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Propagation of nonlinear waves on an electron-charged surface of liquid helium
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A theoretical study of the nonlinear behavior of the surface wave (or ripplon) propagating on the electron-

charged surface of liquid helium is. presented. The evolution of the wave packet is described by the nonlinear

Schrodinger equation, and the wave is found to be either stable or unstable with respect to an amplitude

perturbation depending on the choice of the wave number. Envelope solitons are firmed in the one-

dimensional case. In two dimensions it is found that wave packets collapse when the envelope contains large
wave numbers, so that the surface tension determines wave evolutions; the physical dimension of the packet
shrinks and the amplitude increases, The system we consider in this paper is suitable for experimental studies

of solitons and collapse phenomena because the dissipation in liquid helium is small and the ripplon dispersion

rclat10n can bc easily modified b'y an cxtcrnal clcctrlc field.

I. INTRODUCTION

The nonlinear behavior of a dispersive wave
has been subjected to considerable theoretical
attention. ' It is well known that one of the re-
markable properties of such waves is the
existence of stationary wave pulses or packets
called "solitons" which exist because of the
dynamical balance between dispersion and non-
linear effects. Computational studies have found

many interesting properties of such solitons, For
instance, solitons are very stable and keep their
identity against disturbances. ' In many cases', a
sinusoidal wave breaks into solitons and the
original wRveform is recovered after interactions
with other solitons. ' Two solitons often behave as
if they were bound to each other. 4 On the other
hand, recent studies of two- and three-dimen-
sional systems have disclosed that the wave
packet may collapse, i.e., shrink, rather than
form stable solitons. "

The formation of oQe-dimensional solltons hRs
been observed as excitations in several systems'
including liquid 'water and low-temperature
gaseous plasmas, and in nonIinear transmission
llQes. Expel imental observRtlons oi the long-tillle .

behavior of solitons are, however, limited be-
cause of dissipation and the finite extent of the
experimenta, l systems; We mould like to explore
a new system which may bypass these difficulties.

Recently there has been a great deal of interest
in a system consisting of a layer of electrons on
the surface of liquid helium. The geometry of the
system is sketched in Fig. 1. The wave propa-
gating on the surface of the liquid, called "rip-
plon, " has the following remarkable features: (i)
the damping rate of the waves is very small be-
cRuse of the small vlscoslty ln llquld helium, Rnd

(ii) the dispersion relation of the rippions is con-

Here, p is the density of the liquid, g the gravity
constant, a the surface tension, o', the equilib-
rium surface-electron charge density, and Eo
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FIG. 1. Schematic of the electron-charged surface of
a liquid-helium system.

trollable by changing the external static electric
field applied to bind the electrons to the surface
of the liquid. In particular, the group velocity
v vanishes at particular wave numbers indicating
that the wave packet will not propagate out of the
system, These yroperties should enable us to ex-
perimentally study the long-time behavior of the
nonlinear ripplon.

When the depth of the liquid zo is much greater
than the weavelength, the linear dispersion relation
of the ripplon of frequency ~~ as a function of the
wave number k, is given by'

(2 err)r+aEa
) ) ., ~

le )
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a(x, I) =A(x, I) exp(ikx —i(uf) . (2)
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FIG. 2. . Dispersion relation of the wave at different
values of the electric field 1:0. The normalizing factors
~z, k~, and E& are defined by Eq. {42). mz/2~= 28 Hz,

27I/j'. , =0.19 cm, and E&=1,5 kV/cm when the tempera-
turp of liquid helium is 4.2 K.

the external electric field in the z direction (per-
.pendicular to the liquid surface). Coordinates x
arid y are along the liquid surface. Depending on

E„ three types of dispersion curves are obtained
as depicted in Fig. 2. Consider the waves propa-
gating in the positive x direction. Although v, is
always positive when

E'„&v(12gpn)' i ' —(2 vo, )'

:(see curve 1), we have two points A and 8 (see
curve 4), where v, =0 when

v(12gpn)' i' & E', + (2 va, )'i' & v(16gpn)' ~'.

. CIA . BA 1, BA
i +iv~ + —v~, +k'/~A~'A =0.

et ' ax 2 ' dx' (3)

Three coefficients [v„v,' (-=a v, /ak), and p] in this
equation are functions of E„cr„andk (or a). We
have already seen thai we can adjust E, so that u,
is zero.

As we will discuss in Sec. III, Eq. (3) has the
following properties: (i) The wave described in (2)
is unstable with respect to modulation in both am-
plitude and phase, and "bright" envelope solitons
may be formed when Peg & 0. (A bright. soliton is
an amplitude peak. ) (ii) If Pv~ & 0, then the modu-
lational instability does not appear, and the initial
amplitude perturbation eventually breaks into
"dark" solitons which are stable amplitude depres-
sions. We will show that both of these cases are
experimentally accesible in the electron-liquid-
helium system.

There are a few particular combinations of k and

E, where Eq. (3) is not valid because of the per-
turbation scheme we employ. We will also discuss
the wave evolution in these particular cases in Sec.

We then extend our theory to discuss two-di-
mensional waves of the form

a (x, y, I) = A (x, y, I) exp(ikx —i~i) . (4)

It will be shown in Sec. V that such a wave is un-
stable with respect to the modulation in both x and

y directions, when the wave number is large
enough, so that the surface tension determines the
properties of the wave. After the modulational in-
stability has reached a large amplitude, the modu-
lated waves may collapse. Finally, we present pa-
rameters and an idea related to the experimental
studies in Sec. VI.

Here ~(&0) and k(&0) are the carrier frequency and
wave number. The amplitude and the phase of the
wave are given by the slowly varying function
A(x, t) We will show that, except for a few par-
ticular combinations of E, and k, the evolution of

A is described by

E', ) v(16pg n)' i' —(2vo,)',
Then the Pzyleigh- Taylor instability' grows be-
cause uP~ becomes negative near k=( pg/n)'i'.
When k» ( pg/n)' ', the surface-tension effects
dominate over the gravity and electric-force ef-
fects, and the dispersion relation is given by ~'„
= nk'/p.

In Sec. II, we consider a quasimonochromatic
one-dimensional wave with a corresponding sur-

II. DERIVATION OF ONE-DIMENSIONAL NONLINEAR

SCHRODINGER EQUATION

In this section, we consider a one-dimensional
wave packet propagating in the x direction on the
electron-charged surface of an incompressible
liquid with depth z, . The wave propagation is gov-
erned by the Laplace equation

AII/ = 0

for the velocity potential g(x, z, t) subject to the
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boundary conditions

$, =0

at the bottom of liquid z = -z„
y, =a, +q„a„

at the surface of liquid z =a(x, t), and

(g+'2(&()'+gn= (1/P)(ol. —o.A. ,)

(6)

more slowly compared to exp(ikx —i~t). As long
as ~ak~ «1, the interactions with the third- and
higher-harmonic components can be neglected be-
cause they are higher-order effects. We therefore
assume that the perturbation is written

a = z [A exp (tkx —i~t) + A* exp(-ikx+ i &at)]

+ e '[B exp(i2kx —i2(ut)

+ (nip)a„„(l --,'a„') at z =a(x, t) .

(8)

Here o (x, t) is the surface-electron charge densi-
ty, Q(x, z, t) the electrostatic potential, and g, the
potential when there is no surface displacement,
a =0. We choose the equilibrium surface at z.=0.
The suffixes x, z, and f indicate partial deriva-
tives with respect to those variables. The veloc-
ity of the liquid is derived from v=7'(. As com-
pared to the description of waves on water, "'"
Eq. (8) has additional terms due to the electrical
force on the electrons arid to the surface tension
which is usually taken to be small when one con-
siders long wavelength waves but becomes the
most important effect when the wavelength is
short. To describe the electrical force term ap-
pearing in Eq. (8), we need a few more equations
which are discussed in the latter half of this sec-
tion.

Our first task is to express g, and Vg in terms
of a and its derivatives by employing the solution
of the Laplace equation (5). Let us introduce an
operator,

I' = -i(s/ax) .
Then the solution of Eq. (5) satisfying the boundary
condition (6) is given by

+ B*exp(-i2kx+ i2(ut) + C] .
Here, e («1) is an expansion parameter, and A,
B, and C are slowly varying functions of x and t,
so that both ~A, /kA

~
and ~A, /~A

~
are the order of

magnitude of e. i

By using the above perturbation scheme we in-
tend to derive an equation for the envelope func-
tion A(x, t) rather than a(x, t) To.do so, we ex-
pand $„, (I)„and q, in a series of harmonics:

i,„„(x,t) exp[in(kx —(ut)] + c.c.

tn& (12)

2

—a+ i —A +2k''BA*+ 2k'~']A ~'A
Bf

1 ' . 8=-g k —i A+ —k —i gy, „
8Ã p Bx

Here the subscript nk stands for nth harmonic
component. By using expressions for g„, P„and

Eqs. (A2), (AS), and (A4), we can write these
harmonic components in terms of A, B, and C.
The explicit expressions are listed in Appendix A.
Substituting these expressions into Eq. (8), we ob-
tain an equation for the first harmonic,

( )
cosh[(z+zo)P]

~( )cosh zoP
(9) ——k —i —A. ,

p Bx

where f(x, t)=g(x, 0, t) Combining .Eqs. (7) and

(9) we find

sinh [(a+z,)P]
cos zp

I' x, t =a, +g„a, (10)

This equation enables us to express g„, g„and
g, at z =a in terms of a and it's derivates, if we
assume that ~ak~ «1. The explicit expressions for
g„etc. are listed in Appendix A. Substitution of
these expressions into Eq. (8) yields an equation
for the surface displacement a.

We are interested in the evolution of a quasi-
monochromatic wave or wave packet of the form
given in Eq. (2). This fundamental wave compon-
ent interacts with the second-harmonic component
appearing at frequency 2~ and wave number 2k and
the zero-frequency component which changes much

a(p = 4zv5 (z -a) . (15)

The confining electric field F.p applied in the z di-

and for the second harmonic,

-(2 '/k)B+ 'A = gB 4k'( /P)B+-(1/P-)( e,)c. ,

(14)

in the deep-liquid limit; ~kz, ~-~. These two equa, —

tions yield the nonlinear equation for A in a closed
form if erg, —apfp is written in terms of A. and B.

We now need to describe the electrical. force
term appearing in Eqs. (13) and (4) in terms of a.
The surface distortion modifies the election densi-
ty o, so that it changes the electrostatic poteritial
Q(x, z, t) which is described by the poisson's equa-
tion
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I ection allows electrons to move only along the
liquid surface. Since both the period and the damp-
ing time of electron plasma oscillations are much
shorter than the oscillation period of ripplons, "
the lnel'tlR Rnd the fl lctlon term RppeRl lng lQ the
equation of motion of electrons can be neglected,
so that we have

(x cos8+ z sin8) ~ E = 0 at z =a,
where x and z are unit vectors in the x and z di-
recti. on, and

tan0 =a„. (17)

EquR'tioll (15) lndlcates that the elec tl'lc field E is
perpendicular to the liquid surface. As a sheet of
chRrge RppeRl lng ln the Poisson s equation creates
a discontinuous electr'lc field, we use the RveI'Rged
elec tI'lc field

employ

(2 cos8 —x sin8) ~ (941' —&Q )

= -4IIII cos8 at z =a, (24)

which is obtained from (15) by integrating over a
closed surface enclosing the infinitesimal electron
layer. %6 find {T in terms of a by substituting
Eqs. (21)-(23) into (24). In the limit of ~kzo~ -~,
the electrical interaction terms appearing in Eqs.
(13) and (14) are given by

(O4.).= [Oo (4.'+ 4.)].

= —f[(21Iao) +E,] &+i —A
1 2 o, 8

Bx

—4E,(2',)u'A*II —2a'E,'~ A ~'A

+2u'(2v)'(A~'Aj+ 0(e')

E = =.' (Vy'+ Vy ) at ~ = a(x, t) . (18)

in (16). Here, Q' and Q are the potential above
and below the surface, which Are solutions of the
Poisson s equRtion, AQ = 0. In ox'dex' to simplify
the pxoblem, we put metallic walls at z = +z,. The
Poisson's equation is then subject to the conditions

8 = [2koo'/(4'' —oI,'I,)]A', (27)

Vfe now have the amplitude of the second harmon-

y" = y- at x =a(x, i).
With the boundary condition (19) the solution of

Eq (15) is.

is the eigenfrequency at a wave number 2k. The
equation governing the first harmonic is

* sinh [(zo+z)P]
sinhz, P (21)

iA, —-2 A«+iv, A„+2- v,'+ ~ A„„+k'p~A~'A =O.

The second term of this solution comes from the
external field which is modified by the unperturbed
surface charge 0,. The averaged external field is
Obtained f1 QIn Eo = o (Eo + Eo). Olll' pill'pose is to
express II' in Eq. (21) in terms of a(x, t). This
cRQ b6 done if we employ R sel"les expRnslon

The coefficients are given by

2 . „(2Ilco) +Eo p2 & „o(dy =gk- ' k+ —k,
p

(22)

where ll&"1 are functions of O(a"). Using Eqs. (18)-
(18) and (20) we can connect 4I' and p at z =a.
After some lengthy algebra, the connection of the
two solutions yields

k"' =Z'a
0

II *"'=E,'a(I'V'a),

II ""=-,' E,'Ja'a„, + 2a[J'Ta(P ia)]]

Here T =- cothz, P. The potential can now be writ-
teQ ln tel ms of g.

The cRlculRtloQ of g ls straightforward lf we

2m~ 2k go Eo 3+&

"If the wave-packet variation is slower than the car-
. rier frequency ~„, then we have A« —-v~A», so
that we obtain Eq. (3) from Eq. (28). In Sec. III,
we discuss the equation for a normalized ampli-

. tude:

i F, +iv~ F„+o v~ F„„+P(F~'F = 0,
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WAVELENGTH, 2m/k (cm)

If we neglect the surface tension and the elec-
trical interaction effect, i.e. , if we set @=0',
= E', = 0, then Eqs. (29) -(31) agrees with the results
of the nonlinear deep-water wave theory. "

VII= 0
&I/2

0.55 0 27 O.IS
2.I2

III. MODULATIONAL INSTABILITY AND SOLITONS

The uniform amplitude wave

F=F, exp(iP IF, I' t)

is a solution of Eq. (31). The exponential factor
is indicative of a nonlinear frequency shift. De-
pending on the sign of v' P, this uniform wave can
be both stable and unstable with respect to an
envelope perturbation. " One can easily show that
a small perturbation ~I" and 5G, written in the
form

Al

K
UJ I—

O
Lal
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k /kN
3 I/2 2- I/2

6

1.5
O

4J

0

F = exp(iP IF, I't)[F, + &F exp(iEx -int)

+ 5G exp(-i Zx —in*t) ],
FIG. 3. Modulationally stable (labeled S) and unstable

(labeled U) regionS in Eo-k plane.

with the definition

a = (F/0) exp(i' -i(o„t) + c.c. ,

evolves according to the dispersion relation

(n-Kv, )'= g v,"&'-v,'P IF, I'K'. (34)

WAVELENGTH, 2m/k (cm)

1,0 0.5 0.3,': 0.2
I I I I
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We find from (34) that the perturbation grows,
i.e. , the uniform wave is unstable with respect to
the amplitude and phase modulation when v'P & 0.
We call this a modulation instabi:lity. The max-
imum grow'th rate

(35)

.is obtained when

(36) 0

3I/4 3 6I/4 4I/4
I ' I

The uniform wave is stable, when v'P & 0.
In Fig. 3, we show stable and unstable regions

in the E', —k plane. %e have neglected 0, appearing
in Eqs. (29) and (30). The modulational instability
grows in the regions labeled U. The label. 8 in-
dicates the stable regions. We are especially in-
terested in the behavior of the system near to v
=0. Here, the real part of 0 vanishes, indicating
that the unstable modulation does not propagate.
The curve v = 0 is also plotted in Fig. 3. We find
that the modulational instability grows at point A
on the dispersion curve in Fig. 2. We have a
stable wave at point B. In order to show the A

dependence of a maximum growth rate y, we
plot P in Fig. 4 as a, function of k. The singularity
of P appearing at 0= (pg/2o. )'t' is due to the reso-
nance of the second-harmonic wave [see Eq. (27)].

-2

"4
0 2-I/2

k/kN

FIG. 4. Coefficient P of the nonlinear term in Eq.
(31) as a function of wave number with Eo as a para-
meter.
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We are also interested in the case when k is
very large, so that only the surface tension de-
termines the properties of the waves. From Eqs.
(29) and (30) we have

I 3 (~/p)1/2k 1/2
g 4

P
1 (o/p)l/2k3/2

(37)

1f k'» (2E2/2/a)2 and Pg/o. . We again find modula-
tional instability. If the system length I is larger
than the instability growth length v /y, then the
modulational instability grows to large amplitude.
From (35) and (37) this criterion turns out to be

iE, i'» 12/kf, . (33)

E=E, sech [(p ~E, ~2/v')' '(x —V, t)]
x exp(i ,' P IEo I

I-) . (40)

Since the width of this soliton is about the same
as Q' given in Eq. (36), solitons are created in
the nonlinear stage of the modulational in-
stability. " Zakharov and Shabat" have found ex-
act solutions of the nonlinear Schrodinger equation.
They have shown that an arbitrary wave packet
disintegrates into a number of solitions. They also
have predicted some interesting properties of these
solutions such as bound-state oscillations. In this

The modulational instability occuring at these
short wavelengths has to be considered when one

carries out an experiment such as the detection
of two-dimensional electron lattice' by using
resonant excitation of ripplons.

It is well know that Eq. (31) ha.s stationary
state solutions which can be expressed in terms
of Jacobian elliptic functions. Soliton solutions,
exhibiting the dynamical balance between nonlinear
and dispersion effects, belong to these types of
solutions.

When v'P & 0, we have "dark" solitions charac-
terized by

E(,f)=E,ta.h [( P ~E,
~
/. ;)'/'(x ., I)]

xexp(2p ~E, ~2f). (»)
These disturbances have an amplitude dip and a
phase jump moving with the group velocity. In

this modulationally stable case, the arbitrary per-
turbation around the uniform equilibrium ampli-
tude given by (32) is described by the Korteweg-
deVries equation. " The properties of the Kor-
teweg-decries equation are well known. " The
initial arbitrary perturbation breaks into dark
solitons.

When v'P & 0, we have "bright" solitons,

case solitons behave as, if they were bound to each
other (see also Ref. 4).

The long-tjme behavior of solitons has not been
observed experimentally presumably due to dis-
sipation in the experimental system. We expect
the system considered here is suitable for observ-
ing the nonlinear interactions.

IV. SPECIAL CASES

There are three special combinations of Ep and
k for which Eq. (31) is not valid. One pa.rticular
case is when v' = 0. The lowest-order dispersion
term to be appeared in Eq. (31) is then ( —,

'
)

(9 '~ /9 k') E„„,. However, this third-order de-
rivative term introduces only a small shift of the
velocity of the envelope and does not affect the
stability of the envelope.

Another more interesting ease is when A.

= (pg/2n)'/' for all E,. At this particular wave
number, the second-harmonic w'ave satisfies the
linear dispersion relation, 2&@2= &o» [see Eq. (27)].
Therefore, the amplitude of the second-harmonic
mode becomes the same order of magnitude as the
fundamental-mode amplitude, and the dominant
nonlinear interaction occurs only between these two

modes. As w'e show in Appendix B, the spatially
uniform waves exhibit amplitude oscillations in
time. If the second-harmonic wave is excited in-
itially, then the decay instability" produces side-
bands and may cause spatial amplitude modulation
on the fundamental mode. The fundamental-mode
wave packet emits waves at the second harmonic
because the group velocity of these two modes a.re
diff erent.

The final special case is the marginal state for
the interchange instability, i.e. , &~ = 0 w'hich

occurs when E', =47/(gpn)'/' —(2vo2)' and k

=(pg/o)'/2. Although our analysis fails to be
valid in this case, the large negative value of P
(positive nonlinear frequency shift) near ~2 = 0
implies that finite-amplitude effects tend to stabil-
ize the intercha. nge instability (see Fig. 4).

V. TWO-DIMENSIONAL VfAVE MODULATION AND

COLLAPSE

So far, we have considered only the ease when
the modulation wave vector is parallel to the
carrier wave vector. The problem of two-dirnen-
sional modulation is interesting because it re-
lates to the collapse phenomenon of the wave
packet, ' We derive an equation describing two-
dimensional wave-packet evolution in Appendix
C. The final result

i (E2+ v E„)+ 2 [v' E,„+(v / k)E ]+ P
~

E I'E = 0
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VI. PARAMETERS AND SUGGESTED EXPERIMENT

We summarize numerical values. of the quantit-
ies appearing in our theory. In Pigs. 2-4.we have
employed quantities defined by

&~ =F(W/a) ~

kgb= (pg/&)

E2N = 2v(pgn)'~',

(42)

to normalize the frequency, the wave number,
ar|d the confining electric field, respectively. If
we put p = 0.13 g/cm' and a = 0.12 dyn/cm for
liquid helium at 4.2'K, then the above normaliz-
ing quantities 'are: &o„/2v = 28 Hz, X.„=2v/k„
=0.19 cm, and E„=1.5 kV/cm. We have neglected
a, in Figs. 2-4„because (2vo,/E„}'=3.6x10 ', if
we use practical surface-electron density of 10'
cm ' [see Eqs. (29) and (30)].

We find in Fig. 2 that v = 0 appears at X = 2v/k
= 0.6 cm when E, is in the range between 1.97
and 2.12 Kv/cm. The frequency ~ /2w is always

indicates that the dispersion term is anisotropic.
Here we have choosen the carrier wave vector k
to be in the positive x direction.

It can be .shown that a two di.mensional wave
packet shrinks in all directions if Pv' &0 and
u v' &0. We have already seen that the dynamical
balance between the nonlinear and the dispersion
effects keeps the shape of the one-dimensional
soliton given by Eq. (40). However, if the wave
packet shrinks in both x and y directions, then'
the dispersion effect can not stop the contraction
because the amplitude increases more rapidly than
in the case of one-dimensional contraction, so that
the nonlinear term always dominates ovei the
dispersion term in (41):; This collapse phenomenon
is described by a self-similar solution of Eq.
(41).' The collapse continues until higher-order
nonlinear and dispersion. terms become effective.
0 Pv' &0 or Pv &0 and e v' & 0, then- the wave
packet contracts in one direction (say, in the x
direction) and expands in the other direction
(say, in the y direction).

The conditions Pv' &0 and v~v' &0 is achieved
in the right-hand-side unstable region in Fig. . 3.
When the wave number is very large, the coef-
ficients of the dispersion and nonlinear terms are
given by Eq. (37) and v~/k= —,

' (n/pk)'~'. All these
coefficients are positive, indicating that the oc-
currence of modulational instability at large wave
number gives rise to collapse of the modulated
waves in the nonlinear stage of the instability.
From the self-similar solution obtained in Ref.
6, we find the condition for the collapse to occur
in a finite size system is also given by Eq. (38).

about 10 Hz. This w'ave is unstable with respect
to the modulational instability, and the wave en-
ergy does not propagate out from the system.
Yanof has found experimentally that a large fluctu-
ation at about 10 Hz easily appears if one does not
carefully isolate the system from external vibra-
tions. ' Another wave with v =0 appears at X

=0.2 cm, where the envelope is stable.
Since we can control the dispersion relations

by changing Eo,. the following experiment is pos-
sible. We first set E, below 1.97 Kv/cm and
launch a wave packet at an end of the system.
After the wave packet reaches the middle of the
system, we suddenly increase Eo to a value above
1.97 Kv/cm. If we choose initial carrier fre-
quency properly, the wave packet does not escape

'

from the system. We can now observe the long-
time behavior of solitons. %hen the frequency is
above a few kHz, the dispersion relation is de-
termined only by the surface tension. We then can
observe collapse of the wave packet.
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&f= cotaP[a, + P„a„-aPT(a, +g„a„)

-5 a'P'a, + aPTa, ],
where T = c t oz,haPnd P = -i(S/Sx). Dit'-ferentia-
ting (9) with respect to x and using (Al), we ob-
tain

IV

P„=iT[(1 -aPT)a, +ia„Ta, ]+iaPa, . (A2}

From (7) and (A2), we have

g, =a, +ia, Ta, . (A3)

Equations (A2) and (A3) are correct up to 0(a').
Differentiating (9) with respect to time, we also
have

sinh[(a+ zo)P] 1
coshZ, P p

T [[1-aPT+—(aPT—)']a

—;a'P'a, + (1 —aPT) g„a„)
4W

+ a —(a, -aPTa, +P„a„)+2a'P—Ta, , (A4)

APPENDIX A: EXPRESSIONS OF P„,P, , P, , AND FOURIER
COEFFICIENTS

We expand the left-hand side of (10) in a power
series of QP and find
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which ts correct up to O(a').
The coefficients appearing in Eq. (12) are cal-

culated by using Eqs. (A2)-(A4). We find

g„, = e~A+O(e'),

g„= -i(a&A+ 0(&'),

y„„=(2~B kaA') e'+ O(e4},

g,2» =( 2i(uB-+ik(oA')&+0(& ),
g„o=2km IA

~

& +0(& ), (A5)

((,.= o(& ').,

g 3k+i —
$q»

———(d +i —eA —2k~ BA*e
~t ~t

+2k'a'
i

A. I'Ae'+0(&~),

APPENDIX 8: RESONANT INTERACTION BETVfEEN

FIRST AND SECOND HARMONICS

When the second-harmonic component (2&v», 2k)
satisfies the linear dispersion relation, i.e. , when
2&„=&», the fundamental mode and the second-
harmonic mode strongly interact. This resonant
interaction occurs when k= (pg/2u)'~'. The ampli-
tude of the second harmonics then becomes the
same order of magnitude as the fundamental-mode
amplitude. As the coupling to the other components
is nonresonant, the set of equations

i (A, + v~, A„) + GBA* = 0,
i (B,+ v~» B,) + 6 (uB + HA ' = 0

describe the wave evolution. Here, v„and v„are
the group velocity of the fundamental and the sec-
ond-harmonic waves G = -ka» —2o, R,k'/a», H
= k~», and Aa = (4u„—2~»)/2u». The definition of
A and B are given in Eq. (11).

We consider the spatially uniform solution of
(Bl) with the initial condition A (t = 0) =A, and
B(i=0)=0. Taking into account the conservation
law, HIAI'+GIB I'=HIA, I', we eliminate B from
(Hl) and have

i~~A„+A„-2HGIAI'A+HGIA, I'A =o: (a2)

We define a function s A exp(inst/2) and obtain

s„+(-,'n~'-HGIA, I')s+2HGIsI's=o. (M)

The solution of (B3) under the condition s(t =0)
=A, and S,I, ,= 0 is written in terms of Jacobi's
elliptic function

Is I'= IA.I'[cn'(&&; k)/dn'(«; k)] =
I
A I' (B4)

From the conservation law, the intensity of the

second-harmonic wave becomes

I BI'=
I A.I']1 —[cn'(«' k)/dn'(«' k)1] (»)

These solutions show the amplitude oscillation of
the both modes.

APPENDIX C: DERIVATION QF THE TYCHO-DIMENSIONAL

WA VE-PACKET EQUATION

For a two-dimensional surface distortion, the
surface-tension term should be replaced by u(a„„
+a„) in the linear regime. The linearized equa-
tion corresponding to Eq. (8) becomes

The equation of motion of. the electrons on the
surface is modified to be

nz '= et Ei+e(tx-i) E(t&2)/Its~I. (C3)

Here, v„m, -e, are the velocity, mass, and
charge of the electron, and f is the tangential unit
vector along the maximum gradient direction of the
liquid surface, which is expressed by

t = cos' conj x + cos6I sinT/ y —sinrj 2,
where 0 = tan '(a„+a,')'i', g = tan '(a, /a„). We
neglect the electron inertia and from (C3) and (C4)
we obtain

cosO cosy Q„+ cos0 sing Q~ —sing Q, = 0 „

sin'g Q~ —cos'g Qy =. 0

The three-dimensional solution of the Poisson's
equation is again the same as Eq. (21), provided P
is replaced by (-n, )'~'. Using (C5) and the poten-
tial continuity condition (20), we obtain an expres-
sion of k'(x, y, t):

(C5)

In the linear regime, the surface electron charge
density ls given by

o —cr o
= (-Q,+ + Q» —Eo + E0 )/4v . (C7)

Combination of Eqs. (21), (C6), and. (CV) yields

0, + ga=(1/p)(og, —o,p„)+an, ,a, (Cl)

where A~ = s'/sx'+ 8'/sy'. On the other hand, the
three-dimensional solution of Eq. (5) is obtained
simply by replacing the operator J' by (-n.~)

"~' in

Eq. (9) ~ f is now a function of x, y~ and t. By re-
peating the procedures we have employed to de-
rive Eq. (13) we obtain

-y« = -g(-&,)"0+ (n/&) (-&i)"'0
+ (1/&)(-&,)"(a4.—oA ~) .
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a„= -g(-a )a —(1/2vp)t(2v(x, )'+E', ja a

( a )3/2a (C9)

The two-dimensional wave equation is obtained by
substituting (CB) into (C2):

To derive the two-dimensional wave-packet equa-
tion, we combine (C9) and the nonlinear term in

Eq. (21). Choosing the carrier wave vector along
the positive x direction, we obtain final Eq. (41).
A fully nonlinear three-dimensional calculation
from the starting equations gives us the same result.
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Osaka University, Suita, Japan.
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