br
'

(1+.,)] e»d: (3.11)

The symbol "Tr" signifies a trace in the two-dimensional space. The 11 component of the Green's function is pro-
jected out by means- of the matrix (1+73), A Fourier transformation according to Eq. (2.1) yields

j{x)= .
'

-, ——,Tr[G(xx')'), , (I+r,)]
dk, dk dE.

2i???
'

2m)3 Bx Bx'
l

(3.12)

To evaluate the x derivative we use Eq. (3.10), awhile for the x' derivative we use (3,9), in order to obtain results in

terms of the I matrices. Thus

j(x}= ' ' ' — Tr $ [r3[I (xs, ) g, (s,+x)" —, I (xs; j) g, (s, jx)"e~t JA-.
I

dt- . dF.

2i?n 2m 2' 27r h

+ I (xs, ')'P, (s, 'x) —I (xs, +] )'g, (s, ],x) ]

[g, (XS, ) I (S, X) g, (XS, j ) I (S, j,X)

+ g, (XS, ) I (S; X) g, (XS, j } I (S, . jX) ] T3) (I + r3), (3.13)

where

—hr(ajj) '"= r, , G—(xx')' '"r3),=„,=j,
2?7? ()x BX

It is most convenient to calculate the current either at x = s] =—L or x = s~ =—R. Using the fact that the Green's
functions for the ith region vanish outside this region, we find

j(L) = —' ' ' Tr( jjr, [I (LL) gj (LL)"+ I (LL)'gy (LL) ']dk, dA..

2??'? 27T 27T 277'

—[g, (LL)' r(LL) '+ g„(LL) 'r(LL) "]r, )(1+r, )) (3.14)

after. evaluating (3.13) at x =s] = L-, and taking the limit L L. The equation for j(R) is the negative of the
above with L replaced everywhere by R, Using Eq. (3.4), we see that

I "—I ' = I —I ' and gI' —pI. = a

Equation (3.14) can therefore be, written

2 yyj dL' dk, dkj(L) = ' —,Tr([r3[l (LL} gj (LL} —I (LL) g, (I L) ]+r31 (LL)gL(LL)
rJ 277 (2m)

g„(LL)r (LL)., +-.,I (t L)g, (LL) g, (Lt.)r-(LL).,)(-I+»))

This form is obtained by making the indicated substitutions into the first two terms of Eq. -(3.14). A similar sub-
stitution in the last two terms ot this equation yields
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.J(L}=- dk, dk
, Tr ,'{1+.,}[g, (LL } r (LL) —g, (LL) I (aL) ']

2m 2n- (2~)'

+(1+~,) [I (I.I )'g, (I Z. }--g,(LI ) "r(S.S. ) +r.{LL)g, (L,I )

—
gL (LL) ~( (LL) ']]

One-half the sum of these expressions yields (after using the cyclic property of the trace)

.i(I.) = , —Tr((l+r3) ([( (LL),g/(LL)'}, —[l'(LL) ',PL(LL)'} }
2In 2~ (2m)' 2

+., [I-(i L) -,g, (L~)"+g, (I I ) ]

+., [r(Lz, )-+ r-(LL),g, (Lz, ) &] ) (3.15)

To complete the calculation of the current, it is necessary to determine the matrix I ' '. For convenience, we

reproduce here the approach in Appendix A of Ref. 1(b). Using the results in Eqs. (3.5) —(3.10} we have, symboli-

cally,

g& (&) g& (&)+glII g& (&)+g& (&)g grl

~' = ~" +g'&r~' = a'+ O'I&I'-a' .

Thus

6 ' ' = (1 —g'H~-) x (g ' -'+g '"H,-G "}

and

6'(g') '=(1 -gran, )
- =1+@e,~

The combination of these last two equations gives the required result,

g& (&) g& (&) +g& (&)II pa+ Gr'gag& (&) +GIIIfg& (&)g g(r
I'

Using Eq. (3.16) and the boundary conditions on the Green's functions, one may obtain

2'" f' '"(xx) = $ (l'(xs, ')[g, ' '"(s, 's, ')I "(s, 'x) —g,
' '"(s, 's, ,&)i "(sjix))

t =-()

(3.16)

—f"(xs, , )[g + '+'(s, , s+)('«(s+x) —g, »&&(s, , s, , ) f"(s, x)l} {3.17)

The quantities of interest are now easily found to be

' r '"(IL) = r (LL) [g,""(LL)+g,& '"(LS.)]r."(11.}—r (LL)g„'"(LR)I (RL)

—I- (LR)g„'&'(RI ) I'(I.L) + r (LR) [g„'"(RR)+g, "'(RR)]I (RL) (3.18}

g, (xx') ' ' = + i p, (xx') f;(—+ '(E) (3.19)

where, f '(E) =1 —f "(I) =—f;(E) is the Fermi dis-
tribution function for the ith layer and p, (xx') is the

Equations (2.19), (3.15), and (3.18) determine the
tunneling current once the single-layer Green's func-
tions are obtained.

One has the relationship

complex spectral density function defined by Eqs.
(3.14) and (3.15) of Ref. 1(b). As noted in this refer-
ence (just below the aforementioned equations) thts

function vanishes over energy intervals in which

p, (xx) vanishes. But

i p, (xx) = [g, (xx)"—g, (xx)'] = —2i Im[g, (xx)'],

because p, (xx) is real. Thus, at energies for which
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ga(xx)' is real, we find

g„(xx)' '"=O. (3.20)

That is, (3.20) holds if there are no states in 8 at the
energies of interest for tunneling. One can verify this

statement for the special case of a simple rectangular

barrier by examining Eqs. (2.20) and (2.21). Barriers
for which (3.20) holds at the energies of interest for
tunneling will be termed "structureless barriers" in the.
following.

For a structureless barrier, the first two terms of
Eqs. (3.15) can be written

dE dk, dk-.
, —Tr (I + r3)—[I"(LR)pR(RR)I'"(R4), pi (44)]+i'[f& (E) —fii(E)l . (3.21)

2In 2m (2m) ' 2 2 /Yl

I

'+hen the tunneling junction is biased with a voltage V, this term is nonzero. Otherwise, it vanishes, since

.r, (~) —.&„(~)= &(F.-.'V) —&(E,) -0.
The last two terms of (3.15) are finite even when V =0. Hence they represent the "zero-bizs anomaly" or Joseph-

son eA'ect (in the absence of' a magnetic field). Using the identity

Tr(A (B,C]) =Tr([C,A]B),

we may rewrite tPe "anomalous" terms

j,„,(L) = ' ' —Tr[[g (LL)"+g, (LL)', r, ]I'(44) +[g, (LL), r ][I (LL)"+ I (LL}']}'.Iq l dg cfk, . dk

2in 2m (2m) 2 2
(3.22)

lf I is the normal state then the Green's functions ~I
contain elements on the diagonal only, and the com-
mutators vanish. Since only one of the three layers of
the tunneling sandwich we consider is a superconduc-
tor, there will be no Josephson current. Thus, the
current is given by (3.21).

IV. SINGLE-LAYER GREEN'S FUNCTIONS

An important approximation is made in the neglect
of the self-energy diA'erence at the metal boundaries

[see Eqs. (2".6) and (2.8)]. If one can make an accu-

rate initial guess for the local self-consistent self-

energy of the. sandwich, then this neglect will be
justified. A crude, but tractable, ansatz for the self'-

energy in each layer will be adopted here: the self-

energy will be assumed spatially constant in each
layer, with step-function discontinuities at the boun-

daries. Such an ansatz is generally taken in studies of
normal metal-oxide —superconductor tunneling. The
accuracy of this is to be evaluated by calculating the
self'-consistent self-energy using the Green's functions
obtained by means of this ansatz.

The quasi-one-dimensional Nambu Green's func-
tion can'be written

equations. The constants c]„are to be determined
from the discontinuity in the first derivative of the
Green" s function,

d cI i 2I)16 (xx')
dx) dx (

I i

(4.2)

Thus, for x in the ith layer, the Bogolyubov equations
are

g2 g2
Z,r+, +„,—V. ..-y..] ~,['(x) =0

2l)l Qx

(4.4)

The general solutions are

[(4 + II,)/n, ]"]
P+ (x) [(E I) )/II ]f/2 [iI cos(K+ X}

+ 8 sin(K,"x)], (4.5)

~here x {x&) is the greater (lesser) of' the two coor-
dinates x,x'.

The self-energy ansatz is

X(x) =(1 —Z, )E+&,7.
, + V, v-, x e D, . (4.3)

G (xx ') = $ d,, 0„(x,) 4,, (x, ) ' (4.1) where

where W„(x- ) is a two-component vector wave func-
tion satisfying the Bogolyubov equations with boun-

dary conditions appropriate to the right of the source
point at x =x', 4„{x&)a solution for boundary condi-
tions applying to the left-hand side of the source
point. The index g accounts for the inherent (two-

fold) degeneracy in the solutions of the Bogolyubov

5, =Q, /Z,

n, -=(Z2 —S )]/',

K,"=—[k,'-, —(2in/h')(V, +Z II,)]"
k, , —= (2in p. , /g') ~'-'

and A, B Are constants.

(4.6)



Using Eqs. (4.2) and (4.5), we write V. TUNNELING CURRENT: EXAMPLES

(L+ n, /n, ) "1
(/) (/)++ (x&) (L —() /(y ) I// t]/+

Using the technique described in Sec. IV, one may
construct the Green's function for the barrier of width
R —L. The results are given in (2.20) and (2.21).
Assuming that K+(R —L) = K(R —L) & ) 1 f'or the
energies of interest, we find

and find the solutions f'or d+,

g//(RR ) = g/, (LL ) = —(//// g'K) r t

g//(RL) =h'//(LR) ——(2//1/g K)t' T~

(5.1)

d+ =- +////Pi' W~
(/)

where H + is the %ronskian

(, ) cl(tI~ (x) (, ) (, ) d@y (x)
@,' (x) —y,' (x)

dx ~1X

(4.8)

which is independent of x. One can now write the
Green's function for any of the layers.

Referring to the expression just after (2.21), one
observes that the approximate equality of' K. and K
requires & —p, , to be much greater than I:., the energy
of interest (measured relative to the equilibrium
chemical potential )(L). The barrier height (i.e. , V —p}
is typically of the order of an electron volt or more,
while the energies of interest (E) in superconducting
tunneling are of the order of phonon energies, so that
this approximation is will justified,

The solution for the Green's function ot the left-
hand slab (0,)) in Fig. 1 is

g/(xx) =

[/// cos[K'; (x —L)] sin [K', (x. —s())]

fi'K'„cos[K'; (L —s„)]

0
—

/&1 cos[K (.x& —L)] sin[K" (x' —s())]
h-'K/- cos[K': (L —s())]

(5.2}

since we choose to have the left-hand slab in the nor-
mal state. In all cases, we assume that the left-hand
slab will be so thick the, t, since the current [according
to Eq. (3.21}] is being probed at L, the boundary con-
ditions at s() will have negligible influence. Thus, we

take the limit s() —~, Since the function in {5.2) is

a retarded Green's f'unction, the energy I has a posi-
tive imaginary infinitesimal part. Thus

such electrons. A general form f'or the Green's func-
tion g«(RR} is

(5.5}

Now, neglecting terms of second or higher order in

e '" ''„we obtain

r(LR) = (2//i/g '1)
[g/ (LL)+g//(LL)]

sin[K' (x, —s,))] + ~', (!. -

lim — =,
' =+—/e

'-" -, (53}
„-- -- cos[K'+ (L —.~[)}]

and theref'ore, at the energies of interest,

x g„{LR)[~„(RR)+~„(RR}]],

I (RL) = I.(LR)'
(5.6)

g/ (LL) ///1/A h/:t

Here we have assumed that K'; = K"-' = k/. &.

From Eq. {4.6) we observe that this requires

h A.

i'/. ],
—P, , —P, — — &) ~/ + Z/ L

2 /I)1 . 2 111

(0/ =-I: since L is in the normal state). Except for
values of hI, re/y near h/. = (2//////g') ' this is an ex-
cellent approximation. As noted in Ref'. 7, the dom-
inant values of k, [ for tunneling electrons are very
near zero, because the eA'ective thickness of the struc-
tureless barrier which must be traversed by a tunnel-
ing electron increases rapidly as /'I increases, ex-
ponentially decreasing the tunneling probability f'or

Using (5.1}, (5.4), and (5.5), we obtain the "tunneling
matrix"

I'(LR) = —(4e '" ''/K)(i//', , —1/Kr, )

x T, [~ + (c —I/K) —, , + 8.]] [

Now„ from Eqs. (3.19) and (5.5),

p«(RR) = —2 Imp«(RR)'

(2/71/0-') Im(A. + 8 + 6 ~ ), (5.8)

and, from (5.4),

(5.9)
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I

Using (5.6) —(S.9) in (3.21)„we find that the current is given by

Ie)
" dE ': k()dk)!, (I/k/'r)'+ {I/K)-' / /.(E') —j/((E')

.i(L) =
2' J-" 2 JD (2 )' (I/I, :;)'+(I/K)' (2' —B' —(I/K —C)'('-

3585

Tr[(1 + r)) ML/(kr( Im(A + Br) + Cr3) A/L/(] (5.10-)

where

T2 16e-2K(R-L)k kR g2

~ '(-k -'- + K') [k '-' ) ' + K'] '
I

(5,11} x [./; (E) —/„(E) l . (S.i3)

T' [(—I /k ' )' + (-1/K) '] (mkq"r/g'). -

X 1m(Tr[(1+r2)[ga(RR) +ga(RR)] ))

is the transmission coeScient of the barrier, with

k/( = [(k/') —k(( l ", k/ 'being t. he Fermi wave vector
of the right-hand layer of Fig, 1, k/- the Fermi wave
vector of the left-hand layer. We have also defined

M„, == (//k/ r + I/K r3) r3[A —8 r( + (1/K —C) r)]
I

(S.i2)
)

Using the fact that region Da is a structureless barrier
in the evaluation of (5.10), we obtain for the in-

tegrand in (5.10)

The imaginary part of the trace is readily evaluated as

(g'/m) Im '((A —C +1/K)/[A' —8' —(C —1/K)'])

(S.i4)

Using (5.1) and (5.5) we identify

A' —8' —(C —I/K)' = (t' '//ll)-'-
x det[ga(RR) +ga(RR)]

Using this result in combination with (5.14) and
(5.13} we obtain for (5.10),

j(L) = T (m/g ') kP; Im -'
]

(A —C+ I/K) [/'/ (E) f/((E)]-'r k„dk„, , (1/k/"r) +(1/K)'
2rr &) (2rr)2 '

det g/2(RR) +g//(RR)]

(S. l 5)

I

Now, according to the standard tunneling Hamiltoni-
an' theory, the expression in (S.i4) should reduce to
2k&-'& ImA, " i.e. , the result should be given solely by
the diagonal part of the Green's function in the super-
conductor. This means that ImC must vanish and

det[g„(RR) + g, (RR }]
= —(/27/g2) 2 [(I/k~&. ) & + (I/K)-'] (5 16)

if the standard result is correct.
We have verified (5.16) in two cases. For the nor-

mal metal —insulator —superconductor junction, we cal-
culate the Green's function for a semi-infinite super-
conductor and find that

A = /
I
E

I
/(k/"( I) /() 8 = /E ~/(k/'( I& /( I

E
I
)

(5.17)
C=0

which satisfies (5.16).
For a normal metal —insulator —thin-normal-metal-

(N) superconductor (S) junction we can also show
that (5.16) holds, In this case we solve for the
Green's function in the right-hand layer of Fig. 1 by
calculating the Green's functions in the thin N layer
(of width d) and the semi-infinite S layer.

We assume that the metals N and S are identical ex-
cept for the strengths of.their. electron-phonon and

Coulomb interactions. Thus„kj:-, the Fermi wave vec-
tor in N, is equal to k/'-. Using the technique
described in Sec. II for R = L [see below Eq. (2.19)],
we obtain the Green's function for the double layer.
We find'

(E/I E I) i; /', eA

= (E/0, ) [iF(E) cos((5 K'd) +sin(b K'd)]

+iG{E)(b,/I), )

(E/I E
I
) k/!, & 8

(S.is)

= ((I v/Il v) [iF(E) cos(i) K'd) +sin{5K'd)]

+i G (E) (E/ I),)

C = 0, c = i F (E) sin (AK d) —cos(AK /d)

where

F(E) =—(Z' —S,a, )t'n, n, ,

G(E) =—E(/t, r
—Av)/Il( I) v

aZ'd =—(X', -rC'}d .

(5.19)

By simply evaluating A' —8-' —(1/K)'„one verifies
(5.16) in this case.

One might hope that the simple tunneling Hamil-
tonian result would hold in all cases in which only one



3586 GKRAI, O 8. ARNOLD

of the three metallic layers of Fig. 1 is superconduct-
ing. However, a simple extension of the calculation of
the N-S double-layer Green's function in the above
example shows that this hope is»ot realized.

We find that when k&': & k&'.-, i.e. , there exists a step
potential barrier at the NS interface, then the I (I:)
and G(E) of (5.19) are multiplied by

L B
N

R

(1 —R')/(1+ R') =21.~/ /[(I. '-)'+ (/"-)'] (5.20)

where 1 —R' is the transmission coeKcient of the step
barrier

0

1 —R' =4k''k&'-l(kl'+ k'-) ' (5.21)

We also have kl". ~ =k/~. Thus, we find that

3' —8' —(I/K)'= [4R-'/(I + R')' —c']

~ (k,', i) '-(1//K)-' (5.22)

Even in the normal state, this leads to a "nonstandard"
form for the tunneling current. We emphasize that
this is»ot a density-of-states efTect, but rather an
efTect arising in the total (~a»s»~issioi~ ~oem'(. i('Ilt, involv-
ing the interference between waves scattered from two
potential barriers: the tunneling barrier 8 and the step
potential at the N-S interface. The formalism we have
developed here has enabled us to treat a problem to
which the standard theory could not be applied.

Since, even in a perfect N-S contact, there will al-
ways exist a step potential barrier, the proximity-eA'ect
configuration will in general require use of the general
expression (5.15) unless

IR2/[R'2 + (I, v ) 2] }4R 2/[(, (I + R 2) ] 2 ((

~NS

11

t
X=-d X=0

FIG. 2. Proximity-eAect tunneling configuration con-
sidered in the text. U» and U~& are the energy differences
between the bottom of' the conduction band in /@and the
bottom of the conduction band in I and S, respectively.

112 i I
(

I I I I

)
I I I T

in which case (5.22) reduces to yield the standard
result for the tunneling current.

In Fig. 2 we have illustrated a possible configuration
for a proximity-effect tunneling sandwich. Using
(5.18), (5.19) with the modifications described in

(5,20), and (5.22), we have calculated the first and
second derivatives of (5.15) normalized by their
values in the normal state. In doing, we assumed that
T-' was a very sharply decreasing function of k]}, so
that a good approximation to the k}I integral could be
obtained by simply evaluating the integrand at k}I=0.

The S metal was chosen to be Pb and, for simplici-
ty, we c'hose A~ =0. The combined eA'ects of finite
temperature and modulation voltage smearing were
simulated by averaging the results over 1 meV. The
energy dependence of 4~(E) was obtained from the
experimental results of Rowell and McMillan' for tun-
neling into Pb. %'e chose to compare the results ob-
tained from the standard tunneling theory with those
obtained from the present theory for two values of' the
reflection coefIIicient R'. The ratio

was fixed at 0.1 meV ]. For a metal with a Fermi

1.1 0

1.06

CA Z
1.04

1.02

1,00

0.98

0.94—
I f I I I I l I I I I

5 . 10 15
E (mvj

FIG. 3. Normalized first derivative of tunneling current
f'or a reflection coefficient of 0.1. The dashed line is the
result of the standard tunneling theory, the solid line the
resu l t obtained from Eq. (5.23) .
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thereby rigorously verified the standard tunneling
Hamiltonian expression for the relationship between
tunneling current and the local density of states in two
cases: metal —insulator —superconductor and
metal —insulator —N-S double-layer junctions. In the
latter case, we have found that the presence of a step
potential at the N-S interface, due to a diA'erence in

the height of the common Fermi level above the bot-
tom of the band'for the N and S metals, alters the
standard result by modifying the eA'ective total

transmission coe%cient for the whole junction. Aj'e

conclude, therefore, that future work on proximity-
efI'ect tunneling may have to account for this altera-
tion.
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